aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ubifs
diff options
context:
space:
mode:
authorArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2011-03-25 17:41:20 +0200
committerArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2011-03-25 17:41:20 +0200
commit7bf7e370d5919112c223a269462cd0b546903829 (patch)
tree03ccc715239df14ae168277dbccc9d9cf4d8a2c8 /fs/ubifs
parent68b1a1e786f29c900fa1c516a402e24f0ece622a (diff)
parentd39dd11c3e6a7af5c20bfac40594db36cf270f42 (diff)
downloadkernel_goldelico_gta04-7bf7e370d5919112c223a269462cd0b546903829.zip
kernel_goldelico_gta04-7bf7e370d5919112c223a269462cd0b546903829.tar.gz
kernel_goldelico_gta04-7bf7e370d5919112c223a269462cd0b546903829.tar.bz2
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus-1
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6: (9356 commits) [media] rc: update for bitop name changes fs: simplify iget & friends fs: pull inode->i_lock up out of writeback_single_inode fs: rename inode_lock to inode_hash_lock fs: move i_wb_list out from under inode_lock fs: move i_sb_list out from under inode_lock fs: remove inode_lock from iput_final and prune_icache fs: Lock the inode LRU list separately fs: factor inode disposal fs: protect inode->i_state with inode->i_lock lib, arch: add filter argument to show_mem and fix private implementations SLUB: Write to per cpu data when allocating it slub: Fix debugobjects with lockless fastpath autofs4: Do not potentially dereference NULL pointer returned by fget() in autofs_dev_ioctl_setpipefd() autofs4 - remove autofs4_lock autofs4 - fix d_manage() return on rcu-walk autofs4 - fix autofs4_expire_indirect() traversal autofs4 - fix dentry leak in autofs4_expire_direct() autofs4 - reinstate last used update on access vfs - check non-mountpoint dentry might block in __follow_mount_rcu() ... NOTE! This merge commit was created to fix compilation error. The block tree was merged upstream and removed the 'elv_queue_empty()' function which the new 'mtdswap' driver is using. So a simple merge of the mtd tree with upstream does not compile. And the mtd tree has already be published, so re-basing it is not an option. To fix this unfortunate situation, I had to merge upstream into the mtd-2.6.git tree without committing, put the fixup patch on top of this, and then commit this. The result is that we do not have commits which do not compile. In other words, this merge commit "merges" 3 things: the MTD tree, the upstream tree, and the fixup patch.
Diffstat (limited to 'fs/ubifs')
-rw-r--r--fs/ubifs/Kconfig32
-rw-r--r--fs/ubifs/commit.c58
-rw-r--r--fs/ubifs/debug.c34
-rw-r--r--fs/ubifs/debug.h30
-rw-r--r--fs/ubifs/dir.c18
-rw-r--r--fs/ubifs/file.c11
-rw-r--r--fs/ubifs/io.c201
-rw-r--r--fs/ubifs/ioctl.c2
-rw-r--r--fs/ubifs/journal.c28
-rw-r--r--fs/ubifs/lprops.c26
-rw-r--r--fs/ubifs/lpt_commit.c56
-rw-r--r--fs/ubifs/orphan.c10
-rw-r--r--fs/ubifs/recovery.c44
-rw-r--r--fs/ubifs/scan.c2
-rw-r--r--fs/ubifs/super.c55
-rw-r--r--fs/ubifs/tnc.c10
-rw-r--r--fs/ubifs/ubifs.h45
17 files changed, 455 insertions, 207 deletions
diff --git a/fs/ubifs/Kconfig b/fs/ubifs/Kconfig
index 830e3f7..d744090 100644
--- a/fs/ubifs/Kconfig
+++ b/fs/ubifs/Kconfig
@@ -44,29 +44,17 @@ config UBIFS_FS_ZLIB
# Debugging-related stuff
config UBIFS_FS_DEBUG
- bool "Enable debugging"
+ bool "Enable debugging support"
depends on UBIFS_FS
select DEBUG_FS
select KALLSYMS_ALL
help
- This option enables UBIFS debugging.
-
-config UBIFS_FS_DEBUG_MSG_LVL
- int "Default message level (0 = no extra messages, 3 = lots)"
- depends on UBIFS_FS_DEBUG
- default "0"
- help
- This controls the amount of debugging messages produced by UBIFS.
- If reporting bugs, please try to have available a full dump of the
- messages at level 1 while the misbehaviour was occurring. Level 2
- may become necessary if level 1 messages were not enough to find the
- bug. Generally Level 3 should be avoided.
-
-config UBIFS_FS_DEBUG_CHKS
- bool "Enable extra checks"
- depends on UBIFS_FS_DEBUG
- help
- If extra checks are enabled UBIFS will check the consistency of its
- internal data structures during operation. However, UBIFS performance
- is dramatically slower when this option is selected especially if the
- file system is large.
+ This option enables UBIFS debugging support. It makes sure various
+ assertions, self-checks, debugging messages and test modes are compiled
+ in (this all is compiled out otherwise). Assertions are light-weight
+ and this option also enables them. Self-checks, debugging messages and
+ test modes are switched off by default. Thus, it is safe and actually
+ recommended to have debugging support enabled, and it should not slow
+ down UBIFS. You can then further enable / disable individual debugging
+ features using UBIFS module parameters and the corresponding sysfs
+ interfaces.
diff --git a/fs/ubifs/commit.c b/fs/ubifs/commit.c
index 02429d8..b148fbc 100644
--- a/fs/ubifs/commit.c
+++ b/fs/ubifs/commit.c
@@ -48,6 +48,56 @@
#include <linux/slab.h>
#include "ubifs.h"
+/*
+ * nothing_to_commit - check if there is nothing to commit.
+ * @c: UBIFS file-system description object
+ *
+ * This is a helper function which checks if there is anything to commit. It is
+ * used as an optimization to avoid starting the commit if it is not really
+ * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
+ * writing the commit start node to the log), and it is better to avoid doing
+ * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
+ * nothing to commit, it is more optimal to avoid any flash I/O.
+ *
+ * This function has to be called with @c->commit_sem locked for writing -
+ * this function does not take LPT/TNC locks because the @c->commit_sem
+ * guarantees that we have exclusive access to the TNC and LPT data structures.
+ *
+ * This function returns %1 if there is nothing to commit and %0 otherwise.
+ */
+static int nothing_to_commit(struct ubifs_info *c)
+{
+ /*
+ * During mounting or remounting from R/O mode to R/W mode we may
+ * commit for various recovery-related reasons.
+ */
+ if (c->mounting || c->remounting_rw)
+ return 0;
+
+ /*
+ * If the root TNC node is dirty, we definitely have something to
+ * commit.
+ */
+ if (c->zroot.znode && test_bit(DIRTY_ZNODE, &c->zroot.znode->flags))
+ return 0;
+
+ /*
+ * Even though the TNC is clean, the LPT tree may have dirty nodes. For
+ * example, this may happen if the budgeting subsystem invoked GC to
+ * make some free space, and the GC found an LEB with only dirty and
+ * free space. In this case GC would just change the lprops of this
+ * LEB (by turning all space into free space) and unmap it.
+ */
+ if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
+ return 0;
+
+ ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
+ ubifs_assert(c->dirty_pn_cnt == 0);
+ ubifs_assert(c->dirty_nn_cnt == 0);
+
+ return 1;
+}
+
/**
* do_commit - commit the journal.
* @c: UBIFS file-system description object
@@ -70,6 +120,12 @@ static int do_commit(struct ubifs_info *c)
goto out_up;
}
+ if (nothing_to_commit(c)) {
+ up_write(&c->commit_sem);
+ err = 0;
+ goto out_cancel;
+ }
+
/* Sync all write buffers (necessary for recovery) */
for (i = 0; i < c->jhead_cnt; i++) {
err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
@@ -162,12 +218,12 @@ static int do_commit(struct ubifs_info *c)
if (err)
goto out;
+out_cancel:
spin_lock(&c->cs_lock);
c->cmt_state = COMMIT_RESTING;
wake_up(&c->cmt_wq);
dbg_cmt("commit end");
spin_unlock(&c->cs_lock);
-
return 0;
out_up:
diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c
index 0bee4db..f25a733 100644
--- a/fs/ubifs/debug.c
+++ b/fs/ubifs/debug.c
@@ -43,8 +43,8 @@ DEFINE_SPINLOCK(dbg_lock);
static char dbg_key_buf0[128];
static char dbg_key_buf1[128];
-unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
-unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
+unsigned int ubifs_msg_flags;
+unsigned int ubifs_chk_flags;
unsigned int ubifs_tst_flags;
module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
@@ -810,16 +810,24 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum)
{
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
+ void *buf;
if (dbg_failure_mode)
return;
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
current->pid, lnum);
- sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
+
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
+ return;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
ubifs_err("scan error %d", (int)PTR_ERR(sleb));
- return;
+ goto out;
}
printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
@@ -835,6 +843,9 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum)
printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
current->pid, lnum);
ubifs_scan_destroy(sleb);
+
+out:
+ vfree(buf);
return;
}
@@ -2690,16 +2701,8 @@ int ubifs_debugging_init(struct ubifs_info *c)
if (!c->dbg)
return -ENOMEM;
- c->dbg->buf = vmalloc(c->leb_size);
- if (!c->dbg->buf)
- goto out;
-
failure_mode_init(c);
return 0;
-
-out:
- kfree(c->dbg);
- return -ENOMEM;
}
/**
@@ -2709,7 +2712,6 @@ out:
void ubifs_debugging_exit(struct ubifs_info *c)
{
failure_mode_exit(c);
- vfree(c->dbg->buf);
kfree(c->dbg);
}
@@ -2813,19 +2815,19 @@ int dbg_debugfs_init_fs(struct ubifs_info *c)
}
fname = "dump_lprops";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_lprops = dent;
fname = "dump_budg";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_budg = dent;
fname = "dump_tnc";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_tnc = dent;
diff --git a/fs/ubifs/debug.h b/fs/ubifs/debug.h
index 69ebe47..919f0de 100644
--- a/fs/ubifs/debug.h
+++ b/fs/ubifs/debug.h
@@ -27,7 +27,6 @@
/**
* ubifs_debug_info - per-FS debugging information.
- * @buf: a buffer of LEB size, used for various purposes
* @old_zroot: old index root - used by 'dbg_check_old_index()'
* @old_zroot_level: old index root level - used by 'dbg_check_old_index()'
* @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()'
@@ -54,7 +53,6 @@
* dfs_dump_tnc: "dump TNC" debugfs knob
*/
struct ubifs_debug_info {
- void *buf;
struct ubifs_zbranch old_zroot;
int old_zroot_level;
unsigned long long old_zroot_sqnum;
@@ -173,7 +171,7 @@ const char *dbg_key_str1(const struct ubifs_info *c,
#define dbg_rcvry(fmt, ...) dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__)
/*
- * Debugging message type flags (must match msg_type_names in debug.c).
+ * Debugging message type flags.
*
* UBIFS_MSG_GEN: general messages
* UBIFS_MSG_JNL: journal messages
@@ -205,14 +203,8 @@ enum {
UBIFS_MSG_RCVRY = 0x1000,
};
-/* Debugging message type flags for each default debug message level */
-#define UBIFS_MSG_LVL_0 0
-#define UBIFS_MSG_LVL_1 0x1
-#define UBIFS_MSG_LVL_2 0x7f
-#define UBIFS_MSG_LVL_3 0xffff
-
/*
- * Debugging check flags (must match chk_names in debug.c).
+ * Debugging check flags.
*
* UBIFS_CHK_GEN: general checks
* UBIFS_CHK_TNC: check TNC
@@ -233,7 +225,7 @@ enum {
};
/*
- * Special testing flags (must match tst_names in debug.c).
+ * Special testing flags.
*
* UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method
* UBIFS_TST_RCVRY: failure mode for recovery testing
@@ -243,22 +235,6 @@ enum {
UBIFS_TST_RCVRY = 0x4,
};
-#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3
-#else
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0
-#endif
-
-#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS
-#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff
-#else
-#define UBIFS_CHK_FLAGS_DEFAULT 0
-#endif
-
extern spinlock_t dbg_lock;
extern unsigned int ubifs_msg_flags;
diff --git a/fs/ubifs/dir.c b/fs/ubifs/dir.c
index 14f64b6..7217d67 100644
--- a/fs/ubifs/dir.c
+++ b/fs/ubifs/dir.c
@@ -522,24 +522,6 @@ static int ubifs_link(struct dentry *old_dentry, struct inode *dir,
ubifs_assert(mutex_is_locked(&dir->i_mutex));
ubifs_assert(mutex_is_locked(&inode->i_mutex));
- /*
- * Return -ENOENT if we've raced with unlink and i_nlink is 0. Doing
- * otherwise has the potential to corrupt the orphan inode list.
- *
- * Indeed, consider a scenario when 'vfs_link(dirA/fileA)' and
- * 'vfs_unlink(dirA/fileA, dirB/fileB)' race. 'vfs_link()' does not
- * lock 'dirA->i_mutex', so this is possible. Both of the functions
- * lock 'fileA->i_mutex' though. Suppose 'vfs_unlink()' wins, and takes
- * 'fileA->i_mutex' mutex first. Suppose 'fileA->i_nlink' is 1. In this
- * case 'ubifs_unlink()' will drop the last reference, and put 'inodeA'
- * to the list of orphans. After this, 'vfs_link()' will link
- * 'dirB/fileB' to 'inodeA'. This is a problem because, for example,
- * the subsequent 'vfs_unlink(dirB/fileB)' will add the same inode
- * to the list of orphans.
- */
- if (inode->i_nlink == 0)
- return -ENOENT;
-
err = dbg_check_synced_i_size(inode);
if (err)
return err;
diff --git a/fs/ubifs/file.c b/fs/ubifs/file.c
index d77db7e..28be1e6 100644
--- a/fs/ubifs/file.c
+++ b/fs/ubifs/file.c
@@ -448,10 +448,12 @@ static int ubifs_write_begin(struct file *file, struct address_space *mapping,
if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
/*
* We change whole page so no need to load it. But we
- * have to set the @PG_checked flag to make the further
- * code know that the page is new. This might be not
- * true, but it is better to budget more than to read
- * the page from the media.
+ * do not know whether this page exists on the media or
+ * not, so we assume the latter because it requires
+ * larger budget. The assumption is that it is better
+ * to budget a bit more than to read the page from the
+ * media. Thus, we are setting the @PG_checked flag
+ * here.
*/
SetPageChecked(page);
skipped_read = 1;
@@ -559,6 +561,7 @@ static int ubifs_write_end(struct file *file, struct address_space *mapping,
dbg_gen("copied %d instead of %d, read page and repeat",
copied, len);
cancel_budget(c, page, ui, appending);
+ ClearPageChecked(page);
/*
* Return 0 to force VFS to repeat the whole operation, or the
diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c
index d821731..dfd168b 100644
--- a/fs/ubifs/io.c
+++ b/fs/ubifs/io.c
@@ -31,6 +31,26 @@
* buffer is full or when it is not used for some time (by timer). This is
* similar to the mechanism is used by JFFS2.
*
+ * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
+ * write size (@c->max_write_size). The latter is the maximum amount of bytes
+ * the underlying flash is able to program at a time, and writing in
+ * @c->max_write_size units should presumably be faster. Obviously,
+ * @c->min_io_size <= @c->max_write_size. Write-buffers are of
+ * @c->max_write_size bytes in size for maximum performance. However, when a
+ * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
+ * boundary) which contains data is written, not the whole write-buffer,
+ * because this is more space-efficient.
+ *
+ * This optimization adds few complications to the code. Indeed, on the one
+ * hand, we want to write in optimal @c->max_write_size bytes chunks, which
+ * also means aligning writes at the @c->max_write_size bytes offsets. On the
+ * other hand, we do not want to waste space when synchronizing the write
+ * buffer, so during synchronization we writes in smaller chunks. And this makes
+ * the next write offset to be not aligned to @c->max_write_size bytes. So the
+ * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
+ * to @c->max_write_size bytes again. We do this by temporarily shrinking
+ * write-buffer size (@wbuf->size).
+ *
* Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
* mutexes defined inside these objects. Since sometimes upper-level code
* has to lock the write-buffer (e.g. journal space reservation code), many
@@ -46,8 +66,8 @@
* UBIFS uses padding when it pads to the next min. I/O unit. In this case it
* uses padding nodes or padding bytes, if the padding node does not fit.
*
- * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
- * every time they are read from the flash media.
+ * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
+ * they are read from the flash media.
*/
#include <linux/crc32.h>
@@ -88,8 +108,12 @@ void ubifs_ro_mode(struct ubifs_info *c, int err)
* This function may skip data nodes CRC checking if @c->no_chk_data_crc is
* true, which is controlled by corresponding UBIFS mount option. However, if
* @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
- * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
- * ignored and CRC is checked.
+ * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
+ * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
+ * is checked. This is because during mounting or re-mounting from R/O mode to
+ * R/W mode we may read journal nodes (when replying the journal or doing the
+ * recovery) and the journal nodes may potentially be corrupted, so checking is
+ * required.
*
* This function returns zero in case of success and %-EUCLEAN in case of bad
* CRC or magic.
@@ -131,8 +155,8 @@ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
node_len > c->ranges[type].max_len)
goto out_len;
- if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
- c->no_chk_data_crc)
+ if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
+ !c->remounting_rw && c->no_chk_data_crc)
return 0;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
@@ -343,11 +367,17 @@ static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
*
* This function synchronizes write-buffer @buf and returns zero in case of
* success or a negative error code in case of failure.
+ *
+ * Note, although write-buffers are of @c->max_write_size, this function does
+ * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
+ * if the write-buffer is only partially filled with data, only the used part
+ * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
+ * This way we waste less space.
*/
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
{
struct ubifs_info *c = wbuf->c;
- int err, dirt;
+ int err, dirt, sync_len;
cancel_wbuf_timer_nolock(wbuf);
if (!wbuf->used || wbuf->lnum == -1)
@@ -357,27 +387,53 @@ int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
dbg_io("LEB %d:%d, %d bytes, jhead %s",
wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
ubifs_assert(!(wbuf->avail & 7));
- ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
+ ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
if (c->ro_error)
return -EROFS;
- ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
+ /*
+ * Do not write whole write buffer but write only the minimum necessary
+ * amount of min. I/O units.
+ */
+ sync_len = ALIGN(wbuf->used, c->min_io_size);
+ dirt = sync_len - wbuf->used;
+ if (dirt)
+ ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
- c->min_io_size, wbuf->dtype);
+ sync_len, wbuf->dtype);
if (err) {
ubifs_err("cannot write %d bytes to LEB %d:%d",
- c->min_io_size, wbuf->lnum, wbuf->offs);
+ sync_len, wbuf->lnum, wbuf->offs);
dbg_dump_stack();
return err;
}
- dirt = wbuf->avail;
-
spin_lock(&wbuf->lock);
- wbuf->offs += c->min_io_size;
- wbuf->avail = c->min_io_size;
+ wbuf->offs += sync_len;
+ /*
+ * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
+ * But our goal is to optimize writes and make sure we write in
+ * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
+ * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
+ * sure that @wbuf->offs + @wbuf->size is aligned to
+ * @c->max_write_size. This way we make sure that after next
+ * write-buffer flush we are again at the optimal offset (aligned to
+ * @c->max_write_size).
+ */
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -420,7 +476,13 @@ int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
spin_lock(&wbuf->lock);
wbuf->lnum = lnum;
wbuf->offs = offs;
- wbuf->avail = c->min_io_size;
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
spin_unlock(&wbuf->lock);
wbuf->dtype = dtype;
@@ -500,8 +562,9 @@ out_timers:
*
* This function writes data to flash via write-buffer @wbuf. This means that
* the last piece of the node won't reach the flash media immediately if it
- * does not take whole minimal I/O unit. Instead, the node will sit in RAM
- * until the write-buffer is synchronized (e.g., by timer).
+ * does not take whole max. write unit (@c->max_write_size). Instead, the node
+ * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
+ * because more data are appended to the write-buffer).
*
* This function returns zero in case of success and a negative error code in
* case of failure. If the node cannot be written because there is no more
@@ -518,9 +581,14 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
- ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
+ ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
err = -ENOSPC;
@@ -543,14 +611,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
dbg_io("flush jhead %s wbuf to LEB %d:%d",
dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
- wbuf->offs, c->min_io_size,
+ wbuf->offs, wbuf->size,
wbuf->dtype);
if (err)
goto out;
spin_lock(&wbuf->lock);
- wbuf->offs += c->min_io_size;
- wbuf->avail = c->min_io_size;
+ wbuf->offs += wbuf->size;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -564,33 +636,57 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
goto exit;
}
- /*
- * The node is large enough and does not fit entirely within current
- * minimal I/O unit. We have to fill and flush write-buffer and switch
- * to the next min. I/O unit.
- */
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
- err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
- c->min_io_size, wbuf->dtype);
- if (err)
- goto out;
+ offs = wbuf->offs;
+ written = 0;
- offs = wbuf->offs + c->min_io_size;
- len -= wbuf->avail;
- aligned_len -= wbuf->avail;
- written = wbuf->avail;
+ if (wbuf->used) {
+ /*
+ * The node is large enough and does not fit entirely within
+ * current available space. We have to fill and flush
+ * write-buffer and switch to the next max. write unit.
+ */
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
+ err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
+ wbuf->size, wbuf->dtype);
+ if (err)
+ goto out;
+
+ offs += wbuf->size;
+ len -= wbuf->avail;
+ aligned_len -= wbuf->avail;
+ written += wbuf->avail;
+ } else if (wbuf->offs & (c->max_write_size - 1)) {
+ /*
+ * The write-buffer offset is not aligned to
+ * @c->max_write_size and @wbuf->size is less than
+ * @c->max_write_size. Write @wbuf->size bytes to make sure the
+ * following writes are done in optimal @c->max_write_size
+ * chunks.
+ */
+ dbg_io("write %d bytes to LEB %d:%d",
+ wbuf->size, wbuf->lnum, wbuf->offs);
+ err = ubi_leb_write(c->ubi, wbuf->lnum, buf, wbuf->offs,
+ wbuf->size, wbuf->dtype);
+ if (err)
+ goto out;
+
+ offs += wbuf->size;
+ len -= wbuf->size;
+ aligned_len -= wbuf->size;
+ written += wbuf->size;
+ }
/*
- * The remaining data may take more whole min. I/O units, so write the
- * remains multiple to min. I/O unit size directly to the flash media.
+ * The remaining data may take more whole max. write units, so write the
+ * remains multiple to max. write unit size directly to the flash media.
* We align node length to 8-byte boundary because we anyway flash wbuf
* if the remaining space is less than 8 bytes.
*/
- n = aligned_len >> c->min_io_shift;
+ n = aligned_len >> c->max_write_shift;
if (n) {
- n <<= c->min_io_shift;
+ n <<= c->max_write_shift;
dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
wbuf->dtype);
@@ -606,14 +702,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
if (aligned_len)
/*
* And now we have what's left and what does not take whole
- * min. I/O unit, so write it to the write-buffer and we are
+ * max. write unit, so write it to the write-buffer and we are
* done.
*/
memcpy(wbuf->buf, buf + written, len);
wbuf->offs = offs;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size - aligned_len;
wbuf->used = aligned_len;
- wbuf->avail = c->min_io_size - aligned_len;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -837,11 +937,11 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
{
size_t size;
- wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
+ wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
if (!wbuf->buf)
return -ENOMEM;
- size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
+ size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
wbuf->inodes = kmalloc(size, GFP_KERNEL);
if (!wbuf->inodes) {
kfree(wbuf->buf);
@@ -851,7 +951,14 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
wbuf->used = 0;
wbuf->lnum = wbuf->offs = -1;
- wbuf->avail = c->min_io_size;
+ /*
+ * If the LEB starts at the max. write size aligned address, then
+ * write-buffer size has to be set to @c->max_write_size. Otherwise,
+ * set it to something smaller so that it ends at the closest max.
+ * write size boundary.
+ */
+ size = c->max_write_size - (c->leb_start % c->max_write_size);
+ wbuf->avail = wbuf->size = size;
wbuf->dtype = UBI_UNKNOWN;
wbuf->sync_callback = NULL;
mutex_init(&wbuf->io_mutex);
diff --git a/fs/ubifs/ioctl.c b/fs/ubifs/ioctl.c
index 8aacd64..548acf4 100644
--- a/fs/ubifs/ioctl.c
+++ b/fs/ubifs/ioctl.c
@@ -160,7 +160,7 @@ long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
if (IS_RDONLY(inode))
return -EROFS;
- if (!is_owner_or_cap(inode))
+ if (!inode_owner_or_capable(inode))
return -EACCES;
if (get_user(flags, (int __user *) arg))
diff --git a/fs/ubifs/journal.c b/fs/ubifs/journal.c
index 914f1bd..aed25e8 100644
--- a/fs/ubifs/journal.c
+++ b/fs/ubifs/journal.c
@@ -690,7 +690,7 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
{
struct ubifs_data_node *data;
int err, lnum, offs, compr_type, out_len;
- int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
+ int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_jnl("ino %lu, blk %u, len %d, key %s",
@@ -698,9 +698,19 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
DBGKEY(key));
ubifs_assert(len <= UBIFS_BLOCK_SIZE);
- data = kmalloc(dlen, GFP_NOFS);
- if (!data)
- return -ENOMEM;
+ data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
+ if (!data) {
+ /*
+ * Fall-back to the write reserve buffer. Note, we might be
+ * currently on the memory reclaim path, when the kernel is
+ * trying to free some memory by writing out dirty pages. The
+ * write reserve buffer helps us to guarantee that we are
+ * always able to write the data.
+ */
+ allocated = 0;
+ mutex_lock(&c->write_reserve_mutex);
+ data = c->write_reserve_buf;
+ }
data->ch.node_type = UBIFS_DATA_NODE;
key_write(c, key, &data->key);
@@ -736,7 +746,10 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
goto out_ro;
finish_reservation(c);
- kfree(data);
+ if (!allocated)
+ mutex_unlock(&c->write_reserve_mutex);
+ else
+ kfree(data);
return 0;
out_release:
@@ -745,7 +758,10 @@ out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
- kfree(data);
+ if (!allocated)
+ mutex_unlock(&c->write_reserve_mutex);
+ else
+ kfree(data);
return err;
}
diff --git a/fs/ubifs/lprops.c b/fs/ubifs/lprops.c
index 4d4ca38..0ee0847 100644
--- a/fs/ubifs/lprops.c
+++ b/fs/ubifs/lprops.c
@@ -1035,7 +1035,8 @@ static int scan_check_cb(struct ubifs_info *c,
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
struct ubifs_lp_stats *lst = &data->lst;
- int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty;
+ int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
+ void *buf = NULL;
cat = lp->flags & LPROPS_CAT_MASK;
if (cat != LPROPS_UNCAT) {
@@ -1093,7 +1094,13 @@ static int scan_check_cb(struct ubifs_info *c,
}
}
- sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to scan LEB %d", lnum);
+ goto out;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
/*
* After an unclean unmount, empty and freeable LEBs
@@ -1105,7 +1112,8 @@ static int scan_check_cb(struct ubifs_info *c,
lst->empty_lebs += 1;
lst->total_free += c->leb_size;
lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+ goto exit;
}
if (lp->free + lp->dirty == c->leb_size &&
@@ -1115,10 +1123,12 @@ static int scan_check_cb(struct ubifs_info *c,
lst->total_free += lp->free;
lst->total_dirty += lp->dirty;
lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+ goto exit;
}
data->err = PTR_ERR(sleb);
- return LPT_SCAN_STOP;
+ ret = LPT_SCAN_STOP;
+ goto exit;
}
is_idx = -1;
@@ -1236,7 +1246,10 @@ static int scan_check_cb(struct ubifs_info *c,
}
ubifs_scan_destroy(sleb);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+exit:
+ vfree(buf);
+ return ret;
out_print:
ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
@@ -1246,6 +1259,7 @@ out_print:
out_destroy:
ubifs_scan_destroy(sleb);
out:
+ vfree(buf);
data->err = -EINVAL;
return LPT_SCAN_STOP;
}
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c
index 5c90dec..0c9c69b 100644
--- a/fs/ubifs/lpt_commit.c
+++ b/fs/ubifs/lpt_commit.c
@@ -1628,29 +1628,35 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
{
int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
int ret;
- void *buf = c->dbg->buf;
+ void *buf, *p;
if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
return 0;
+ buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for ltab checking");
+ return 0;
+ }
+
dbg_lp("LEB %d", lnum);
err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
if (err) {
dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
- return err;
+ goto out;
}
while (1) {
- if (!is_a_node(c, buf, len)) {
+ if (!is_a_node(c, p, len)) {
int i, pad_len;
- pad_len = get_pad_len(c, buf, len);
+ pad_len = get_pad_len(c, p, len);
if (pad_len) {
- buf += pad_len;
+ p += pad_len;
len -= pad_len;
dirty += pad_len;
continue;
}
- if (!dbg_is_all_ff(buf, len)) {
+ if (!dbg_is_all_ff(p, len)) {
dbg_msg("invalid empty space in LEB %d at %d",
lnum, c->leb_size - len);
err = -EINVAL;
@@ -1668,16 +1674,21 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
lnum, dirty, c->ltab[i].dirty);
err = -EINVAL;
}
- return err;
+ goto out;
}
- node_type = get_lpt_node_type(c, buf, &node_num);
+ node_type = get_lpt_node_type(c, p, &node_num);
node_len = get_lpt_node_len(c, node_type);
ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
if (ret == 1)
dirty += node_len;
- buf += node_len;
+ p += node_len;
len -= node_len;
}
+
+ err = 0;
+out:
+ vfree(buf);
+ return err;
}
/**
@@ -1870,25 +1881,31 @@ int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
{
int err, len = c->leb_size, node_type, node_num, node_len, offs;
- void *buf = c->dbg->buf;
+ void *buf, *p;
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
current->pid, lnum);
+ buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to dump LPT");
+ return;
+ }
+
err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
if (err) {
ubifs_err("cannot read LEB %d, error %d", lnum, err);
- return;
+ goto out;
}
while (1) {
offs = c->leb_size - len;
- if (!is_a_node(c, buf, len)) {
+ if (!is_a_node(c, p, len)) {
int pad_len;
- pad_len = get_pad_len(c, buf, len);
+ pad_len = get_pad_len(c, p, len);
if (pad_len) {
printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
lnum, offs, pad_len);
- buf += pad_len;
+ p += pad_len;
len -= pad_len;
continue;
}
@@ -1898,7 +1915,7 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
break;
}
- node_type = get_lpt_node_type(c, buf, &node_num);
+ node_type = get_lpt_node_type(c, p, &node_num);
switch (node_type) {
case UBIFS_LPT_PNODE:
{
@@ -1923,7 +1940,7 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
else
printk(KERN_DEBUG "LEB %d:%d, nnode, ",
lnum, offs);
- err = ubifs_unpack_nnode(c, buf, &nnode);
+ err = ubifs_unpack_nnode(c, p, &nnode);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
nnode.nbranch[i].offs);
@@ -1944,15 +1961,18 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
break;
default:
ubifs_err("LPT node type %d not recognized", node_type);
- return;
+ goto out;
}
- buf += node_len;
+ p += node_len;
len -= node_len;
}
printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
current->pid, lnum);
+out:
+ vfree(buf);
+ return;
}
/**
diff --git a/fs/ubifs/orphan.c b/fs/ubifs/orphan.c
index 82009c7..09df318 100644
--- a/fs/ubifs/orphan.c
+++ b/fs/ubifs/orphan.c
@@ -892,15 +892,22 @@ static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
{
int lnum, err = 0;
+ void *buf;
/* Check no-orphans flag and skip this if no orphans */
if (c->no_orphs)
return 0;
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to check orphans");
+ return 0;
+ }
+
for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
struct ubifs_scan_leb *sleb;
- sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
err = PTR_ERR(sleb);
break;
@@ -912,6 +919,7 @@ static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
break;
}
+ vfree(buf);
return err;
}
diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c
index 77e9b87..936f2cb 100644
--- a/fs/ubifs/recovery.c
+++ b/fs/ubifs/recovery.c
@@ -28,6 +28,23 @@
* UBIFS always cleans away all remnants of an unclean un-mount, so that
* errors do not accumulate. However UBIFS defers recovery if it is mounted
* read-only, and the flash is not modified in that case.
+ *
+ * The general UBIFS approach to the recovery is that it recovers from
+ * corruptions which could be caused by power cuts, but it refuses to recover
+ * from corruption caused by other reasons. And UBIFS tries to distinguish
+ * between these 2 reasons of corruptions and silently recover in the former
+ * case and loudly complain in the latter case.
+ *
+ * UBIFS writes only to erased LEBs, so it writes only to the flash space
+ * containing only 0xFFs. UBIFS also always writes strictly from the beginning
+ * of the LEB to the end. And UBIFS assumes that the underlying flash media
+ * writes in @c->max_write_size bytes at a time.
+ *
+ * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
+ * I/O unit corresponding to offset X to contain corrupted data, all the
+ * following min. I/O units have to contain empty space (all 0xFFs). If this is
+ * not true, the corruption cannot be the result of a power cut, and UBIFS
+ * refuses to mount.
*/
#include <linux/crc32.h>
@@ -362,8 +379,9 @@ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
* @offs: offset to check
*
* This function returns %1 if @offs was in the last write to the LEB whose data
- * is in @buf, otherwise %0 is returned. The determination is made by checking
- * for subsequent empty space starting from the next @c->min_io_size boundary.
+ * is in @buf, otherwise %0 is returned. The determination is made by checking
+ * for subsequent empty space starting from the next @c->max_write_size
+ * boundary.
*/
static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
{
@@ -371,10 +389,10 @@ static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
uint8_t *p;
/*
- * Round up to the next @c->min_io_size boundary i.e. @offs is in the
- * last wbuf written. After that should be empty space.
+ * Round up to the next @c->max_write_size boundary i.e. @offs is in
+ * the last wbuf written. After that should be empty space.
*/
- empty_offs = ALIGN(offs + 1, c->min_io_size);
+ empty_offs = ALIGN(offs + 1, c->max_write_size);
check_len = c->leb_size - empty_offs;
p = buf + empty_offs - offs;
return is_empty(p, check_len);
@@ -429,7 +447,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
int skip, dlen = le32_to_cpu(ch->len);
/* Check for empty space after the corrupt node's common header */
- skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
+ skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
if (is_empty(buf + skip, len - skip))
return 1;
/*
@@ -441,7 +459,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
return 0;
}
/* Now we know the corrupt node's length we can skip over it */
- skip = ALIGN(offs + dlen, c->min_io_size) - offs;
+ skip = ALIGN(offs + dlen, c->max_write_size) - offs;
/* After which there should be empty space */
if (is_empty(buf + skip, len - skip))
return 1;
@@ -671,10 +689,14 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
} else {
int corruption = first_non_ff(buf, len);
+ /*
+ * See header comment for this file for more
+ * explanations about the reasons we have this check.
+ */
ubifs_err("corrupt empty space LEB %d:%d, corruption "
"starts at %d", lnum, offs, corruption);
/* Make sure we dump interesting non-0xFF data */
- offs = corruption;
+ offs += corruption;
buf += corruption;
goto corrupted;
}
@@ -836,12 +858,8 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
static int recover_head(const struct ubifs_info *c, int lnum, int offs,
void *sbuf)
{
- int len, err;
+ int len = c->max_write_size, err;
- if (c->min_io_size > 1)
- len = c->min_io_size;
- else
- len = 512;
if (offs + len > c->leb_size)
len = c->leb_size - offs;
diff --git a/fs/ubifs/scan.c b/fs/ubifs/scan.c
index 3e1ee57..36216b4 100644
--- a/fs/ubifs/scan.c
+++ b/fs/ubifs/scan.c
@@ -328,7 +328,7 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
if (!quiet)
ubifs_err("empty space starts at non-aligned offset %d",
offs);
- goto corrupted;;
+ goto corrupted;
}
ubifs_end_scan(c, sleb, lnum, offs);
diff --git a/fs/ubifs/super.c b/fs/ubifs/super.c
index 6e11c29..6ddd997 100644
--- a/fs/ubifs/super.c
+++ b/fs/ubifs/super.c
@@ -512,9 +512,12 @@ static int init_constants_early(struct ubifs_info *c)
c->leb_cnt = c->vi.size;
c->leb_size = c->vi.usable_leb_size;
+ c->leb_start = c->di.leb_start;
c->half_leb_size = c->leb_size / 2;
c->min_io_size = c->di.min_io_size;
c->min_io_shift = fls(c->min_io_size) - 1;
+ c->max_write_size = c->di.max_write_size;
+ c->max_write_shift = fls(c->max_write_size) - 1;
if (c->leb_size < UBIFS_MIN_LEB_SZ) {
ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
@@ -534,6 +537,18 @@ static int init_constants_early(struct ubifs_info *c)
}
/*
+ * Maximum write size has to be greater or equivalent to min. I/O
+ * size, and be multiple of min. I/O size.
+ */
+ if (c->max_write_size < c->min_io_size ||
+ c->max_write_size % c->min_io_size ||
+ !is_power_of_2(c->max_write_size)) {
+ ubifs_err("bad write buffer size %d for %d min. I/O unit",
+ c->max_write_size, c->min_io_size);
+ return -EINVAL;
+ }
+
+ /*
* UBIFS aligns all node to 8-byte boundary, so to make function in
* io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
* less than 8.
@@ -541,6 +556,10 @@ static int init_constants_early(struct ubifs_info *c)
if (c->min_io_size < 8) {
c->min_io_size = 8;
c->min_io_shift = 3;
+ if (c->max_write_size < c->min_io_size) {
+ c->max_write_size = c->min_io_size;
+ c->max_write_shift = c->min_io_shift;
+ }
}
c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
@@ -1202,11 +1221,14 @@ static int mount_ubifs(struct ubifs_info *c)
if (c->bulk_read == 1)
bu_init(c);
- /*
- * We have to check all CRCs, even for data nodes, when we mount the FS
- * (specifically, when we are replaying).
- */
- c->always_chk_crc = 1;
+ if (!c->ro_mount) {
+ c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
+ GFP_KERNEL);
+ if (!c->write_reserve_buf)
+ goto out_free;
+ }
+
+ c->mounting = 1;
err = ubifs_read_superblock(c);
if (err)
@@ -1382,7 +1404,7 @@ static int mount_ubifs(struct ubifs_info *c)
if (err)
goto out_infos;
- c->always_chk_crc = 0;
+ c->mounting = 0;
ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
c->vi.ubi_num, c->vi.vol_id, c->vi.name);
@@ -1403,6 +1425,7 @@ static int mount_ubifs(struct ubifs_info *c)
dbg_msg("compiled on: " __DATE__ " at " __TIME__);
dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
+ dbg_msg("max. write size: %d bytes", c->max_write_size);
dbg_msg("LEB size: %d bytes (%d KiB)",
c->leb_size, c->leb_size >> 10);
dbg_msg("data journal heads: %d",
@@ -1432,9 +1455,9 @@ static int mount_ubifs(struct ubifs_info *c)
UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
- dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
+ dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
- UBIFS_MAX_DENT_NODE_SZ);
+ UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
dbg_msg("dead watermark: %d", c->dead_wm);
dbg_msg("dark watermark: %d", c->dark_wm);
dbg_msg("LEB overhead: %d", c->leb_overhead);
@@ -1474,6 +1497,7 @@ out_wbufs:
out_cbuf:
kfree(c->cbuf);
out_free:
+ kfree(c->write_reserve_buf);
kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
@@ -1512,6 +1536,7 @@ static void ubifs_umount(struct ubifs_info *c)
kfree(c->cbuf);
kfree(c->rcvrd_mst_node);
kfree(c->mst_node);
+ kfree(c->write_reserve_buf);
kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
@@ -1543,7 +1568,6 @@ static int ubifs_remount_rw(struct ubifs_info *c)
mutex_lock(&c->umount_mutex);
dbg_save_space_info(c);
c->remounting_rw = 1;
- c->always_chk_crc = 1;
err = check_free_space(c);
if (err)
@@ -1598,6 +1622,10 @@ static int ubifs_remount_rw(struct ubifs_info *c)
goto out;
}
+ c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
+ if (!c->write_reserve_buf)
+ goto out;
+
err = ubifs_lpt_init(c, 0, 1);
if (err)
goto out;
@@ -1650,7 +1678,6 @@ static int ubifs_remount_rw(struct ubifs_info *c)
dbg_gen("re-mounted read-write");
c->ro_mount = 0;
c->remounting_rw = 0;
- c->always_chk_crc = 0;
err = dbg_check_space_info(c);
mutex_unlock(&c->umount_mutex);
return err;
@@ -1663,11 +1690,12 @@ out:
c->bgt = NULL;
}
free_wbufs(c);
+ kfree(c->write_reserve_buf);
+ c->write_reserve_buf = NULL;
vfree(c->ileb_buf);
c->ileb_buf = NULL;
ubifs_lpt_free(c, 1);
c->remounting_rw = 0;
- c->always_chk_crc = 0;
mutex_unlock(&c->umount_mutex);
return err;
}
@@ -1707,6 +1735,8 @@ static void ubifs_remount_ro(struct ubifs_info *c)
free_wbufs(c);
vfree(c->orph_buf);
c->orph_buf = NULL;
+ kfree(c->write_reserve_buf);
+ c->write_reserve_buf = NULL;
vfree(c->ileb_buf);
c->ileb_buf = NULL;
ubifs_lpt_free(c, 1);
@@ -1937,6 +1967,7 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
mutex_init(&c->mst_mutex);
mutex_init(&c->umount_mutex);
mutex_init(&c->bu_mutex);
+ mutex_init(&c->write_reserve_mutex);
init_waitqueue_head(&c->cmt_wq);
c->buds = RB_ROOT;
c->old_idx = RB_ROOT;
@@ -1954,6 +1985,7 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
INIT_LIST_HEAD(&c->old_buds);
INIT_LIST_HEAD(&c->orph_list);
INIT_LIST_HEAD(&c->orph_new);
+ c->no_chk_data_crc = 1;
c->vfs_sb = sb;
c->highest_inum = UBIFS_FIRST_INO;
@@ -1979,7 +2011,6 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
*/
c->bdi.name = "ubifs",
c->bdi.capabilities = BDI_CAP_MAP_COPY;
- c->bdi.unplug_io_fn = default_unplug_io_fn;
err = bdi_init(&c->bdi);
if (err)
goto out_close;
diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c
index ad9cf01..de48597 100644
--- a/fs/ubifs/tnc.c
+++ b/fs/ubifs/tnc.c
@@ -447,8 +447,11 @@ static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
*
* Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
* is true (it is controlled by corresponding mount option). However, if
- * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
- * checked.
+ * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
+ * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
+ * because during mounting or re-mounting from R/O mode to R/W mode we may read
+ * journal nodes (when replying the journal or doing the recovery) and the
+ * journal nodes may potentially be corrupted, so checking is required.
*/
static int try_read_node(const struct ubifs_info *c, void *buf, int type,
int len, int lnum, int offs)
@@ -476,7 +479,8 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type,
if (node_len != len)
return 0;
- if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
+ if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
+ !c->remounting_rw)
return 1;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
diff --git a/fs/ubifs/ubifs.h b/fs/ubifs/ubifs.h
index 381d6b2..8c40ad3 100644
--- a/fs/ubifs/ubifs.h
+++ b/fs/ubifs/ubifs.h
@@ -151,6 +151,12 @@
*/
#define WORST_COMPR_FACTOR 2
+/*
+ * How much memory is needed for a buffer where we comress a data node.
+ */
+#define COMPRESSED_DATA_NODE_BUF_SZ \
+ (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
+
/* Maximum expected tree height for use by bottom_up_buf */
#define BOTTOM_UP_HEIGHT 64
@@ -646,6 +652,7 @@ typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
* @offs: write-buffer offset in this logical eraseblock
* @avail: number of bytes available in the write-buffer
* @used: number of used bytes in the write-buffer
+ * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
* @dtype: type of data stored in this LEB (%UBI_LONGTERM, %UBI_SHORTTERM,
* %UBI_UNKNOWN)
* @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
@@ -680,6 +687,7 @@ struct ubifs_wbuf {
int offs;
int avail;
int used;
+ int size;
int dtype;
int jhead;
int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
@@ -1003,6 +1011,11 @@ struct ubifs_debug_info;
* @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
* @bu: pre-allocated bulk-read information
*
+ * @write_reserve_mutex: protects @write_reserve_buf
+ * @write_reserve_buf: on the write path we allocate memory, which might
+ * sometimes be unavailable, in which case we use this
+ * write reserve buffer
+ *
* @log_lebs: number of logical eraseblocks in the log
* @log_bytes: log size in bytes
* @log_last: last LEB of the log
@@ -1024,7 +1037,12 @@ struct ubifs_debug_info;
*
* @min_io_size: minimal input/output unit size
* @min_io_shift: number of bits in @min_io_size minus one
+ * @max_write_size: maximum amount of bytes the underlying flash can write at a
+ * time (MTD write buffer size)
+ * @max_write_shift: number of bits in @max_write_size minus one
* @leb_size: logical eraseblock size in bytes
+ * @leb_start: starting offset of logical eraseblocks within physical
+ * eraseblocks
* @half_leb_size: half LEB size
* @idx_leb_size: how many bytes of an LEB are effectively available when it is
* used to store indexing nodes (@leb_size - @max_idx_node_sz)
@@ -1166,22 +1184,21 @@ struct ubifs_debug_info;
* @rp_uid: reserved pool user ID
* @rp_gid: reserved pool group ID
*
- * @empty: if the UBI device is empty
+ * @empty: %1 if the UBI device is empty
+ * @need_recovery: %1 if the file-system needs recovery
+ * @replaying: %1 during journal replay
+ * @mounting: %1 while mounting
+ * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
* @replay_tree: temporary tree used during journal replay
* @replay_list: temporary list used during journal replay
* @replay_buds: list of buds to replay
* @cs_sqnum: sequence number of first node in the log (commit start node)
* @replay_sqnum: sequence number of node currently being replayed
- * @need_recovery: file-system needs recovery
- * @replaying: set to %1 during journal replay
* @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
* mode
* @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
* FS to R/W mode
* @size_tree: inode size information for recovery
- * @remounting_rw: set while re-mounting from R/O mode to R/W mode
- * @always_chk_crc: always check CRCs (while mounting and remounting to R/W
- * mode)
* @mount_opts: UBIFS-specific mount options
*
* @dbg: debugging-related information
@@ -1250,6 +1267,9 @@ struct ubifs_info {
struct mutex bu_mutex;
struct bu_info bu;
+ struct mutex write_reserve_mutex;
+ void *write_reserve_buf;
+
int log_lebs;
long long log_bytes;
int log_last;
@@ -1271,7 +1291,10 @@ struct ubifs_info {
int min_io_size;
int min_io_shift;
+ int max_write_size;
+ int max_write_shift;
int leb_size;
+ int leb_start;
int half_leb_size;
int idx_leb_size;
int leb_cnt;
@@ -1402,19 +1425,19 @@ struct ubifs_info {
gid_t rp_gid;
/* The below fields are used only during mounting and re-mounting */
- int empty;
+ unsigned int empty:1;
+ unsigned int need_recovery:1;
+ unsigned int replaying:1;
+ unsigned int mounting:1;
+ unsigned int remounting_rw:1;
struct rb_root replay_tree;
struct list_head replay_list;
struct list_head replay_buds;
unsigned long long cs_sqnum;
unsigned long long replay_sqnum;
- int need_recovery;
- int replaying;
struct list_head unclean_leb_list;
struct ubifs_mst_node *rcvrd_mst_node;
struct rb_root size_tree;
- int remounting_rw;
- int always_chk_crc;
struct ubifs_mount_opts mount_opts;
#ifdef CONFIG_UBIFS_FS_DEBUG