aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/cpusets.txt141
-rw-r--r--include/linux/sched.h2
-rw-r--r--kernel/cpuset.c275
-rw-r--r--kernel/sched.c95
4 files changed, 492 insertions, 21 deletions
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt
index 85eeab5..141bef1 100644
--- a/Documentation/cpusets.txt
+++ b/Documentation/cpusets.txt
@@ -19,7 +19,8 @@ CONTENTS:
1.4 What are exclusive cpusets ?
1.5 What is memory_pressure ?
1.6 What is memory spread ?
- 1.7 How do I use cpusets ?
+ 1.7 What is sched_load_balance ?
+ 1.8 How do I use cpusets ?
2. Usage Examples and Syntax
2.1 Basic Usage
2.2 Adding/removing cpus
@@ -359,8 +360,144 @@ policy, especially for jobs that might have one thread reading in the
data set, the memory allocation across the nodes in the jobs cpuset
can become very uneven.
+1.7 What is sched_load_balance ?
+--------------------------------
-1.7 How do I use cpusets ?
+The kernel scheduler (kernel/sched.c) automatically load balances
+tasks. If one CPU is underutilized, kernel code running on that
+CPU will look for tasks on other more overloaded CPUs and move those
+tasks to itself, within the constraints of such placement mechanisms
+as cpusets and sched_setaffinity.
+
+The algorithmic cost of load balancing and its impact on key shared
+kernel data structures such as the task list increases more than
+linearly with the number of CPUs being balanced. So the scheduler
+has support to partition the systems CPUs into a number of sched
+domains such that it only load balances within each sched domain.
+Each sched domain covers some subset of the CPUs in the system;
+no two sched domains overlap; some CPUs might not be in any sched
+domain and hence won't be load balanced.
+
+Put simply, it costs less to balance between two smaller sched domains
+than one big one, but doing so means that overloads in one of the
+two domains won't be load balanced to the other one.
+
+By default, there is one sched domain covering all CPUs, except those
+marked isolated using the kernel boot time "isolcpus=" argument.
+
+This default load balancing across all CPUs is not well suited for
+the following two situations:
+ 1) On large systems, load balancing across many CPUs is expensive.
+ If the system is managed using cpusets to place independent jobs
+ on separate sets of CPUs, full load balancing is unnecessary.
+ 2) Systems supporting realtime on some CPUs need to minimize
+ system overhead on those CPUs, including avoiding task load
+ balancing if that is not needed.
+
+When the per-cpuset flag "sched_load_balance" is enabled (the default
+setting), it requests that all the CPUs in that cpusets allowed 'cpus'
+be contained in a single sched domain, ensuring that load balancing
+can move a task (not otherwised pinned, as by sched_setaffinity)
+from any CPU in that cpuset to any other.
+
+When the per-cpuset flag "sched_load_balance" is disabled, then the
+scheduler will avoid load balancing across the CPUs in that cpuset,
+--except-- in so far as is necessary because some overlapping cpuset
+has "sched_load_balance" enabled.
+
+So, for example, if the top cpuset has the flag "sched_load_balance"
+enabled, then the scheduler will have one sched domain covering all
+CPUs, and the setting of the "sched_load_balance" flag in any other
+cpusets won't matter, as we're already fully load balancing.
+
+Therefore in the above two situations, the top cpuset flag
+"sched_load_balance" should be disabled, and only some of the smaller,
+child cpusets have this flag enabled.
+
+When doing this, you don't usually want to leave any unpinned tasks in
+the top cpuset that might use non-trivial amounts of CPU, as such tasks
+may be artificially constrained to some subset of CPUs, depending on
+the particulars of this flag setting in descendent cpusets. Even if
+such a task could use spare CPU cycles in some other CPUs, the kernel
+scheduler might not consider the possibility of load balancing that
+task to that underused CPU.
+
+Of course, tasks pinned to a particular CPU can be left in a cpuset
+that disables "sched_load_balance" as those tasks aren't going anywhere
+else anyway.
+
+There is an impedance mismatch here, between cpusets and sched domains.
+Cpusets are hierarchical and nest. Sched domains are flat; they don't
+overlap and each CPU is in at most one sched domain.
+
+It is necessary for sched domains to be flat because load balancing
+across partially overlapping sets of CPUs would risk unstable dynamics
+that would be beyond our understanding. So if each of two partially
+overlapping cpusets enables the flag 'sched_load_balance', then we
+form a single sched domain that is a superset of both. We won't move
+a task to a CPU outside it cpuset, but the scheduler load balancing
+code might waste some compute cycles considering that possibility.
+
+This mismatch is why there is not a simple one-to-one relation
+between which cpusets have the flag "sched_load_balance" enabled,
+and the sched domain configuration. If a cpuset enables the flag, it
+will get balancing across all its CPUs, but if it disables the flag,
+it will only be assured of no load balancing if no other overlapping
+cpuset enables the flag.
+
+If two cpusets have partially overlapping 'cpus' allowed, and only
+one of them has this flag enabled, then the other may find its
+tasks only partially load balanced, just on the overlapping CPUs.
+This is just the general case of the top_cpuset example given a few
+paragraphs above. In the general case, as in the top cpuset case,
+don't leave tasks that might use non-trivial amounts of CPU in
+such partially load balanced cpusets, as they may be artificially
+constrained to some subset of the CPUs allowed to them, for lack of
+load balancing to the other CPUs.
+
+1.7.1 sched_load_balance implementation details.
+------------------------------------------------
+
+The per-cpuset flag 'sched_load_balance' defaults to enabled (contrary
+to most cpuset flags.) When enabled for a cpuset, the kernel will
+ensure that it can load balance across all the CPUs in that cpuset
+(makes sure that all the CPUs in the cpus_allowed of that cpuset are
+in the same sched domain.)
+
+If two overlapping cpusets both have 'sched_load_balance' enabled,
+then they will be (must be) both in the same sched domain.
+
+If, as is the default, the top cpuset has 'sched_load_balance' enabled,
+then by the above that means there is a single sched domain covering
+the whole system, regardless of any other cpuset settings.
+
+The kernel commits to user space that it will avoid load balancing
+where it can. It will pick as fine a granularity partition of sched
+domains as it can while still providing load balancing for any set
+of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
+
+The internal kernel cpuset to scheduler interface passes from the
+cpuset code to the scheduler code a partition of the load balanced
+CPUs in the system. This partition is a set of subsets (represented
+as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all
+the CPUs that must be load balanced.
+
+Whenever the 'sched_load_balance' flag changes, or CPUs come or go
+from a cpuset with this flag enabled, or a cpuset with this flag
+enabled is removed, the cpuset code builds a new such partition and
+passes it to the scheduler sched domain setup code, to have the sched
+domains rebuilt as necessary.
+
+This partition exactly defines what sched domains the scheduler should
+setup - one sched domain for each element (cpumask_t) in the partition.
+
+The scheduler remembers the currently active sched domain partitions.
+When the scheduler routine partition_sched_domains() is invoked from
+the cpuset code to update these sched domains, it compares the new
+partition requested with the current, and updates its sched domains,
+removing the old and adding the new, for each change.
+
+1.8 How do I use cpusets ?
--------------------------
In order to minimize the impact of cpusets on critical kernel
diff --git a/include/linux/sched.h b/include/linux/sched.h
index cbd8731..4bbbe12 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -737,6 +737,8 @@ struct sched_domain {
#endif
};
+extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
+
#endif /* CONFIG_SMP */
/*
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 1133062..203ca52 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -4,7 +4,7 @@
* Processor and Memory placement constraints for sets of tasks.
*
* Copyright (C) 2003 BULL SA.
- * Copyright (C) 2004-2006 Silicon Graphics, Inc.
+ * Copyright (C) 2004-2007 Silicon Graphics, Inc.
* Copyright (C) 2006 Google, Inc
*
* Portions derived from Patrick Mochel's sysfs code.
@@ -54,6 +54,7 @@
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>
+#include <linux/kfifo.h>
/*
* Tracks how many cpusets are currently defined in system.
@@ -91,6 +92,9 @@ struct cpuset {
int mems_generation;
struct fmeter fmeter; /* memory_pressure filter */
+
+ /* partition number for rebuild_sched_domains() */
+ int pn;
};
/* Retrieve the cpuset for a cgroup */
@@ -113,6 +117,7 @@ typedef enum {
CS_CPU_EXCLUSIVE,
CS_MEM_EXCLUSIVE,
CS_MEMORY_MIGRATE,
+ CS_SCHED_LOAD_BALANCE,
CS_SPREAD_PAGE,
CS_SPREAD_SLAB,
} cpuset_flagbits_t;
@@ -128,6 +133,11 @@ static inline int is_mem_exclusive(const struct cpuset *cs)
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}
+static inline int is_sched_load_balance(const struct cpuset *cs)
+{
+ return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+}
+
static inline int is_memory_migrate(const struct cpuset *cs)
{
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
@@ -482,6 +492,208 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
}
/*
+ * Helper routine for rebuild_sched_domains().
+ * Do cpusets a, b have overlapping cpus_allowed masks?
+ */
+
+static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
+{
+ return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
+}
+
+/*
+ * rebuild_sched_domains()
+ *
+ * If the flag 'sched_load_balance' of any cpuset with non-empty
+ * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
+ * which has that flag enabled, or if any cpuset with a non-empty
+ * 'cpus' is removed, then call this routine to rebuild the
+ * scheduler's dynamic sched domains.
+ *
+ * This routine builds a partial partition of the systems CPUs
+ * (the set of non-overlappping cpumask_t's in the array 'part'
+ * below), and passes that partial partition to the kernel/sched.c
+ * partition_sched_domains() routine, which will rebuild the
+ * schedulers load balancing domains (sched domains) as specified
+ * by that partial partition. A 'partial partition' is a set of
+ * non-overlapping subsets whose union is a subset of that set.
+ *
+ * See "What is sched_load_balance" in Documentation/cpusets.txt
+ * for a background explanation of this.
+ *
+ * Does not return errors, on the theory that the callers of this
+ * routine would rather not worry about failures to rebuild sched
+ * domains when operating in the severe memory shortage situations
+ * that could cause allocation failures below.
+ *
+ * Call with cgroup_mutex held. May take callback_mutex during
+ * call due to the kfifo_alloc() and kmalloc() calls. May nest
+ * a call to the lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
+ * Must not be called holding callback_mutex, because we must not
+ * call lock_cpu_hotplug() while holding callback_mutex. Elsewhere
+ * the kernel nests callback_mutex inside lock_cpu_hotplug() calls.
+ * So the reverse nesting would risk an ABBA deadlock.
+ *
+ * The three key local variables below are:
+ * q - a kfifo queue of cpuset pointers, used to implement a
+ * top-down scan of all cpusets. This scan loads a pointer
+ * to each cpuset marked is_sched_load_balance into the
+ * array 'csa'. For our purposes, rebuilding the schedulers
+ * sched domains, we can ignore !is_sched_load_balance cpusets.
+ * csa - (for CpuSet Array) Array of pointers to all the cpusets
+ * that need to be load balanced, for convenient iterative
+ * access by the subsequent code that finds the best partition,
+ * i.e the set of domains (subsets) of CPUs such that the
+ * cpus_allowed of every cpuset marked is_sched_load_balance
+ * is a subset of one of these domains, while there are as
+ * many such domains as possible, each as small as possible.
+ * doms - Conversion of 'csa' to an array of cpumasks, for passing to
+ * the kernel/sched.c routine partition_sched_domains() in a
+ * convenient format, that can be easily compared to the prior
+ * value to determine what partition elements (sched domains)
+ * were changed (added or removed.)
+ *
+ * Finding the best partition (set of domains):
+ * The triple nested loops below over i, j, k scan over the
+ * load balanced cpusets (using the array of cpuset pointers in
+ * csa[]) looking for pairs of cpusets that have overlapping
+ * cpus_allowed, but which don't have the same 'pn' partition
+ * number and gives them in the same partition number. It keeps
+ * looping on the 'restart' label until it can no longer find
+ * any such pairs.
+ *
+ * The union of the cpus_allowed masks from the set of
+ * all cpusets having the same 'pn' value then form the one
+ * element of the partition (one sched domain) to be passed to
+ * partition_sched_domains().
+ */
+
+static void rebuild_sched_domains(void)
+{
+ struct kfifo *q; /* queue of cpusets to be scanned */
+ struct cpuset *cp; /* scans q */
+ struct cpuset **csa; /* array of all cpuset ptrs */
+ int csn; /* how many cpuset ptrs in csa so far */
+ int i, j, k; /* indices for partition finding loops */
+ cpumask_t *doms; /* resulting partition; i.e. sched domains */
+ int ndoms; /* number of sched domains in result */
+ int nslot; /* next empty doms[] cpumask_t slot */
+
+ q = NULL;
+ csa = NULL;
+ doms = NULL;
+
+ /* Special case for the 99% of systems with one, full, sched domain */
+ if (is_sched_load_balance(&top_cpuset)) {
+ ndoms = 1;
+ doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
+ if (!doms)
+ goto rebuild;
+ *doms = top_cpuset.cpus_allowed;
+ goto rebuild;
+ }
+
+ q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
+ if (IS_ERR(q))
+ goto done;
+ csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
+ if (!csa)
+ goto done;
+ csn = 0;
+
+ cp = &top_cpuset;
+ __kfifo_put(q, (void *)&cp, sizeof(cp));
+ while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
+ struct cgroup *cont;
+ struct cpuset *child; /* scans child cpusets of cp */
+ if (is_sched_load_balance(cp))
+ csa[csn++] = cp;
+ list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
+ child = cgroup_cs(cont);
+ __kfifo_put(q, (void *)&child, sizeof(cp));
+ }
+ }
+
+ for (i = 0; i < csn; i++)
+ csa[i]->pn = i;
+ ndoms = csn;
+
+restart:
+ /* Find the best partition (set of sched domains) */
+ for (i = 0; i < csn; i++) {
+ struct cpuset *a = csa[i];
+ int apn = a->pn;
+
+ for (j = 0; j < csn; j++) {
+ struct cpuset *b = csa[j];
+ int bpn = b->pn;
+
+ if (apn != bpn && cpusets_overlap(a, b)) {
+ for (k = 0; k < csn; k++) {
+ struct cpuset *c = csa[k];
+
+ if (c->pn == bpn)
+ c->pn = apn;
+ }
+ ndoms--; /* one less element */
+ goto restart;
+ }
+ }
+ }
+
+ /* Convert <csn, csa> to <ndoms, doms> */
+ doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
+ if (!doms)
+ goto rebuild;
+
+ for (nslot = 0, i = 0; i < csn; i++) {
+ struct cpuset *a = csa[i];
+ int apn = a->pn;
+
+ if (apn >= 0) {
+ cpumask_t *dp = doms + nslot;
+
+ if (nslot == ndoms) {
+ static int warnings = 10;
+ if (warnings) {
+ printk(KERN_WARNING
+ "rebuild_sched_domains confused:"
+ " nslot %d, ndoms %d, csn %d, i %d,"
+ " apn %d\n",
+ nslot, ndoms, csn, i, apn);
+ warnings--;
+ }
+ continue;
+ }
+
+ cpus_clear(*dp);
+ for (j = i; j < csn; j++) {
+ struct cpuset *b = csa[j];
+
+ if (apn == b->pn) {
+ cpus_or(*dp, *dp, b->cpus_allowed);
+ b->pn = -1;
+ }
+ }
+ nslot++;
+ }
+ }
+ BUG_ON(nslot != ndoms);
+
+rebuild:
+ /* Have scheduler rebuild sched domains */
+ lock_cpu_hotplug();
+ partition_sched_domains(ndoms, doms);
+ unlock_cpu_hotplug();
+
+done:
+ if (q && !IS_ERR(q))
+ kfifo_free(q);
+ kfree(csa);
+ /* Don't kfree(doms) -- partition_sched_domains() does that. */
+}
+
+/*
* Call with manage_mutex held. May take callback_mutex during call.
*/
@@ -489,6 +701,7 @@ static int update_cpumask(struct cpuset *cs, char *buf)
{
struct cpuset trialcs;
int retval;
+ int cpus_changed, is_load_balanced;
/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
if (cs == &top_cpuset)
@@ -516,9 +729,17 @@ static int update_cpumask(struct cpuset *cs, char *buf)
retval = validate_change(cs, &trialcs);
if (retval < 0)
return retval;
+
+ cpus_changed = !cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
+ is_load_balanced = is_sched_load_balance(&trialcs);
+
mutex_lock(&callback_mutex);
cs->cpus_allowed = trialcs.cpus_allowed;
mutex_unlock(&callback_mutex);
+
+ if (cpus_changed && is_load_balanced)
+ rebuild_sched_domains();
+
return 0;
}
@@ -752,6 +973,7 @@ static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
/*
* update_flag - read a 0 or a 1 in a file and update associated flag
* bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
+ * CS_SCHED_LOAD_BALANCE,
* CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
* CS_SPREAD_PAGE, CS_SPREAD_SLAB)
* cs: the cpuset to update
@@ -765,6 +987,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
int turning_on;
struct cpuset trialcs;
int err;
+ int cpus_nonempty, balance_flag_changed;
turning_on = (simple_strtoul(buf, NULL, 10) != 0);
@@ -777,10 +1000,18 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
err = validate_change(cs, &trialcs);
if (err < 0)
return err;
+
+ cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
+ balance_flag_changed = (is_sched_load_balance(cs) !=
+ is_sched_load_balance(&trialcs));
+
mutex_lock(&callback_mutex);
cs->flags = trialcs.flags;
mutex_unlock(&callback_mutex);
+ if (cpus_nonempty && balance_flag_changed)
+ rebuild_sched_domains();
+
return 0;
}
@@ -928,6 +1159,7 @@ typedef enum {
FILE_MEMLIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,
+ FILE_SCHED_LOAD_BALANCE,
FILE_MEMORY_PRESSURE_ENABLED,
FILE_MEMORY_PRESSURE,
FILE_SPREAD_PAGE,
@@ -946,7 +1178,7 @@ static ssize_t cpuset_common_file_write(struct cgroup *cont,
int retval = 0;
/* Crude upper limit on largest legitimate cpulist user might write. */
- if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
+ if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
return -E2BIG;
/* +1 for nul-terminator */
@@ -979,6 +1211,9 @@ static ssize_t cpuset_common_file_write(struct cgroup *cont,
case FILE_MEM_EXCLUSIVE:
retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
break;
+ case FILE_SCHED_LOAD_BALANCE:
+ retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
+ break;
case FILE_MEMORY_MIGRATE:
retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
break;
@@ -1074,6 +1309,9 @@ static ssize_t cpuset_common_file_read(struct cgroup *cont,
case FILE_MEM_EXCLUSIVE:
*s++ = is_mem_exclusive(cs) ? '1' : '0';
break;
+ case FILE_SCHED_LOAD_BALANCE:
+ *s++ = is_sched_load_balance(cs) ? '1' : '0';
+ break;
case FILE_MEMORY_MIGRATE:
*s++ = is_memory_migrate(cs) ? '1' : '0';
break;
@@ -1137,6 +1375,13 @@ static struct cftype cft_mem_exclusive = {
.private = FILE_MEM_EXCLUSIVE,
};
+static struct cftype cft_sched_load_balance = {
+ .name = "sched_load_balance",
+ .read = cpuset_common_file_read,
+ .write = cpuset_common_file_write,
+ .private = FILE_SCHED_LOAD_BALANCE,
+};
+
static struct cftype cft_memory_migrate = {
.name = "memory_migrate",
.read = cpuset_common_file_read,
@@ -1186,6 +1431,8 @@ static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
return err;
if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
return err;
+ if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
+ return err;
if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
return err;
if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
@@ -1267,6 +1514,7 @@ static struct cgroup_subsys_state *cpuset_create(
set_bit(CS_SPREAD_PAGE, &cs->flags);
if (is_spread_slab(parent))
set_bit(CS_SPREAD_SLAB, &cs->flags);
+ set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
cs->cpus_allowed = CPU_MASK_NONE;
cs->mems_allowed = NODE_MASK_NONE;
cs->mems_generation = cpuset_mems_generation++;
@@ -1277,11 +1525,27 @@ static struct cgroup_subsys_state *cpuset_create(
return &cs->css ;
}
+/*
+ * Locking note on the strange update_flag() call below:
+ *
+ * If the cpuset being removed has its flag 'sched_load_balance'
+ * enabled, then simulate turning sched_load_balance off, which
+ * will call rebuild_sched_domains(). The lock_cpu_hotplug()
+ * call in rebuild_sched_domains() must not be made while holding
+ * callback_mutex. Elsewhere the kernel nests callback_mutex inside
+ * lock_cpu_hotplug() calls. So the reverse nesting would risk an
+ * ABBA deadlock.
+ */
+
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct cpuset *cs = cgroup_cs(cont);
cpuset_update_task_memory_state();
+
+ if (is_sched_load_balance(cs))
+ update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
+
number_of_cpusets--;
kfree(cs);
}
@@ -1326,6 +1590,7 @@ int __init cpuset_init(void)
fmeter_init(&top_cpuset.fmeter);
top_cpuset.mems_generation = cpuset_mems_generation++;
+ set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
err = register_filesystem(&cpuset_fs_type);
if (err < 0)
@@ -1412,8 +1677,8 @@ static void common_cpu_mem_hotplug_unplug(void)
* cpu_online_map on each CPU hotplug (cpuhp) event.
*/
-static int cpuset_handle_cpuhp(struct notifier_block *nb,
- unsigned long phase, void *cpu)
+static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
+ unsigned long phase, void *unused_cpu)
{
if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
return NOTIFY_DONE;
@@ -1803,7 +2068,7 @@ void __cpuset_memory_pressure_bump(void)
* the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
* cpuset to top_cpuset.
*/
-static int proc_cpuset_show(struct seq_file *m, void *v)
+static int proc_cpuset_show(struct seq_file *m, void *unused_v)
{
struct pid *pid;
struct task_struct *tsk;
diff --git a/kernel/sched.c b/kernel/sched.c
index 5d5e107..39d6354 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -6376,26 +6376,31 @@ error:
return -ENOMEM;
#endif
}
+
+static cpumask_t *doms_cur; /* current sched domains */
+static int ndoms_cur; /* number of sched domains in 'doms_cur' */
+
+/*
+ * Special case: If a kmalloc of a doms_cur partition (array of
+ * cpumask_t) fails, then fallback to a single sched domain,
+ * as determined by the single cpumask_t fallback_doms.
+ */
+static cpumask_t fallback_doms;
+
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ * For now this just excludes isolated cpus, but could be used to
+ * exclude other special cases in the future.
*/
static int arch_init_sched_domains(const cpumask_t *cpu_map)
{
- cpumask_t cpu_default_map;
- int err;
-
- /*
- * Setup mask for cpus without special case scheduling requirements.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
- cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
-
- err = build_sched_domains(&cpu_default_map);
-
+ ndoms_cur = 1;
+ doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
+ if (!doms_cur)
+ doms_cur = &fallback_doms;
+ cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
register_sched_domain_sysctl();
-
- return err;
+ return build_sched_domains(doms_cur);
}
static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
@@ -6419,6 +6424,68 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)
arch_destroy_sched_domains(cpu_map);
}
+/*
+ * Partition sched domains as specified by the 'ndoms_new'
+ * cpumasks in the array doms_new[] of cpumasks. This compares
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
+ * It destroys each deleted domain and builds each new domain.
+ *
+ * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
+ * The masks don't intersect (don't overlap.) We should setup one
+ * sched domain for each mask. CPUs not in any of the cpumasks will
+ * not be load balanced. If the same cpumask appears both in the
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
+ * it as it is.
+ *
+ * The passed in 'doms_new' should be kmalloc'd. This routine takes
+ * ownership of it and will kfree it when done with it. If the caller
+ * failed the kmalloc call, then it can pass in doms_new == NULL,
+ * and partition_sched_domains() will fallback to the single partition
+ * 'fallback_doms'.
+ *
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
+{
+ int i, j;
+
+ if (doms_new == NULL) {
+ ndoms_new = 1;
+ doms_new = &fallback_doms;
+ cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
+ }
+
+ /* Destroy deleted domains */
+ for (i = 0; i < ndoms_cur; i++) {
+ for (j = 0; j < ndoms_new; j++) {
+ if (cpus_equal(doms_cur[i], doms_new[j]))
+ goto match1;
+ }
+ /* no match - a current sched domain not in new doms_new[] */
+ detach_destroy_domains(doms_cur + i);
+match1:
+ ;
+ }
+
+ /* Build new domains */
+ for (i = 0; i < ndoms_new; i++) {
+ for (j = 0; j < ndoms_cur; j++) {
+ if (cpus_equal(doms_new[i], doms_cur[j]))
+ goto match2;
+ }
+ /* no match - add a new doms_new */
+ build_sched_domains(doms_new + i);
+match2:
+ ;
+ }
+
+ /* Remember the new sched domains */
+ if (doms_cur != &fallback_doms)
+ kfree(doms_cur);
+ doms_cur = doms_new;
+ ndoms_cur = ndoms_new;
+}
+
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
static int arch_reinit_sched_domains(void)
{