diff options
-rw-r--r-- | Documentation/ia64/mca.txt | 194 | ||||
-rw-r--r-- | arch/ia64/kernel/acpi.c | 2 | ||||
-rw-r--r-- | arch/ia64/kernel/entry.S | 2 | ||||
-rw-r--r-- | arch/ia64/kernel/mca_drv.c | 114 | ||||
-rw-r--r-- | arch/ia64/kernel/mca_drv.h | 2 | ||||
-rw-r--r-- | arch/ia64/kernel/mca_drv_asm.S | 48 | ||||
-rw-r--r-- | arch/ia64/kernel/perfmon.c | 2 | ||||
-rw-r--r-- | drivers/char/agp/hp-agp.c | 2 |
8 files changed, 292 insertions, 74 deletions
diff --git a/Documentation/ia64/mca.txt b/Documentation/ia64/mca.txt new file mode 100644 index 0000000..a71cc6a --- /dev/null +++ b/Documentation/ia64/mca.txt @@ -0,0 +1,194 @@ +An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel +free to update it with notes about any area that is not clear. + +--- + +MCA/INIT are completely asynchronous. They can occur at any time, when +the OS is in any state. Including when one of the cpus is already +holding a spinlock. Trying to get any lock from MCA/INIT state is +asking for deadlock. Also the state of structures that are protected +by locks is indeterminate, including linked lists. + +--- + +The complicated ia64 MCA process. All of this is mandated by Intel's +specification for ia64 SAL, error recovery and and unwind, it is not as +if we have a choice here. + +* MCA occurs on one cpu, usually due to a double bit memory error. + This is the monarch cpu. + +* SAL sends an MCA rendezvous interrupt (which is a normal interrupt) + to all the other cpus, the slaves. + +* Slave cpus that receive the MCA interrupt call down into SAL, they + end up spinning disabled while the MCA is being serviced. + +* If any slave cpu was already spinning disabled when the MCA occurred + then it cannot service the MCA interrupt. SAL waits ~20 seconds then + sends an unmaskable INIT event to the slave cpus that have not + already rendezvoused. + +* Because MCA/INIT can be delivered at any time, including when the cpu + is down in PAL in physical mode, the registers at the time of the + event are _completely_ undefined. In particular the MCA/INIT + handlers cannot rely on the thread pointer, PAL physical mode can + (and does) modify TP. It is allowed to do that as long as it resets + TP on return. However MCA/INIT events expose us to these PAL + internal TP changes. Hence curr_task(). + +* If an MCA/INIT event occurs while the kernel was running (not user + space) and the kernel has called PAL then the MCA/INIT handler cannot + assume that the kernel stack is in a fit state to be used. Mainly + because PAL may or may not maintain the stack pointer internally. + Because the MCA/INIT handlers cannot trust the kernel stack, they + have to use their own, per-cpu stacks. The MCA/INIT stacks are + preformatted with just enough task state to let the relevant handlers + do their job. + +* Unlike most other architectures, the ia64 struct task is embedded in + the kernel stack[1]. So switching to a new kernel stack means that + we switch to a new task as well. Because various bits of the kernel + assume that current points into the struct task, switching to a new + stack also means a new value for current. + +* Once all slaves have rendezvoused and are spinning disabled, the + monarch is entered. The monarch now tries to diagnose the problem + and decide if it can recover or not. + +* Part of the monarch's job is to look at the state of all the other + tasks. The only way to do that on ia64 is to call the unwinder, + as mandated by Intel. + +* The starting point for the unwind depends on whether a task is + running or not. That is, whether it is on a cpu or is blocked. The + monarch has to determine whether or not a task is on a cpu before it + knows how to start unwinding it. The tasks that received an MCA or + INIT event are no longer running, they have been converted to blocked + tasks. But (and its a big but), the cpus that received the MCA + rendezvous interrupt are still running on their normal kernel stacks! + +* To distinguish between these two cases, the monarch must know which + tasks are on a cpu and which are not. Hence each slave cpu that + switches to an MCA/INIT stack, registers its new stack using + set_curr_task(), so the monarch can tell that the _original_ task is + no longer running on that cpu. That gives us a decent chance of + getting a valid backtrace of the _original_ task. + +* MCA/INIT can be nested, to a depth of 2 on any cpu. In the case of a + nested error, we want diagnostics on the MCA/INIT handler that + failed, not on the task that was originally running. Again this + requires set_curr_task() so the MCA/INIT handlers can register their + own stack as running on that cpu. Then a recursive error gets a + trace of the failing handler's "task". + +[1] My (Keith Owens) original design called for ia64 to separate its + struct task and the kernel stacks. Then the MCA/INIT data would be + chained stacks like i386 interrupt stacks. But that required + radical surgery on the rest of ia64, plus extra hard wired TLB + entries with its associated performance degradation. David + Mosberger vetoed that approach. Which meant that separate kernel + stacks meant separate "tasks" for the MCA/INIT handlers. + +--- + +INIT is less complicated than MCA. Pressing the nmi button or using +the equivalent command on the management console sends INIT to all +cpus. SAL picks one one of the cpus as the monarch and the rest are +slaves. All the OS INIT handlers are entered at approximately the same +time. The OS monarch prints the state of all tasks and returns, after +which the slaves return and the system resumes. + +At least that is what is supposed to happen. Alas there are broken +versions of SAL out there. Some drive all the cpus as monarchs. Some +drive them all as slaves. Some drive one cpu as monarch, wait for that +cpu to return from the OS then drive the rest as slaves. Some versions +of SAL cannot even cope with returning from the OS, they spin inside +SAL on resume. The OS INIT code has workarounds for some of these +broken SAL symptoms, but some simply cannot be fixed from the OS side. + +--- + +The scheduler hooks used by ia64 (curr_task, set_curr_task) are layer +violations. Unfortunately MCA/INIT start off as massive layer +violations (can occur at _any_ time) and they build from there. + +At least ia64 makes an attempt at recovering from hardware errors, but +it is a difficult problem because of the asynchronous nature of these +errors. When processing an unmaskable interrupt we sometimes need +special code to cope with our inability to take any locks. + +--- + +How is ia64 MCA/INIT different from x86 NMI? + +* x86 NMI typically gets delivered to one cpu. MCA/INIT gets sent to + all cpus. + +* x86 NMI cannot be nested. MCA/INIT can be nested, to a depth of 2 + per cpu. + +* x86 has a separate struct task which points to one of multiple kernel + stacks. ia64 has the struct task embedded in the single kernel + stack, so switching stack means switching task. + +* x86 does not call the BIOS so the NMI handler does not have to worry + about any registers having changed. MCA/INIT can occur while the cpu + is in PAL in physical mode, with undefined registers and an undefined + kernel stack. + +* i386 backtrace is not very sensitive to whether a process is running + or not. ia64 unwind is very, very sensitive to whether a process is + running or not. + +--- + +What happens when MCA/INIT is delivered what a cpu is running user +space code? + +The user mode registers are stored in the RSE area of the MCA/INIT on +entry to the OS and are restored from there on return to SAL, so user +mode registers are preserved across a recoverable MCA/INIT. Since the +OS has no idea what unwind data is available for the user space stack, +MCA/INIT never tries to backtrace user space. Which means that the OS +does not bother making the user space process look like a blocked task, +i.e. the OS does not copy pt_regs and switch_stack to the user space +stack. Also the OS has no idea how big the user space RSE and memory +stacks are, which makes it too risky to copy the saved state to a user +mode stack. + +--- + +How do we get a backtrace on the tasks that were running when MCA/INIT +was delivered? + +mca.c:::ia64_mca_modify_original_stack(). That identifies and +verifies the original kernel stack, copies the dirty registers from +the MCA/INIT stack's RSE to the original stack's RSE, copies the +skeleton struct pt_regs and switch_stack to the original stack, fills +in the skeleton structures from the PAL minstate area and updates the +original stack's thread.ksp. That makes the original stack look +exactly like any other blocked task, i.e. it now appears to be +sleeping. To get a backtrace, just start with thread.ksp for the +original task and unwind like any other sleeping task. + +--- + +How do we identify the tasks that were running when MCA/INIT was +delivered? + +If the previous task has been verified and converted to a blocked +state, then sos->prev_task on the MCA/INIT stack is updated to point to +the previous task. You can look at that field in dumps or debuggers. +To help distinguish between the handler and the original tasks, +handlers have _TIF_MCA_INIT set in thread_info.flags. + +The sos data is always in the MCA/INIT handler stack, at offset +MCA_SOS_OFFSET. You can get that value from mca_asm.h or calculate it +as KERNEL_STACK_SIZE - sizeof(struct pt_regs) - sizeof(struct +ia64_sal_os_state), with 16 byte alignment for all structures. + +Also the comm field of the MCA/INIT task is modified to include the pid +of the original task, for humans to use. For example, a comm field of +'MCA 12159' means that pid 12159 was running when the MCA was +delivered. diff --git a/arch/ia64/kernel/acpi.c b/arch/ia64/kernel/acpi.c index 28a4529..7e92647 100644 --- a/arch/ia64/kernel/acpi.c +++ b/arch/ia64/kernel/acpi.c @@ -899,7 +899,7 @@ int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base) if ((err = iosapic_init(phys_addr, gsi_base))) return err; -#if CONFIG_ACPI_NUMA +#ifdef CONFIG_ACPI_NUMA acpi_map_iosapic(handle, 0, NULL, NULL); #endif /* CONFIG_ACPI_NUMA */ diff --git a/arch/ia64/kernel/entry.S b/arch/ia64/kernel/entry.S index ba0b6a1..0741b066 100644 --- a/arch/ia64/kernel/entry.S +++ b/arch/ia64/kernel/entry.S @@ -491,7 +491,7 @@ GLOBAL_ENTRY(prefetch_stack) ;; lfetch.fault [r16], 128 br.ret.sptk.many rp -END(prefetch_switch_stack) +END(prefetch_stack) GLOBAL_ENTRY(execve) mov r15=__NR_execve // put syscall number in place diff --git a/arch/ia64/kernel/mca_drv.c b/arch/ia64/kernel/mca_drv.c index 6e68374..80f83d6 100644 --- a/arch/ia64/kernel/mca_drv.c +++ b/arch/ia64/kernel/mca_drv.c @@ -84,23 +84,23 @@ mca_page_isolate(unsigned long paddr) struct page *p; /* whether physical address is valid or not */ - if ( !ia64_phys_addr_valid(paddr) ) + if (!ia64_phys_addr_valid(paddr)) return ISOLATE_NG; /* convert physical address to physical page number */ p = pfn_to_page(paddr>>PAGE_SHIFT); /* check whether a page number have been already registered or not */ - for( i = 0; i < num_page_isolate; i++ ) - if( page_isolate[i] == p ) + for (i = 0; i < num_page_isolate; i++) + if (page_isolate[i] == p) return ISOLATE_OK; /* already listed */ /* limitation check */ - if( num_page_isolate == MAX_PAGE_ISOLATE ) + if (num_page_isolate == MAX_PAGE_ISOLATE) return ISOLATE_NG; /* kick pages having attribute 'SLAB' or 'Reserved' */ - if( PageSlab(p) || PageReserved(p) ) + if (PageSlab(p) || PageReserved(p)) return ISOLATE_NG; /* add attribute 'Reserved' and register the page */ @@ -139,10 +139,10 @@ mca_handler_bh(unsigned long paddr) * @peidx: pointer to index of processor error section */ -static void +static void mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx) { - /* + /* * calculate the start address of * "struct cpuid_info" and "sal_processor_static_info_t". */ @@ -164,7 +164,7 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx) } /** - * mca_make_slidx - Make index of SAL error record + * mca_make_slidx - Make index of SAL error record * @buffer: pointer to SAL error record * @slidx: pointer to index of SAL error record * @@ -172,12 +172,12 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx) * 1 if record has platform error / 0 if not */ #define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \ - { slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \ - hl->hdr = ptr; \ - list_add(&hl->list, &(sect)); \ - slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; } + {slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \ + hl->hdr = ptr; \ + list_add(&hl->list, &(sect)); \ + slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; } -static int +static int mca_make_slidx(void *buffer, slidx_table_t *slidx) { int platform_err = 0; @@ -214,28 +214,36 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx) sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos); if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) { LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp); - } else if (!efi_guidcmp(sp->guid, SAL_PLAT_BUS_ERR_SECT_GUID)) { + } else if (!efi_guidcmp(sp->guid, + SAL_PLAT_BUS_ERR_SECT_GUID)) { platform_err = 1; LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp); } else { @@ -253,15 +261,16 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx) * Return value: * 0 on Success / -ENOMEM on Failure */ -static int +static int init_record_index_pools(void) { int i; int rec_max_size; /* Maximum size of SAL error records */ int sect_min_size; /* Minimum size of SAL error sections */ /* minimum size table of each section */ - static int sal_log_sect_min_sizes[] = { - sizeof(sal_log_processor_info_t) + sizeof(sal_processor_static_info_t), + static int sal_log_sect_min_sizes[] = { + sizeof(sal_log_processor_info_t) + + sizeof(sal_processor_static_info_t), sizeof(sal_log_mem_dev_err_info_t), sizeof(sal_log_sel_dev_err_info_t), sizeof(sal_log_pci_bus_err_info_t), @@ -294,7 +303,8 @@ init_record_index_pools(void) /* - 3 - */ slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1; - slidx_pool.buffer = (slidx_list_t *) kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL); + slidx_pool.buffer = (slidx_list_t *) + kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL); return slidx_pool.buffer ? 0 : -ENOMEM; } @@ -308,6 +318,7 @@ init_record_index_pools(void) * is_mca_global - Check whether this MCA is global or not * @peidx: pointer of index of processor error section * @pbci: pointer to pal_bus_check_info_t + * @sos: pointer to hand off struct between SAL and OS * * Return value: * MCA_IS_LOCAL / MCA_IS_GLOBAL @@ -317,11 +328,12 @@ static mca_type_t is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci, struct ia64_sal_os_state *sos) { - pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); + pal_processor_state_info_t *psp = + (pal_processor_state_info_t*)peidx_psp(peidx); - /* + /* * PAL can request a rendezvous, if the MCA has a global scope. - * If "rz_always" flag is set, SAL requests MCA rendezvous + * If "rz_always" flag is set, SAL requests MCA rendezvous * in spite of global MCA. * Therefore it is local MCA when rendezvous has not been requested. * Failed to rendezvous, the system must be down. @@ -381,13 +393,15 @@ is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci, * @slidx: pointer of index of SAL error record * @peidx: pointer of index of processor error section * @pbci: pointer of pal_bus_check_info + * @sos: pointer to hand off struct between SAL and OS * * Return value: * 1 on Success / 0 on Failure */ static int -recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, +recover_from_read_error(slidx_table_t *slidx, + peidx_table_t *peidx, pal_bus_check_info_t *pbci, struct ia64_sal_os_state *sos) { sal_log_mod_error_info_t *smei; @@ -453,24 +467,28 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec * @slidx: pointer of index of SAL error record * @peidx: pointer of index of processor error section * @pbci: pointer of pal_bus_check_info + * @sos: pointer to hand off struct between SAL and OS * * Return value: * 1 on Success / 0 on Failure */ static int -recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, +recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, + pal_bus_check_info_t *pbci, struct ia64_sal_os_state *sos) { int status = 0; - pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); + pal_processor_state_info_t *psp = + (pal_processor_state_info_t*)peidx_psp(peidx); if (psp->bc && pbci->eb && pbci->bsi == 0) { switch(pbci->type) { case 1: /* partial read */ case 3: /* full line(cpu) read */ case 9: /* I/O space read */ - status = recover_from_read_error(slidx, peidx, pbci, sos); + status = recover_from_read_error(slidx, peidx, pbci, + sos); break; case 0: /* unknown */ case 2: /* partial write */ @@ -481,7 +499,8 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_ case 8: /* write coalescing transactions */ case 10: /* I/O space write */ case 11: /* inter-processor interrupt message(IPI) */ - case 12: /* interrupt acknowledge or external task priority cycle */ + case 12: /* interrupt acknowledge or + external task priority cycle */ default: break; } @@ -496,6 +515,7 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_ * @slidx: pointer of index of SAL error record * @peidx: pointer of index of processor error section * @pbci: pointer of pal_bus_check_info + * @sos: pointer to hand off struct between SAL and OS * * Return value: * 1 on Success / 0 on Failure @@ -509,15 +529,17 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_ */ static int -recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, +recover_from_processor_error(int platform, slidx_table_t *slidx, + peidx_table_t *peidx, pal_bus_check_info_t *pbci, struct ia64_sal_os_state *sos) { - pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); + pal_processor_state_info_t *psp = + (pal_processor_state_info_t*)peidx_psp(peidx); - /* + /* * We cannot recover errors with other than bus_check. */ - if (psp->cc || psp->rc || psp->uc) + if (psp->cc || psp->rc || psp->uc) return 0; /* @@ -546,10 +568,10 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t * * (e.g. a load from poisoned memory) * This means "there are some platform errors". */ - if (platform) + if (platform) return recover_from_platform_error(slidx, peidx, pbci, sos); - /* - * On account of strange SAL error record, we cannot recover. + /* + * On account of strange SAL error record, we cannot recover. */ return 0; } @@ -557,14 +579,14 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t * /** * mca_try_to_recover - Try to recover from MCA * @rec: pointer to a SAL error record + * @sos: pointer to hand off struct between SAL and OS * * Return value: * 1 on Success / 0 on Failure */ static int -mca_try_to_recover(void *rec, - struct ia64_sal_os_state *sos) +mca_try_to_recover(void *rec, struct ia64_sal_os_state *sos) { int platform_err; int n_proc_err; @@ -588,7 +610,8 @@ mca_try_to_recover(void *rec, } /* Make index of processor error section */ - mca_make_peidx((sal_log_processor_info_t*)slidx_first_entry(&slidx.proc_err)->hdr, &peidx); + mca_make_peidx((sal_log_processor_info_t*) + slidx_first_entry(&slidx.proc_err)->hdr, &peidx); /* Extract Processor BUS_CHECK[0] */ *((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0); @@ -598,7 +621,8 @@ mca_try_to_recover(void *rec, return 0; /* Try to recover a processor error */ - return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci, sos); + return recover_from_processor_error(platform_err, &slidx, &peidx, + &pbci, sos); } /* @@ -611,7 +635,7 @@ int __init mca_external_handler_init(void) return -ENOMEM; /* register external mca handlers */ - if (ia64_reg_MCA_extension(mca_try_to_recover)){ + if (ia64_reg_MCA_extension(mca_try_to_recover)) { printk(KERN_ERR "ia64_reg_MCA_extension failed.\n"); kfree(slidx_pool.buffer); return -EFAULT; diff --git a/arch/ia64/kernel/mca_drv.h b/arch/ia64/kernel/mca_drv.h index 0227b76..e2f6fa1 100644 --- a/arch/ia64/kernel/mca_drv.h +++ b/arch/ia64/kernel/mca_drv.h @@ -6,7 +6,7 @@ * Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com) */ /* - * Processor error section: + * Processor error section: * * +-sal_log_processor_info_t *info-------------+ * | sal_log_section_hdr_t header; | diff --git a/arch/ia64/kernel/mca_drv_asm.S b/arch/ia64/kernel/mca_drv_asm.S index 2d7e021..3f298ee 100644 --- a/arch/ia64/kernel/mca_drv_asm.S +++ b/arch/ia64/kernel/mca_drv_asm.S @@ -13,45 +13,45 @@ #include <asm/ptrace.h> GLOBAL_ENTRY(mca_handler_bhhook) - invala // clear RSE ? - ;; // - cover // - ;; // - clrrrb // + invala // clear RSE ? + ;; + cover + ;; + clrrrb ;; - alloc r16=ar.pfs,0,2,1,0 // make a new frame + alloc r16=ar.pfs,0,2,1,0 // make a new frame ;; - mov ar.rsc=0 + mov ar.rsc=0 ;; - mov r13=IA64_KR(CURRENT) // current task pointer + mov r13=IA64_KR(CURRENT) // current task pointer ;; - mov r2=r13 + mov r2=r13 ;; - addl r22=IA64_RBS_OFFSET,r2 + addl r22=IA64_RBS_OFFSET,r2 ;; - mov ar.bspstore=r22 + mov ar.bspstore=r22 ;; - addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 + addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 ;; - adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 + adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 ;; - st1 [r2]=r0 // clear current->thread.on_ustack flag - mov loc0=r16 - movl loc1=mca_handler_bh // recovery C function + st1 [r2]=r0 // clear current->thread.on_ustack flag + mov loc0=r16 + movl loc1=mca_handler_bh // recovery C function ;; - mov out0=r8 // poisoned address - mov b6=loc1 + mov out0=r8 // poisoned address + mov b6=loc1 ;; - mov loc1=rp + mov loc1=rp ;; - ssm psr.i + ssm psr.i ;; - br.call.sptk.many rp=b6 // does not return ... + br.call.sptk.many rp=b6 // does not return ... ;; - mov ar.pfs=loc0 - mov rp=loc1 + mov ar.pfs=loc0 + mov rp=loc1 ;; - mov r8=r0 + mov r8=r0 br.ret.sptk.many rp ;; END(mca_handler_bhhook) diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c index 1650353..af42cda 100644 --- a/arch/ia64/kernel/perfmon.c +++ b/arch/ia64/kernel/perfmon.c @@ -574,7 +574,7 @@ pfm_protect_ctx_ctxsw(pfm_context_t *x) return 0UL; } -static inline unsigned long +static inline void pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) { spin_unlock(&(x)->ctx_lock); diff --git a/drivers/char/agp/hp-agp.c b/drivers/char/agp/hp-agp.c index 99762b6..de5d6d2 100644 --- a/drivers/char/agp/hp-agp.c +++ b/drivers/char/agp/hp-agp.c @@ -252,7 +252,7 @@ hp_zx1_configure (void) readl(hp->ioc_regs+HP_ZX1_PDIR_BASE); writel(hp->io_tlb_ps, hp->ioc_regs+HP_ZX1_TCNFG); readl(hp->ioc_regs+HP_ZX1_TCNFG); - writel(~(HP_ZX1_IOVA_SIZE-1), hp->ioc_regs+HP_ZX1_IMASK); + writel((unsigned int)(~(HP_ZX1_IOVA_SIZE-1)), hp->ioc_regs+HP_ZX1_IMASK); readl(hp->ioc_regs+HP_ZX1_IMASK); writel(hp->iova_base|1, hp->ioc_regs+HP_ZX1_IBASE); readl(hp->ioc_regs+HP_ZX1_IBASE); |