aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-cache-policy-mq.c
blob: 4296155090b2b181f5840e21d97402ae0351d739 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
/*
 * Copyright (C) 2012 Red Hat. All rights reserved.
 *
 * This file is released under the GPL.
 */

#include "dm-cache-policy.h"
#include "dm.h"

#include <linux/hash.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

#define DM_MSG_PREFIX "cache-policy-mq"

static struct kmem_cache *mq_entry_cache;

/*----------------------------------------------------------------*/

static unsigned next_power(unsigned n, unsigned min)
{
	return roundup_pow_of_two(max(n, min));
}

/*----------------------------------------------------------------*/

static unsigned long *alloc_bitset(unsigned nr_entries)
{
	size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
	return vzalloc(s);
}

static void free_bitset(unsigned long *bits)
{
	vfree(bits);
}

/*----------------------------------------------------------------*/

/*
 * Large, sequential ios are probably better left on the origin device since
 * spindles tend to have good bandwidth.
 *
 * The io_tracker tries to spot when the io is in one of these sequential
 * modes.
 *
 * Two thresholds to switch between random and sequential io mode are defaulting
 * as follows and can be adjusted via the constructor and message interfaces.
 */
#define RANDOM_THRESHOLD_DEFAULT 4
#define SEQUENTIAL_THRESHOLD_DEFAULT 512

enum io_pattern {
	PATTERN_SEQUENTIAL,
	PATTERN_RANDOM
};

struct io_tracker {
	enum io_pattern pattern;

	unsigned nr_seq_samples;
	unsigned nr_rand_samples;
	unsigned thresholds[2];

	dm_oblock_t last_end_oblock;
};

static void iot_init(struct io_tracker *t,
		     int sequential_threshold, int random_threshold)
{
	t->pattern = PATTERN_RANDOM;
	t->nr_seq_samples = 0;
	t->nr_rand_samples = 0;
	t->last_end_oblock = 0;
	t->thresholds[PATTERN_RANDOM] = random_threshold;
	t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
}

static enum io_pattern iot_pattern(struct io_tracker *t)
{
	return t->pattern;
}

static void iot_update_stats(struct io_tracker *t, struct bio *bio)
{
	if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1)
		t->nr_seq_samples++;
	else {
		/*
		 * Just one non-sequential IO is enough to reset the
		 * counters.
		 */
		if (t->nr_seq_samples) {
			t->nr_seq_samples = 0;
			t->nr_rand_samples = 0;
		}

		t->nr_rand_samples++;
	}

	t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1);
}

static void iot_check_for_pattern_switch(struct io_tracker *t)
{
	switch (t->pattern) {
	case PATTERN_SEQUENTIAL:
		if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
			t->pattern = PATTERN_RANDOM;
			t->nr_seq_samples = t->nr_rand_samples = 0;
		}
		break;

	case PATTERN_RANDOM:
		if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
			t->pattern = PATTERN_SEQUENTIAL;
			t->nr_seq_samples = t->nr_rand_samples = 0;
		}
		break;
	}
}

static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
{
	iot_update_stats(t, bio);
	iot_check_for_pattern_switch(t);
}

/*----------------------------------------------------------------*/


/*
 * This queue is divided up into different levels.  Allowing us to push
 * entries to the back of any of the levels.  Think of it as a partially
 * sorted queue.
 */
#define NR_QUEUE_LEVELS 16u

struct queue {
	struct list_head qs[NR_QUEUE_LEVELS];
};

static void queue_init(struct queue *q)
{
	unsigned i;

	for (i = 0; i < NR_QUEUE_LEVELS; i++)
		INIT_LIST_HEAD(q->qs + i);
}

/*
 * Insert an entry to the back of the given level.
 */
static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
{
	list_add_tail(elt, q->qs + level);
}

static void queue_remove(struct list_head *elt)
{
	list_del(elt);
}

/*
 * Shifts all regions down one level.  This has no effect on the order of
 * the queue.
 */
static void queue_shift_down(struct queue *q)
{
	unsigned level;

	for (level = 1; level < NR_QUEUE_LEVELS; level++)
		list_splice_init(q->qs + level, q->qs + level - 1);
}

/*
 * Gives us the oldest entry of the lowest popoulated level.  If the first
 * level is emptied then we shift down one level.
 */
static struct list_head *queue_pop(struct queue *q)
{
	unsigned level;
	struct list_head *r;

	for (level = 0; level < NR_QUEUE_LEVELS; level++)
		if (!list_empty(q->qs + level)) {
			r = q->qs[level].next;
			list_del(r);

			/* have we just emptied the bottom level? */
			if (level == 0 && list_empty(q->qs))
				queue_shift_down(q);

			return r;
		}

	return NULL;
}

static struct list_head *list_pop(struct list_head *lh)
{
	struct list_head *r = lh->next;

	BUG_ON(!r);
	list_del_init(r);

	return r;
}

/*----------------------------------------------------------------*/

/*
 * Describes a cache entry.  Used in both the cache and the pre_cache.
 */
struct entry {
	struct hlist_node hlist;
	struct list_head list;
	dm_oblock_t oblock;
	dm_cblock_t cblock;	/* valid iff in_cache */

	/*
	 * FIXME: pack these better
	 */
	bool in_cache:1;
	unsigned hit_count;
	unsigned generation;
	unsigned tick;
};

struct mq_policy {
	struct dm_cache_policy policy;

	/* protects everything */
	struct mutex lock;
	dm_cblock_t cache_size;
	struct io_tracker tracker;

	/*
	 * We maintain two queues of entries.  The cache proper contains
	 * the currently active mappings.  Whereas the pre_cache tracks
	 * blocks that are being hit frequently and potential candidates
	 * for promotion to the cache.
	 */
	struct queue pre_cache;
	struct queue cache;

	/*
	 * Keeps track of time, incremented by the core.  We use this to
	 * avoid attributing multiple hits within the same tick.
	 *
	 * Access to tick_protected should be done with the spin lock held.
	 * It's copied to tick at the start of the map function (within the
	 * mutex).
	 */
	spinlock_t tick_lock;
	unsigned tick_protected;
	unsigned tick;

	/*
	 * A count of the number of times the map function has been called
	 * and found an entry in the pre_cache or cache.  Currently used to
	 * calculate the generation.
	 */
	unsigned hit_count;

	/*
	 * A generation is a longish period that is used to trigger some
	 * book keeping effects.  eg, decrementing hit counts on entries.
	 * This is needed to allow the cache to evolve as io patterns
	 * change.
	 */
	unsigned generation;
	unsigned generation_period; /* in lookups (will probably change) */

	/*
	 * Entries in the pre_cache whose hit count passes the promotion
	 * threshold move to the cache proper.  Working out the correct
	 * value for the promotion_threshold is crucial to this policy.
	 */
	unsigned promote_threshold;

	/*
	 * We need cache_size entries for the cache, and choose to have
	 * cache_size entries for the pre_cache too.  One motivation for
	 * using the same size is to make the hit counts directly
	 * comparable between pre_cache and cache.
	 */
	unsigned nr_entries;
	unsigned nr_entries_allocated;
	struct list_head free;

	/*
	 * Cache blocks may be unallocated.  We store this info in a
	 * bitset.
	 */
	unsigned long *allocation_bitset;
	unsigned nr_cblocks_allocated;
	unsigned find_free_nr_words;
	unsigned find_free_last_word;

	/*
	 * The hash table allows us to quickly find an entry by origin
	 * block.  Both pre_cache and cache entries are in here.
	 */
	unsigned nr_buckets;
	dm_block_t hash_bits;
	struct hlist_head *table;
};

/*----------------------------------------------------------------*/
/* Free/alloc mq cache entry structures. */
static void takeout_queue(struct list_head *lh, struct queue *q)
{
	unsigned level;

	for (level = 0; level < NR_QUEUE_LEVELS; level++)
		list_splice(q->qs + level, lh);
}

static void free_entries(struct mq_policy *mq)
{
	struct entry *e, *tmp;

	takeout_queue(&mq->free, &mq->pre_cache);
	takeout_queue(&mq->free, &mq->cache);

	list_for_each_entry_safe(e, tmp, &mq->free, list)
		kmem_cache_free(mq_entry_cache, e);
}

static int alloc_entries(struct mq_policy *mq, unsigned elts)
{
	unsigned u = mq->nr_entries;

	INIT_LIST_HEAD(&mq->free);
	mq->nr_entries_allocated = 0;

	while (u--) {
		struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL);

		if (!e) {
			free_entries(mq);
			return -ENOMEM;
		}


		list_add(&e->list, &mq->free);
	}

	return 0;
}

/*----------------------------------------------------------------*/

/*
 * Simple hash table implementation.  Should replace with the standard hash
 * table that's making its way upstream.
 */
static void hash_insert(struct mq_policy *mq, struct entry *e)
{
	unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);

	hlist_add_head(&e->hlist, mq->table + h);
}

static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
{
	unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
	struct hlist_head *bucket = mq->table + h;
	struct entry *e;

	hlist_for_each_entry(e, bucket, hlist)
		if (e->oblock == oblock) {
			hlist_del(&e->hlist);
			hlist_add_head(&e->hlist, bucket);
			return e;
		}

	return NULL;
}

static void hash_remove(struct entry *e)
{
	hlist_del(&e->hlist);
}

/*----------------------------------------------------------------*/

/*
 * Allocates a new entry structure.  The memory is allocated in one lump,
 * so we just handing it out here.  Returns NULL if all entries have
 * already been allocated.  Cannot fail otherwise.
 */
static struct entry *alloc_entry(struct mq_policy *mq)
{
	struct entry *e;

	if (mq->nr_entries_allocated >= mq->nr_entries) {
		BUG_ON(!list_empty(&mq->free));
		return NULL;
	}

	e = list_entry(list_pop(&mq->free), struct entry, list);
	INIT_LIST_HEAD(&e->list);
	INIT_HLIST_NODE(&e->hlist);

	mq->nr_entries_allocated++;
	return e;
}

/*----------------------------------------------------------------*/

/*
 * Mark cache blocks allocated or not in the bitset.
 */
static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock)
{
	BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
	BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset));

	set_bit(from_cblock(cblock), mq->allocation_bitset);
	mq->nr_cblocks_allocated++;
}

static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock)
{
	BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
	BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset));

	clear_bit(from_cblock(cblock), mq->allocation_bitset);
	mq->nr_cblocks_allocated--;
}

static bool any_free_cblocks(struct mq_policy *mq)
{
	return mq->nr_cblocks_allocated < from_cblock(mq->cache_size);
}

/*
 * Fills result out with a cache block that isn't in use, or return
 * -ENOSPC.  This does _not_ mark the cblock as allocated, the caller is
 * reponsible for that.
 */
static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end,
			      dm_cblock_t *result, unsigned *last_word)
{
	int r = -ENOSPC;
	unsigned w;

	for (w = begin; w < end; w++) {
		/*
		 * ffz is undefined if no zero exists
		 */
		if (mq->allocation_bitset[w] != ~0UL) {
			*last_word = w;
			*result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w]));
			if (from_cblock(*result) < from_cblock(mq->cache_size))
				r = 0;

			break;
		}
	}

	return r;
}

static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result)
{
	int r;

	if (!any_free_cblocks(mq))
		return -ENOSPC;

	r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word);
	if (r == -ENOSPC && mq->find_free_last_word)
		r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word);

	return r;
}

/*----------------------------------------------------------------*/

/*
 * Now we get to the meat of the policy.  This section deals with deciding
 * when to to add entries to the pre_cache and cache, and move between
 * them.
 */

/*
 * The queue level is based on the log2 of the hit count.
 */
static unsigned queue_level(struct entry *e)
{
	return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
}

/*
 * Inserts the entry into the pre_cache or the cache.  Ensures the cache
 * block is marked as allocated if necc.  Inserts into the hash table.  Sets the
 * tick which records when the entry was last moved about.
 */
static void push(struct mq_policy *mq, struct entry *e)
{
	e->tick = mq->tick;
	hash_insert(mq, e);

	if (e->in_cache) {
		alloc_cblock(mq, e->cblock);
		queue_push(&mq->cache, queue_level(e), &e->list);
	} else
		queue_push(&mq->pre_cache, queue_level(e), &e->list);
}

/*
 * Removes an entry from pre_cache or cache.  Removes from the hash table.
 * Frees off the cache block if necc.
 */
static void del(struct mq_policy *mq, struct entry *e)
{
	queue_remove(&e->list);
	hash_remove(e);
	if (e->in_cache)
		free_cblock(mq, e->cblock);
}

/*
 * Like del, except it removes the first entry in the queue (ie. the least
 * recently used).
 */
static struct entry *pop(struct mq_policy *mq, struct queue *q)
{
	struct entry *e = container_of(queue_pop(q), struct entry, list);

	if (e) {
		hash_remove(e);

		if (e->in_cache)
			free_cblock(mq, e->cblock);
	}

	return e;
}

/*
 * Has this entry already been updated?
 */
static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
{
	return mq->tick == e->tick;
}

/*
 * The promotion threshold is adjusted every generation.  As are the counts
 * of the entries.
 *
 * At the moment the threshold is taken by averaging the hit counts of some
 * of the entries in the cache (the first 20 entries of the first level).
 *
 * We can be much cleverer than this though.  For example, each promotion
 * could bump up the threshold helping to prevent churn.  Much more to do
 * here.
 */

#define MAX_TO_AVERAGE 20

static void check_generation(struct mq_policy *mq)
{
	unsigned total = 0, nr = 0, count = 0, level;
	struct list_head *head;
	struct entry *e;

	if ((mq->hit_count >= mq->generation_period) &&
	    (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) {

		mq->hit_count = 0;
		mq->generation++;

		for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
			head = mq->cache.qs + level;
			list_for_each_entry(e, head, list) {
				nr++;
				total += e->hit_count;

				if (++count >= MAX_TO_AVERAGE)
					break;
			}
		}

		mq->promote_threshold = nr ? total / nr : 1;
		if (mq->promote_threshold * nr < total)
			mq->promote_threshold++;
	}
}

/*
 * Whenever we use an entry we bump up it's hit counter, and push it to the
 * back to it's current level.
 */
static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
{
	if (updated_this_tick(mq, e))
		return;

	e->hit_count++;
	mq->hit_count++;
	check_generation(mq);

	/* generation adjustment, to stop the counts increasing forever. */
	/* FIXME: divide? */
	/* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
	e->generation = mq->generation;

	del(mq, e);
	push(mq, e);
}

/*
 * Demote the least recently used entry from the cache to the pre_cache.
 * Returns the new cache entry to use, and the old origin block it was
 * mapped to.
 *
 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
 * straight back into the cache if it's subsequently hit.  There are
 * various options here, and more experimentation would be good:
 *
 * - just forget about the demoted entry completely (ie. don't insert it
     into the pre_cache).
 * - divide the hit count rather that setting to some hard coded value.
 * - set the hit count to a hard coded value other than 1, eg, is it better
 *   if it goes in at level 2?
 */
static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
{
	dm_cblock_t result;
	struct entry *demoted = pop(mq, &mq->cache);

	BUG_ON(!demoted);
	result = demoted->cblock;
	*oblock = demoted->oblock;
	demoted->in_cache = false;
	demoted->hit_count = 1;
	push(mq, demoted);

	return result;
}

/*
 * We modify the basic promotion_threshold depending on the specific io.
 *
 * If the origin block has been discarded then there's no cost to copy it
 * to the cache.
 *
 * We bias towards reads, since they can be demoted at no cost if they
 * haven't been dirtied.
 */
#define DISCARDED_PROMOTE_THRESHOLD 1
#define READ_PROMOTE_THRESHOLD 4
#define WRITE_PROMOTE_THRESHOLD 8

static unsigned adjusted_promote_threshold(struct mq_policy *mq,
					   bool discarded_oblock, int data_dir)
{
	if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE)
		/*
		 * We don't need to do any copying at all, so give this a
		 * very low threshold.  In practice this only triggers
		 * during initial population after a format.
		 */
		return DISCARDED_PROMOTE_THRESHOLD;

	return data_dir == READ ?
		(mq->promote_threshold + READ_PROMOTE_THRESHOLD) :
		(mq->promote_threshold + WRITE_PROMOTE_THRESHOLD);
}

static bool should_promote(struct mq_policy *mq, struct entry *e,
			   bool discarded_oblock, int data_dir)
{
	return e->hit_count >=
		adjusted_promote_threshold(mq, discarded_oblock, data_dir);
}

static int cache_entry_found(struct mq_policy *mq,
			     struct entry *e,
			     struct policy_result *result)
{
	requeue_and_update_tick(mq, e);

	if (e->in_cache) {
		result->op = POLICY_HIT;
		result->cblock = e->cblock;
	}

	return 0;
}

/*
 * Moves and entry from the pre_cache to the cache.  The main work is
 * finding which cache block to use.
 */
static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
			      struct policy_result *result)
{
	dm_cblock_t cblock;

	if (find_free_cblock(mq, &cblock) == -ENOSPC) {
		result->op = POLICY_REPLACE;
		cblock = demote_cblock(mq, &result->old_oblock);
	} else
		result->op = POLICY_NEW;

	result->cblock = e->cblock = cblock;

	del(mq, e);
	e->in_cache = true;
	push(mq, e);

	return 0;
}

static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
				 bool can_migrate, bool discarded_oblock,
				 int data_dir, struct policy_result *result)
{
	int r = 0;
	bool updated = updated_this_tick(mq, e);

	requeue_and_update_tick(mq, e);

	if ((!discarded_oblock && updated) ||
	    !should_promote(mq, e, discarded_oblock, data_dir))
		result->op = POLICY_MISS;
	else if (!can_migrate)
		r = -EWOULDBLOCK;
	else
		r = pre_cache_to_cache(mq, e, result);

	return r;
}

static void insert_in_pre_cache(struct mq_policy *mq,
				dm_oblock_t oblock)
{
	struct entry *e = alloc_entry(mq);

	if (!e)
		/*
		 * There's no spare entry structure, so we grab the least
		 * used one from the pre_cache.
		 */
		e = pop(mq, &mq->pre_cache);

	if (unlikely(!e)) {
		DMWARN("couldn't pop from pre cache");
		return;
	}

	e->in_cache = false;
	e->oblock = oblock;
	e->hit_count = 1;
	e->generation = mq->generation;
	push(mq, e);
}

static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
			    struct policy_result *result)
{
	struct entry *e;
	dm_cblock_t cblock;

	if (find_free_cblock(mq, &cblock) == -ENOSPC) {
		result->op = POLICY_MISS;
		insert_in_pre_cache(mq, oblock);
		return;
	}

	e = alloc_entry(mq);
	if (unlikely(!e)) {
		result->op = POLICY_MISS;
		return;
	}

	e->oblock = oblock;
	e->cblock = cblock;
	e->in_cache = true;
	e->hit_count = 1;
	e->generation = mq->generation;
	push(mq, e);

	result->op = POLICY_NEW;
	result->cblock = e->cblock;
}

static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
			  bool can_migrate, bool discarded_oblock,
			  int data_dir, struct policy_result *result)
{
	if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) {
		if (can_migrate)
			insert_in_cache(mq, oblock, result);
		else
			return -EWOULDBLOCK;
	} else {
		insert_in_pre_cache(mq, oblock);
		result->op = POLICY_MISS;
	}

	return 0;
}

/*
 * Looks the oblock up in the hash table, then decides whether to put in
 * pre_cache, or cache etc.
 */
static int map(struct mq_policy *mq, dm_oblock_t oblock,
	       bool can_migrate, bool discarded_oblock,
	       int data_dir, struct policy_result *result)
{
	int r = 0;
	struct entry *e = hash_lookup(mq, oblock);

	if (e && e->in_cache)
		r = cache_entry_found(mq, e, result);
	else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
		result->op = POLICY_MISS;
	else if (e)
		r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
					  data_dir, result);
	else
		r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
				   data_dir, result);

	if (r == -EWOULDBLOCK)
		result->op = POLICY_MISS;

	return r;
}

/*----------------------------------------------------------------*/

/*
 * Public interface, via the policy struct.  See dm-cache-policy.h for a
 * description of these.
 */

static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
{
	return container_of(p, struct mq_policy, policy);
}

static void mq_destroy(struct dm_cache_policy *p)
{
	struct mq_policy *mq = to_mq_policy(p);

	free_bitset(mq->allocation_bitset);
	kfree(mq->table);
	free_entries(mq);
	kfree(mq);
}

static void copy_tick(struct mq_policy *mq)
{
	unsigned long flags;

	spin_lock_irqsave(&mq->tick_lock, flags);
	mq->tick = mq->tick_protected;
	spin_unlock_irqrestore(&mq->tick_lock, flags);
}

static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
		  bool can_block, bool can_migrate, bool discarded_oblock,
		  struct bio *bio, struct policy_result *result)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);

	result->op = POLICY_MISS;

	if (can_block)
		mutex_lock(&mq->lock);
	else if (!mutex_trylock(&mq->lock))
		return -EWOULDBLOCK;

	copy_tick(mq);

	iot_examine_bio(&mq->tracker, bio);
	r = map(mq, oblock, can_migrate, discarded_oblock,
		bio_data_dir(bio), result);

	mutex_unlock(&mq->lock);

	return r;
}

static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);
	struct entry *e;

	if (!mutex_trylock(&mq->lock))
		return -EWOULDBLOCK;

	e = hash_lookup(mq, oblock);
	if (e && e->in_cache) {
		*cblock = e->cblock;
		r = 0;
	} else
		r = -ENOENT;

	mutex_unlock(&mq->lock);

	return r;
}

static int mq_load_mapping(struct dm_cache_policy *p,
			   dm_oblock_t oblock, dm_cblock_t cblock,
			   uint32_t hint, bool hint_valid)
{
	struct mq_policy *mq = to_mq_policy(p);
	struct entry *e;

	e = alloc_entry(mq);
	if (!e)
		return -ENOMEM;

	e->cblock = cblock;
	e->oblock = oblock;
	e->in_cache = true;
	e->hit_count = hint_valid ? hint : 1;
	e->generation = mq->generation;
	push(mq, e);

	return 0;
}

static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
			    void *context)
{
	struct mq_policy *mq = to_mq_policy(p);
	int r = 0;
	struct entry *e;
	unsigned level;

	mutex_lock(&mq->lock);

	for (level = 0; level < NR_QUEUE_LEVELS; level++)
		list_for_each_entry(e, &mq->cache.qs[level], list) {
			r = fn(context, e->cblock, e->oblock, e->hit_count);
			if (r)
				goto out;
		}

out:
	mutex_unlock(&mq->lock);

	return r;
}

static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
{
	struct mq_policy *mq = to_mq_policy(p);
	struct entry *e;

	mutex_lock(&mq->lock);

	e = hash_lookup(mq, oblock);

	BUG_ON(!e || !e->in_cache);

	del(mq, e);
	e->in_cache = false;
	push(mq, e);

	mutex_unlock(&mq->lock);
}

static void force_mapping(struct mq_policy *mq,
			  dm_oblock_t current_oblock, dm_oblock_t new_oblock)
{
	struct entry *e = hash_lookup(mq, current_oblock);

	BUG_ON(!e || !e->in_cache);

	del(mq, e);
	e->oblock = new_oblock;
	push(mq, e);
}

static void mq_force_mapping(struct dm_cache_policy *p,
			     dm_oblock_t current_oblock, dm_oblock_t new_oblock)
{
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	force_mapping(mq, current_oblock, new_oblock);
	mutex_unlock(&mq->lock);
}

static dm_cblock_t mq_residency(struct dm_cache_policy *p)
{
	struct mq_policy *mq = to_mq_policy(p);

	/* FIXME: lock mutex, not sure we can block here */
	return to_cblock(mq->nr_cblocks_allocated);
}

static void mq_tick(struct dm_cache_policy *p)
{
	struct mq_policy *mq = to_mq_policy(p);
	unsigned long flags;

	spin_lock_irqsave(&mq->tick_lock, flags);
	mq->tick_protected++;
	spin_unlock_irqrestore(&mq->tick_lock, flags);
}

static int mq_set_config_value(struct dm_cache_policy *p,
			       const char *key, const char *value)
{
	struct mq_policy *mq = to_mq_policy(p);
	enum io_pattern pattern;
	unsigned long tmp;

	if (!strcasecmp(key, "random_threshold"))
		pattern = PATTERN_RANDOM;
	else if (!strcasecmp(key, "sequential_threshold"))
		pattern = PATTERN_SEQUENTIAL;
	else
		return -EINVAL;

	if (kstrtoul(value, 10, &tmp))
		return -EINVAL;

	mq->tracker.thresholds[pattern] = tmp;

	return 0;
}

static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
{
	ssize_t sz = 0;
	struct mq_policy *mq = to_mq_policy(p);

	DMEMIT("4 random_threshold %u sequential_threshold %u",
	       mq->tracker.thresholds[PATTERN_RANDOM],
	       mq->tracker.thresholds[PATTERN_SEQUENTIAL]);

	return 0;
}

/* Init the policy plugin interface function pointers. */
static void init_policy_functions(struct mq_policy *mq)
{
	mq->policy.destroy = mq_destroy;
	mq->policy.map = mq_map;
	mq->policy.lookup = mq_lookup;
	mq->policy.load_mapping = mq_load_mapping;
	mq->policy.walk_mappings = mq_walk_mappings;
	mq->policy.remove_mapping = mq_remove_mapping;
	mq->policy.writeback_work = NULL;
	mq->policy.force_mapping = mq_force_mapping;
	mq->policy.residency = mq_residency;
	mq->policy.tick = mq_tick;
	mq->policy.emit_config_values = mq_emit_config_values;
	mq->policy.set_config_value = mq_set_config_value;
}

static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
					 sector_t origin_size,
					 sector_t cache_block_size)
{
	int r;
	struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);

	if (!mq)
		return NULL;

	init_policy_functions(mq);
	iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);

	mq->cache_size = cache_size;
	mq->tick_protected = 0;
	mq->tick = 0;
	mq->hit_count = 0;
	mq->generation = 0;
	mq->promote_threshold = 0;
	mutex_init(&mq->lock);
	spin_lock_init(&mq->tick_lock);
	mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG);
	mq->find_free_last_word = 0;

	queue_init(&mq->pre_cache);
	queue_init(&mq->cache);
	mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);

	mq->nr_entries = 2 * from_cblock(cache_size);
	r = alloc_entries(mq, mq->nr_entries);
	if (r)
		goto bad_cache_alloc;

	mq->nr_entries_allocated = 0;
	mq->nr_cblocks_allocated = 0;

	mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
	mq->hash_bits = ffs(mq->nr_buckets) - 1;
	mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL);
	if (!mq->table)
		goto bad_alloc_table;

	mq->allocation_bitset = alloc_bitset(from_cblock(cache_size));
	if (!mq->allocation_bitset)
		goto bad_alloc_bitset;

	return &mq->policy;

bad_alloc_bitset:
	kfree(mq->table);
bad_alloc_table:
	free_entries(mq);
bad_cache_alloc:
	kfree(mq);

	return NULL;
}

/*----------------------------------------------------------------*/

static struct dm_cache_policy_type mq_policy_type = {
	.name = "mq",
	.version = {1, 0, 0},
	.hint_size = 4,
	.owner = THIS_MODULE,
	.create = mq_create
};

static struct dm_cache_policy_type default_policy_type = {
	.name = "default",
	.version = {1, 0, 0},
	.hint_size = 4,
	.owner = THIS_MODULE,
	.create = mq_create
};

static int __init mq_init(void)
{
	int r;

	mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
					   sizeof(struct entry),
					   __alignof__(struct entry),
					   0, NULL);
	if (!mq_entry_cache)
		goto bad;

	r = dm_cache_policy_register(&mq_policy_type);
	if (r) {
		DMERR("register failed %d", r);
		goto bad_register_mq;
	}

	r = dm_cache_policy_register(&default_policy_type);
	if (!r) {
		DMINFO("version %u.%u.%u loaded",
		       mq_policy_type.version[0],
		       mq_policy_type.version[1],
		       mq_policy_type.version[2]);
		return 0;
	}

	DMERR("register failed (as default) %d", r);

	dm_cache_policy_unregister(&mq_policy_type);
bad_register_mq:
	kmem_cache_destroy(mq_entry_cache);
bad:
	return -ENOMEM;
}

static void __exit mq_exit(void)
{
	dm_cache_policy_unregister(&mq_policy_type);
	dm_cache_policy_unregister(&default_policy_type);

	kmem_cache_destroy(mq_entry_cache);
}

module_init(mq_init);
module_exit(mq_exit);

MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("mq cache policy");

MODULE_ALIAS("dm-cache-default");