aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/omap-cpufreq.c
blob: dda32fd0343e96cef4b004bfead57dd2497bf318 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 *  CPU frequency scaling for OMAP
 *
 *  Copyright (C) 2005 Nokia Corporation
 *  Written by Tony Lindgren <tony@atomide.com>
 *
 *  Based on cpu-sa1110.c, Copyright (C) 2001 Russell King
 *
 * Copyright (C) 2007-2011 Texas Instruments, Inc.
 * - OMAP3/4 support by Rajendra Nayak, Santosh Shilimkar
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/opp.h>
#include <linux/cpu.h>

#include <asm/system.h>
#include <asm/smp_plat.h>
#include <asm/cpu.h>

#include <plat/clock.h>
#include <plat/omap-pm.h>
#include <plat/common.h>

#include <mach/hardware.h>

#define VERY_HI_RATE	900000000

#ifdef CONFIG_SMP
struct lpj_info {
	unsigned long	ref;
	unsigned int	freq;
};

static DEFINE_PER_CPU(struct lpj_info, lpj_ref);
static struct lpj_info global_lpj_ref;
#endif

static struct cpufreq_frequency_table *freq_table;
static struct clk *mpu_clk;
static char *mpu_clk_name;
static struct device *mpu_dev;

static int omap_verify_speed(struct cpufreq_policy *policy)
{
	if (freq_table)
		return cpufreq_frequency_table_verify(policy, freq_table);

	if (policy->cpu)
		return -EINVAL;

	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     policy->cpuinfo.max_freq);

	policy->min = clk_round_rate(mpu_clk, policy->min * 1000) / 1000;
	policy->max = clk_round_rate(mpu_clk, policy->max * 1000) / 1000;
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     policy->cpuinfo.max_freq);
	return 0;
}

static unsigned int omap_getspeed(unsigned int cpu)
{
	unsigned long rate;

	if (cpu >= NR_CPUS)
		return 0;

	rate = clk_get_rate(mpu_clk) / 1000;
	return rate;
}

static int omap_target(struct cpufreq_policy *policy,
		       unsigned int target_freq,
		       unsigned int relation)
{
	int i, ret = 0;
	struct cpufreq_freqs freqs;

	/* Ensure desired rate is within allowed range.  Some govenors
	 * (ondemand) will just pass target_freq=0 to get the minimum. */
	if (target_freq < policy->min)
		target_freq = policy->min;
	if (target_freq > policy->max)
		target_freq = policy->max;

	freqs.old = omap_getspeed(policy->cpu);
	freqs.new = clk_round_rate(mpu_clk, target_freq * 1000) / 1000;
	freqs.cpu = policy->cpu;

	if (freqs.old == freqs.new && policy->cur == freqs.new)
		return ret;

	/* notifiers */
	for_each_cpu(i, policy->cpus) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
	}

#ifdef CONFIG_CPU_FREQ_DEBUG
	pr_info("cpufreq-omap: transition: %u --> %u\n", freqs.old, freqs.new);
#endif

	ret = clk_set_rate(mpu_clk, freqs.new * 1000);
	freqs.new = omap_getspeed(policy->cpu);

#ifdef CONFIG_SMP
	/*
	 * Note that loops_per_jiffy is not updated on SMP systems in
	 * cpufreq driver. So, update the per-CPU loops_per_jiffy value
	 * on frequency transition. We need to update all dependent CPUs.
	 */
	for_each_cpu(i, policy->cpus) {
		struct lpj_info *lpj = &per_cpu(lpj_ref, i);
		if (!lpj->freq) {
			lpj->ref = per_cpu(cpu_data, i).loops_per_jiffy;
			lpj->freq = freqs.old;
		}

		per_cpu(cpu_data, i).loops_per_jiffy =
			cpufreq_scale(lpj->ref, lpj->freq, freqs.new);
	}

	/* And don't forget to adjust the global one */
	if (!global_lpj_ref.freq) {
		global_lpj_ref.ref = loops_per_jiffy;
		global_lpj_ref.freq = freqs.old;
	}
	loops_per_jiffy = cpufreq_scale(global_lpj_ref.ref, global_lpj_ref.freq,
					freqs.new);
#endif

	/* notifiers */
	for_each_cpu(i, policy->cpus) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
	}

	return ret;
}

static int __cpuinit omap_cpu_init(struct cpufreq_policy *policy)
{
	int result = 0;

	mpu_clk = clk_get(NULL, mpu_clk_name);
	if (IS_ERR(mpu_clk))
		return PTR_ERR(mpu_clk);

	if (policy->cpu >= NR_CPUS)
		return -EINVAL;

	policy->cur = policy->min = policy->max = omap_getspeed(policy->cpu);
	opp_init_cpufreq_table(mpu_dev, &freq_table);

	if (freq_table) {
		result = cpufreq_frequency_table_cpuinfo(policy, freq_table);
		if (!result)
			cpufreq_frequency_table_get_attr(freq_table,
							policy->cpu);
	} else {
		policy->cpuinfo.min_freq = clk_round_rate(mpu_clk, 0) / 1000;
		policy->cpuinfo.max_freq = clk_round_rate(mpu_clk,
							VERY_HI_RATE) / 1000;
	}

	policy->min = policy->cpuinfo.min_freq;
	policy->max = policy->cpuinfo.max_freq;
	policy->cur = omap_getspeed(policy->cpu);

	/*
	 * On OMAP SMP configuartion, both processors share the voltage
	 * and clock. So both CPUs needs to be scaled together and hence
	 * needs software co-ordination. Use cpufreq affected_cpus
	 * interface to handle this scenario. Additional is_smp() check
	 * is to keep SMP_ON_UP build working.
	 */
	if (is_smp()) {
		policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
		cpumask_setall(policy->cpus);
	}

	/* FIXME: what's the actual transition time? */
	policy->cpuinfo.transition_latency = 300 * 1000;

	return 0;
}

static int omap_cpu_exit(struct cpufreq_policy *policy)
{
	clk_exit_cpufreq_table(&freq_table);
	clk_put(mpu_clk);
	return 0;
}

static struct freq_attr *omap_cpufreq_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	NULL,
};

static struct cpufreq_driver omap_driver = {
	.flags		= CPUFREQ_STICKY,
	.verify		= omap_verify_speed,
	.target		= omap_target,
	.get		= omap_getspeed,
	.init		= omap_cpu_init,
	.exit		= omap_cpu_exit,
	.name		= "omap",
	.attr		= omap_cpufreq_attr,
};

static int __init omap_cpufreq_init(void)
{
	if (cpu_is_omap24xx())
		mpu_clk_name = "virt_prcm_set";
	else if (cpu_is_omap34xx())
		mpu_clk_name = "dpll1_ck";
	else if (cpu_is_omap44xx())
		mpu_clk_name = "dpll_mpu_ck";

	if (!mpu_clk_name) {
		pr_err("%s: unsupported Silicon?\n", __func__);
		return -EINVAL;
	}

	mpu_dev = omap2_get_mpuss_device();
	if (!mpu_dev) {
		pr_warning("%s: unable to get the mpu device\n", __func__);
		return -EINVAL;
	}

	return cpufreq_register_driver(&omap_driver);
}

static void __exit omap_cpufreq_exit(void)
{
	cpufreq_unregister_driver(&omap_driver);
}

MODULE_DESCRIPTION("cpufreq driver for OMAP SoCs");
MODULE_LICENSE("GPL");
module_init(omap_cpufreq_init);
module_exit(omap_cpufreq_exit);