aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/lpc32xx_slc.c
blob: be94ed5abefb74aebde118529cf5eca82abe876e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
/*
 * NXP LPC32XX NAND SLC driver
 *
 * Authors:
 *    Kevin Wells <kevin.wells@nxp.com>
 *    Roland Stigge <stigge@antcom.de>
 *
 * Copyright © 2011 NXP Semiconductors
 * Copyright © 2012 Roland Stigge
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_mtd.h>
#include <linux/of_gpio.h>
#include <linux/mtd/lpc32xx_slc.h>

#define LPC32XX_MODNAME		"lpc32xx-nand"

/**********************************************************************
* SLC NAND controller register offsets
**********************************************************************/

#define SLC_DATA(x)		(x + 0x000)
#define SLC_ADDR(x)		(x + 0x004)
#define SLC_CMD(x)		(x + 0x008)
#define SLC_STOP(x)		(x + 0x00C)
#define SLC_CTRL(x)		(x + 0x010)
#define SLC_CFG(x)		(x + 0x014)
#define SLC_STAT(x)		(x + 0x018)
#define SLC_INT_STAT(x)		(x + 0x01C)
#define SLC_IEN(x)		(x + 0x020)
#define SLC_ISR(x)		(x + 0x024)
#define SLC_ICR(x)		(x + 0x028)
#define SLC_TAC(x)		(x + 0x02C)
#define SLC_TC(x)		(x + 0x030)
#define SLC_ECC(x)		(x + 0x034)
#define SLC_DMA_DATA(x)		(x + 0x038)

/**********************************************************************
* slc_ctrl register definitions
**********************************************************************/
#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */

/**********************************************************************
* slc_cfg register definitions
**********************************************************************/
#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */

/**********************************************************************
* slc_stat register definitions
**********************************************************************/
#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */

/**********************************************************************
* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
**********************************************************************/
#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */

/**********************************************************************
* slc_tac register definitions
**********************************************************************/
/* Clock setting for RDY write sample wait time in 2*n clocks */
#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
/* Write pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_WWIDTH(n)	(((n) & 0xF) << 24)
/* Write hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WHOLD(n)		(((n) & 0xF) << 20)
/* Write setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WSETUP(n)	(((n) & 0xF) << 16)
/* Clock setting for RDY read sample wait time in 2*n clocks */
#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
/* Read pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_RWIDTH(n)	(((n) & 0xF) << 8)
/* Read hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RHOLD(n)		(((n) & 0xF) << 4)
/* Read setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RSETUP(n)	(((n) & 0xF) << 0)

/**********************************************************************
* slc_ecc register definitions
**********************************************************************/
/* ECC line party fetch macro */
#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)

/*
 * DMA requires storage space for the DMA local buffer and the hardware ECC
 * storage area. The DMA local buffer is only used if DMA mapping fails
 * during runtime.
 */
#define LPC32XX_DMA_DATA_SIZE		4096
#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)

/* Number of bytes used for ECC stored in NAND per 256 bytes */
#define LPC32XX_SLC_DEV_ECC_BYTES	3

/*
 * If the NAND base clock frequency can't be fetched, this frequency will be
 * used instead as the base. This rate is used to setup the timing registers
 * used for NAND accesses.
 */
#define LPC32XX_DEF_BUS_RATE		133250000

/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
#define LPC32XX_DMA_TIMEOUT		100

/*
 * NAND ECC Layout for small page NAND devices
 * Note: For large and huge page devices, the default layouts are used
 */
static struct nand_ecclayout lpc32xx_nand_oob_16 = {
	.eccbytes = 6,
	.eccpos = {10, 11, 12, 13, 14, 15},
	.oobfree = {
		{ .offset = 0, .length = 4 },
		{ .offset = 6, .length = 4 },
	},
};

static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

/*
 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 * Note: Large page devices used the default layout
 */
static struct nand_bbt_descr bbt_smallpage_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = mirror_pattern
};

/*
 * NAND platform configuration structure
 */
struct lpc32xx_nand_cfg_slc {
	uint32_t wdr_clks;
	uint32_t wwidth;
	uint32_t whold;
	uint32_t wsetup;
	uint32_t rdr_clks;
	uint32_t rwidth;
	uint32_t rhold;
	uint32_t rsetup;
	bool use_bbt;
	int wp_gpio;
	struct mtd_partition *parts;
	unsigned num_parts;
};

struct lpc32xx_nand_host {
	struct nand_chip	nand_chip;
	struct lpc32xx_slc_platform_data *pdata;
	struct clk		*clk;
	struct mtd_info		mtd;
	void __iomem		*io_base;
	struct lpc32xx_nand_cfg_slc *ncfg;

	struct completion	comp;
	struct dma_chan		*dma_chan;
	uint32_t		dma_buf_len;
	struct dma_slave_config	dma_slave_config;
	struct scatterlist	sgl;

	/*
	 * DMA and CPU addresses of ECC work area and data buffer
	 */
	uint32_t		*ecc_buf;
	uint8_t			*data_buf;
	dma_addr_t		io_base_dma;
};

static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
	uint32_t clkrate, tmp;

	/* Reset SLC controller */
	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
	udelay(1000);

	/* Basic setup */
	writel(0, SLC_CFG(host->io_base));
	writel(0, SLC_IEN(host->io_base));
	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
		SLC_ICR(host->io_base));

	/* Get base clock for SLC block */
	clkrate = clk_get_rate(host->clk);
	if (clkrate == 0)
		clkrate = LPC32XX_DEF_BUS_RATE;

	/* Compute clock setup values */
	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
		SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
		SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
		SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
		SLCTAC_RDR(host->ncfg->rdr_clks) |
		SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
		SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
		SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
	writel(tmp, SLC_TAC(host->io_base));
}

/*
 * Hardware specific access to control lines
 */
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
	unsigned int ctrl)
{
	uint32_t tmp;
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;

	/* Does CE state need to be changed? */
	tmp = readl(SLC_CFG(host->io_base));
	if (ctrl & NAND_NCE)
		tmp |= SLCCFG_CE_LOW;
	else
		tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CFG(host->io_base));

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			writel(cmd, SLC_CMD(host->io_base));
		else
			writel(cmd, SLC_ADDR(host->io_base));
	}
}

/*
 * Read the Device Ready pin
 */
static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;
	int rdy = 0;

	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
		rdy = 1;

	return rdy;
}

/*
 * Enable NAND write protect
 */
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 0);
}

/*
 * Disable NAND write protect
 */
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 1);
}

/*
 * Prepares SLC for transfers with H/W ECC enabled
 */
static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
{
	/* Hardware ECC is enabled automatically in hardware as needed */
}

/*
 * Calculates the ECC for the data
 */
static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
				      const unsigned char *buf,
				      unsigned char *code)
{
	/*
	 * ECC is calculated automatically in hardware during syndrome read
	 * and write operations, so it doesn't need to be calculated here.
	 */
	return 0;
}

/*
 * Read a single byte from NAND device
 */
static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;

	return (uint8_t)readl(SLC_DATA(host->io_base));
}

/*
 * Simple device read without ECC
 */
static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;

	/* Direct device read with no ECC */
	while (len-- > 0)
		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
}

/*
 * Simple device write without ECC
 */
static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;

	/* Direct device write with no ECC */
	while (len-- > 0)
		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
}

/*
 * Read the OOB data from the device without ECC using FIFO method
 */
static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
					  struct nand_chip *chip, int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

/*
 * Write the OOB data to the device without ECC using FIFO method
 */
static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
	struct nand_chip *chip, int page)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/*
 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 */
static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
{
	int i;

	for (i = 0; i < (count * 3); i += 3) {
		uint32_t ce = ecc[i / 3];
		ce = ~(ce << 2) & 0xFFFFFF;
		spare[i + 2] = (uint8_t)(ce & 0xFF);
		ce >>= 8;
		spare[i + 1] = (uint8_t)(ce & 0xFF);
		ce >>= 8;
		spare[i] = (uint8_t)(ce & 0xFF);
	}
}

static void lpc32xx_dma_complete_func(void *completion)
{
	complete(completion);
}

static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
			    void *mem, int len, enum dma_transfer_direction dir)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;
	struct dma_async_tx_descriptor *desc;
	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	int res;

	host->dma_slave_config.direction = dir;
	host->dma_slave_config.src_addr = dma;
	host->dma_slave_config.dst_addr = dma;
	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.src_maxburst = 4;
	host->dma_slave_config.dst_maxburst = 4;
	/* DMA controller does flow control: */
	host->dma_slave_config.device_fc = false;
	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
		return -ENXIO;
	}

	sg_init_one(&host->sgl, mem, len);

	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
			 DMA_BIDIRECTIONAL);
	if (res != 1) {
		dev_err(mtd->dev.parent, "Failed to map sg list\n");
		return -ENXIO;
	}
	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
				       flags);
	if (!desc) {
		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
		goto out1;
	}

	init_completion(&host->comp);
	desc->callback = lpc32xx_dma_complete_func;
	desc->callback_param = &host->comp;

	dmaengine_submit(desc);
	dma_async_issue_pending(host->dma_chan);

	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));

	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);

	return 0;
out1:
	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);
	return -ENXIO;
}

/*
 * DMA read/write transfers with ECC support
 */
static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
			int read)
{
	struct nand_chip *chip = mtd->priv;
	struct lpc32xx_nand_host *host = chip->priv;
	int i, status = 0;
	unsigned long timeout;
	int res;
	enum dma_transfer_direction dir =
		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
	uint8_t *dma_buf;
	bool dma_mapped;

	if ((void *)buf <= high_memory) {
		dma_buf = buf;
		dma_mapped = true;
	} else {
		dma_buf = host->data_buf;
		dma_mapped = false;
		if (!read)
			memcpy(host->data_buf, buf, mtd->writesize);
	}

	if (read) {
		writel(readl(SLC_CFG(host->io_base)) |
		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
	} else {
		writel((readl(SLC_CFG(host->io_base)) |
			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
		       ~SLCCFG_DMA_DIR,
			SLC_CFG(host->io_base));
	}

	/* Clear initial ECC */
	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));

	/* Transfer size is data area only */
	writel(mtd->writesize, SLC_TC(host->io_base));

	/* Start transfer in the NAND controller */
	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
	       SLC_CTRL(host->io_base));

	for (i = 0; i < chip->ecc.steps; i++) {
		/* Data */
		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
				       dma_buf + i * chip->ecc.size,
				       mtd->writesize / chip->ecc.steps, dir);
		if (res)
			return res;

		/* Always _read_ ECC */
		if (i == chip->ecc.steps - 1)
			break;
		if (!read) /* ECC availability delayed on write */
			udelay(10);
		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
		if (res)
			return res;
	}

	/*
	 * According to NXP, the DMA can be finished here, but the NAND
	 * controller may still have buffered data. After porting to using the
	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
	 * appears to be always true, according to tests. Keeping the check for
	 * safety reasons for now.
	 */
	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
		       time_before(jiffies, timeout))
			cpu_relax();
		if (!time_before(jiffies, timeout)) {
			dev_err(mtd->dev.parent, "FIFO held data too long\n");
			status = -EIO;
		}
	}

	/* Read last calculated ECC value */
	if (!read)
		udelay(10);
	host->ecc_buf[chip->ecc.steps - 1] =
		readl(SLC_ECC(host->io_base));

	/* Flush DMA */
	dmaengine_terminate_all(host->dma_chan);

	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
	    readl(SLC_TC(host->io_base))) {
		/* Something is left in the FIFO, something is wrong */
		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
		status = -EIO;
	}

	/* Stop DMA & HW ECC */
	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
	       SLC_CTRL(host->io_base));
	writel(readl(SLC_CFG(host->io_base)) &
	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));

	if (!dma_mapped && read)
		memcpy(buf, host->data_buf, mtd->writesize);

	return status;
}

/*
 * Read the data and OOB data from the device, use ECC correction with the
 * data, disable ECC for the OOB data
 */
static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
					   struct nand_chip *chip, uint8_t *buf,
					   int oob_required, int page)
{
	struct lpc32xx_nand_host *host = chip->priv;
	int stat, i, status;
	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];

	/* Issue read command */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	/* Read data and oob, calculate ECC */
	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);

	/* Get OOB data */
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/* Convert to stored ECC format */
	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);

	/* Pointer to ECC data retrieved from NAND spare area */
	oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];

	for (i = 0; i < chip->ecc.steps; i++) {
		stat = chip->ecc.correct(mtd, buf, oobecc,
					 &tmpecc[i * chip->ecc.bytes]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;

		buf += chip->ecc.size;
		oobecc += chip->ecc.bytes;
	}

	return status;
}

/*
 * Read the data and OOB data from the device, no ECC correction with the
 * data or OOB data
 */
static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	/* Issue read command */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	/* Raw reads can just use the FIFO interface */
	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

/*
 * Write the data and OOB data to the device, use ECC with the data,
 * disable ECC for the OOB data
 */
static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
					    struct nand_chip *chip,
					    const uint8_t *buf, int oob_required)
{
	struct lpc32xx_nand_host *host = chip->priv;
	uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
	int error;

	/* Write data, calculate ECC on outbound data */
	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
	if (error)
		return error;

	/*
	 * The calculated ECC needs some manual work done to it before
	 * committing it to NAND. Process the calculated ECC and place
	 * the resultant values directly into the OOB buffer. */
	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);

	/* Write ECC data to device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/*
 * Write the data and OOB data to the device, no ECC correction with the
 * data or OOB data
 */
static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
						int oob_required)
{
	/* Raw writes can just use the FIFO interface */
	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
{
	struct mtd_info *mtd = &host->mtd;
	dma_cap_mask_t mask;

	if (!host->pdata || !host->pdata->dma_filter) {
		dev_err(mtd->dev.parent, "no DMA platform data\n");
		return -ENOENT;
	}

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
					     "nand-slc");
	if (!host->dma_chan) {
		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
		return -EBUSY;
	}

	return 0;
}

static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
{
	struct lpc32xx_nand_cfg_slc *ncfg;
	struct device_node *np = dev->of_node;

	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
	if (!ncfg) {
		dev_err(dev, "could not allocate memory for NAND config\n");
		return NULL;
	}

	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);

	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
	    !ncfg->rhold || !ncfg->rsetup) {
		dev_err(dev, "chip parameters not specified correctly\n");
		return NULL;
	}

	ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);

	return ncfg;
}

/*
 * Probe for NAND controller
 */
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct resource *rc;
	struct mtd_part_parser_data ppdata = {};
	int res;

	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (rc == NULL) {
		dev_err(&pdev->dev, "No memory resource found for device\n");
		return -EBUSY;
	}

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
	if (!host) {
		dev_err(&pdev->dev, "failed to allocate device structure\n");
		return -ENOMEM;
	}
	host->io_base_dma = rc->start;

	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
	if (IS_ERR(host->io_base))
		return PTR_ERR(host->io_base);

	if (pdev->dev.of_node)
		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
	if (!host->ncfg) {
		dev_err(&pdev->dev,
			"Missing or bad NAND config from device tree\n");
		return -ENOENT;
	}
	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (gpio_is_valid(host->ncfg->wp_gpio) &&
			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
		dev_err(&pdev->dev, "GPIO not available\n");
		return -EBUSY;
	}
	lpc32xx_wp_disable(host);

	host->pdata = pdev->dev.platform_data;

	mtd = &host->mtd;
	chip = &host->nand_chip;
	chip->priv = host;
	mtd->priv = chip;
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = &pdev->dev;

	/* Get NAND clock */
	host->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "Clock failure\n");
		res = -ENOENT;
		goto err_exit1;
	}
	clk_enable(host->clk);

	/* Set NAND IO addresses and command/ready functions */
	chip->IO_ADDR_R = SLC_DATA(host->io_base);
	chip->IO_ADDR_W = SLC_DATA(host->io_base);
	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
	chip->dev_ready = lpc32xx_nand_device_ready;
	chip->chip_delay = 20; /* 20us command delay time */

	/* Init NAND controller */
	lpc32xx_nand_setup(host);

	platform_set_drvdata(pdev, host);

	/* NAND callbacks for LPC32xx SLC hardware */
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
	chip->read_byte = lpc32xx_nand_read_byte;
	chip->read_buf = lpc32xx_nand_read_buf;
	chip->write_buf = lpc32xx_nand_write_buf;
	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
	chip->ecc.correct = nand_correct_data;
	chip->ecc.strength = 1;
	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;

	/* bitflip_threshold's default is defined as ecc_strength anyway.
	 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
	 * being 0, it causes bad block table scanning errors in
	 * nand_scan_tail(), so preparing it here already. */
	mtd->bitflip_threshold = chip->ecc.strength;

	/*
	 * Allocate a large enough buffer for a single huge page plus
	 * extra space for the spare area and ECC storage area
	 */
	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
				      GFP_KERNEL);
	if (host->data_buf == NULL) {
		dev_err(&pdev->dev, "Error allocating memory\n");
		res = -ENOMEM;
		goto err_exit2;
	}

	res = lpc32xx_nand_dma_setup(host);
	if (res) {
		res = -EIO;
		goto err_exit2;
	}

	/* Find NAND device */
	if (nand_scan_ident(mtd, 1, NULL)) {
		res = -ENXIO;
		goto err_exit3;
	}

	/* OOB and ECC CPU and DMA work areas */
	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);

	/*
	 * Small page FLASH has a unique OOB layout, but large and huge
	 * page FLASH use the standard layout. Small page FLASH uses a
	 * custom BBT marker layout.
	 */
	if (mtd->writesize <= 512)
		chip->ecc.layout = &lpc32xx_nand_oob_16;

	/* These sizes remain the same regardless of page size */
	chip->ecc.size = 256;
	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
	chip->ecc.prepad = chip->ecc.postpad = 0;

	/* Avoid extra scan if using BBT, setup BBT support */
	if (host->ncfg->use_bbt) {
		chip->options |= NAND_SKIP_BBTSCAN;
		chip->bbt_options |= NAND_BBT_USE_FLASH;

		/*
		 * Use a custom BBT marker setup for small page FLASH that
		 * won't interfere with the ECC layout. Large and huge page
		 * FLASH use the standard layout.
		 */
		if (mtd->writesize <= 512) {
			chip->bbt_td = &bbt_smallpage_main_descr;
			chip->bbt_md = &bbt_smallpage_mirror_descr;
		}
	}

	/*
	 * Fills out all the uninitialized function pointers with the defaults
	 */
	if (nand_scan_tail(mtd)) {
		res = -ENXIO;
		goto err_exit3;
	}

	/* Standard layout in FLASH for bad block tables */
	if (host->ncfg->use_bbt) {
		if (nand_default_bbt(mtd) < 0)
			dev_err(&pdev->dev,
			       "Error initializing default bad block tables\n");
	}

	mtd->name = "nxp_lpc3220_slc";
	ppdata.of_node = pdev->dev.of_node;
	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
					host->ncfg->num_parts);
	if (!res)
		return res;

	nand_release(mtd);

err_exit3:
	dma_release_channel(host->dma_chan);
err_exit2:
	clk_disable(host->clk);
	clk_put(host->clk);
	platform_set_drvdata(pdev, NULL);
err_exit1:
	lpc32xx_wp_enable(host);
	gpio_free(host->ncfg->wp_gpio);

	return res;
}

/*
 * Remove NAND device.
 */
static int lpc32xx_nand_remove(struct platform_device *pdev)
{
	uint32_t tmp;
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
	struct mtd_info *mtd = &host->mtd;

	nand_release(mtd);
	dma_release_channel(host->dma_chan);

	/* Force CE high */
	tmp = readl(SLC_CTRL(host->io_base));
	tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CTRL(host->io_base));

	clk_disable(host->clk);
	clk_put(host->clk);
	platform_set_drvdata(pdev, NULL);
	lpc32xx_wp_enable(host);
	gpio_free(host->ncfg->wp_gpio);

	return 0;
}

#ifdef CONFIG_PM
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

	/* Re-enable NAND clock */
	clk_enable(host->clk);

	/* Fresh init of NAND controller */
	lpc32xx_nand_setup(host);

	/* Disable write protect */
	lpc32xx_wp_disable(host);

	return 0;
}

static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
	uint32_t tmp;
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

	/* Force CE high */
	tmp = readl(SLC_CTRL(host->io_base));
	tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CTRL(host->io_base));

	/* Enable write protect for safety */
	lpc32xx_wp_enable(host);

	/* Disable clock */
	clk_disable(host->clk);

	return 0;
}

#else
#define lpc32xx_nand_resume NULL
#define lpc32xx_nand_suspend NULL
#endif

static const struct of_device_id lpc32xx_nand_match[] = {
	{ .compatible = "nxp,lpc3220-slc" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);

static struct platform_driver lpc32xx_nand_driver = {
	.probe		= lpc32xx_nand_probe,
	.remove		= lpc32xx_nand_remove,
	.resume		= lpc32xx_nand_resume,
	.suspend	= lpc32xx_nand_suspend,
	.driver		= {
		.name	= LPC32XX_MODNAME,
		.owner	= THIS_MODULE,
		.of_match_table = of_match_ptr(lpc32xx_nand_match),
	},
};

module_platform_driver(lpc32xx_nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");