diff options
author | Gianluca Palli <gpalli@deis.unibo.it> | 2008-11-19 14:10:49 -0800 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@suse.de> | 2009-01-06 13:52:26 -0800 |
commit | 11e865c1dad436d2ce65c7d366030d1b62967a83 (patch) | |
tree | 665351bc4cf80108c2a2b9390937e9b3bdf61019 /drivers | |
parent | d2f63f9c67ef1a627e7b0ccd5e236272db118ceb (diff) | |
download | kernel_samsung_aries-11e865c1dad436d2ce65c7d366030d1b62967a83.zip kernel_samsung_aries-11e865c1dad436d2ce65c7d366030d1b62967a83.tar.gz kernel_samsung_aries-11e865c1dad436d2ce65c7d366030d1b62967a83.tar.bz2 |
Staging: comedi: add s626 driver
This adds the s626 comedi driver to the build.
From: Gianluca Palli <gpalli@deis.unibo.it>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/staging/comedi/drivers/Makefile | 1 | ||||
-rw-r--r-- | drivers/staging/comedi/drivers/s626.c | 3254 | ||||
-rw-r--r-- | drivers/staging/comedi/drivers/s626.h | 802 |
3 files changed, 4057 insertions, 0 deletions
diff --git a/drivers/staging/comedi/drivers/Makefile b/drivers/staging/comedi/drivers/Makefile index bcc9ce8..cec0625 100644 --- a/drivers/staging/comedi/drivers/Makefile +++ b/drivers/staging/comedi/drivers/Makefile @@ -11,6 +11,7 @@ obj-$(CONFIG_COMEDI) += comedi_parport.o obj-$(CONFIG_COMEDI_PCI_DRIVERS) += mite.o obj-$(CONFIG_COMEDI_PCI_DRIVERS) += icp_multi.o obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o +obj-$(CONFIG_COMEDI_PCI_DRIVERS) += s626.o # Comedi USB drivers obj-$(CONFIG_COMEDI_USB_DRIVERS) += usbdux.o diff --git a/drivers/staging/comedi/drivers/s626.c b/drivers/staging/comedi/drivers/s626.c new file mode 100644 index 0000000..469ee8c --- /dev/null +++ b/drivers/staging/comedi/drivers/s626.c @@ -0,0 +1,3254 @@ +/* + comedi/drivers/s626.c + Sensoray s626 Comedi driver + + COMEDI - Linux Control and Measurement Device Interface + Copyright (C) 2000 David A. Schleef <ds@schleef.org> + + Based on Sensoray Model 626 Linux driver Version 0.2 + Copyright (C) 2002-2004 Sensoray Co., Inc. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + +*/ + +/* +Driver: s626 +Description: Sensoray 626 driver +Devices: [Sensoray] 626 (s626) +Authors: Gianluca Palli <gpalli@deis.unibo.it>, +Updated: Fri, 15 Feb 2008 10:28:42 +0000 +Status: experimental + +Configuration options: + [0] - PCI bus of device (optional) + [1] - PCI slot of device (optional) + If bus/slot is not specified, the first supported + PCI device found will be used. + +INSN_CONFIG instructions: + analog input: + none + + analog output: + none + + digital channel: + s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels + supported configuration options: + INSN_CONFIG_DIO_QUERY + COMEDI_INPUT + COMEDI_OUTPUT + + encoder: + Every channel must be configured before reading. + + Example code + + insn.insn=INSN_CONFIG; //configuration instruction + insn.n=1; //number of operation (must be 1) + insn.data=&initialvalue; //initial value loaded into encoder + //during configuration + insn.subdev=5; //encoder subdevice + insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel + //to configure + + comedi_do_insn(cf,&insn); //executing configuration +*/ + +#include <linux/kernel.h> +#include <linux/types.h> + +#include "../comedidev.h" + +#include "comedi_pci.h" + +#include "comedi_fc.h" +#include "s626.h" + +MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>"); +MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); +MODULE_LICENSE("GPL"); + +typedef struct s626_board_struct { + const char *name; + int ai_chans; + int ai_bits; + int ao_chans; + int ao_bits; + int dio_chans; + int dio_banks; + int enc_chans; +} s626_board; + +static const s626_board s626_boards[] = { + { + name: "s626", + ai_chans:S626_ADC_CHANNELS, + ai_bits: 14, + ao_chans:S626_DAC_CHANNELS, + ao_bits: 13, + dio_chans:S626_DIO_CHANNELS, + dio_banks:S626_DIO_BANKS, + enc_chans:S626_ENCODER_CHANNELS, + } +}; + +#define thisboard ((const s626_board *)dev->board_ptr) +#define PCI_VENDOR_ID_S626 0x1131 +#define PCI_DEVICE_ID_S626 0x7146 + +static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = { + {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0, + 0}, + {0} +}; + +MODULE_DEVICE_TABLE(pci, s626_pci_table); + +static int s626_attach(comedi_device * dev, comedi_devconfig * it); +static int s626_detach(comedi_device * dev); + +static comedi_driver driver_s626 = { + driver_name:"s626", + module:THIS_MODULE, + attach:s626_attach, + detach:s626_detach, +}; + +typedef struct { + struct pci_dev *pdev; + void *base_addr; + int got_regions; + short allocatedBuf; + uint8_t ai_cmd_running; // ai_cmd is running + uint8_t ai_continous; // continous aquisition + int ai_sample_count; // number of samples to aquire + unsigned int ai_sample_timer; // time between samples in + // units of the timer + int ai_convert_count; // conversion counter + unsigned int ai_convert_timer; // time between conversion in + // units of the timer + uint16_t CounterIntEnabs; //Counter interrupt enable + //mask for MISC2 register. + uint8_t AdcItems; //Number of items in ADC poll + //list. + DMABUF RPSBuf; //DMA buffer used to hold ADC + //(RPS1) program. + DMABUF ANABuf; //DMA buffer used to receive + //ADC data and hold DAC data. + uint32_t *pDacWBuf; //Pointer to logical adrs of + //DMA buffer used to hold DAC + //data. + uint16_t Dacpol; //Image of DAC polarity + //register. + uint8_t TrimSetpoint[12]; //Images of TrimDAC setpoints. + //registers. + uint16_t ChargeEnabled; //Image of MISC2 Battery + //Charge Enabled (0 or + //WRMISC2_CHARGE_ENABLE). + uint16_t WDInterval; //Image of MISC2 watchdog + //interval control bits. + uint32_t I2CAdrs; //I2C device address for + //onboard EEPROM (board rev + //dependent). + // short I2Cards; + lsampl_t ao_readback[S626_DAC_CHANNELS]; +} s626_private; + +typedef struct { + uint16_t RDDIn; + uint16_t WRDOut; + uint16_t RDEdgSel; + uint16_t WREdgSel; + uint16_t RDCapSel; + uint16_t WRCapSel; + uint16_t RDCapFlg; + uint16_t RDIntSel; + uint16_t WRIntSel; +} dio_private; + +static dio_private dio_private_A = { + RDDIn:LP_RDDINA, + WRDOut:LP_WRDOUTA, + RDEdgSel:LP_RDEDGSELA, + WREdgSel:LP_WREDGSELA, + RDCapSel:LP_RDCAPSELA, + WRCapSel:LP_WRCAPSELA, + RDCapFlg:LP_RDCAPFLGA, + RDIntSel:LP_RDINTSELA, + WRIntSel:LP_WRINTSELA, +}; + +static dio_private dio_private_B = { + RDDIn:LP_RDDINB, + WRDOut:LP_WRDOUTB, + RDEdgSel:LP_RDEDGSELB, + WREdgSel:LP_WREDGSELB, + RDCapSel:LP_RDCAPSELB, + WRCapSel:LP_WRCAPSELB, + RDCapFlg:LP_RDCAPFLGB, + RDIntSel:LP_RDINTSELB, + WRIntSel:LP_WRINTSELB, +}; + +static dio_private dio_private_C = { + RDDIn:LP_RDDINC, + WRDOut:LP_WRDOUTC, + RDEdgSel:LP_RDEDGSELC, + WREdgSel:LP_WREDGSELC, + RDCapSel:LP_RDCAPSELC, + WRCapSel:LP_WRCAPSELC, + RDCapFlg:LP_RDCAPFLGC, + RDIntSel:LP_RDINTSELC, + WRIntSel:LP_WRINTSELC, +}; + +/* to group dio devices (48 bits mask and data are not allowed ???) +static dio_private *dio_private_word[]={ + &dio_private_A, + &dio_private_B, + &dio_private_C, +}; +*/ + +#define devpriv ((s626_private *)dev->private) +#define diopriv ((dio_private *)s->private) + +COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table); + +//ioctl routines +static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */ +static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s); +static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s, + comedi_cmd * cmd); +static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s); +static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_dio_set_irq(comedi_device * dev, unsigned int chan); +static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop, + unsigned int mask); +static int s626_dio_clear_irq(comedi_device * dev); +static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data); +static int s626_ns_to_timer(int *nanosec, int round_mode); +static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd); +static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s, + unsigned int trignum); +static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG); +static lsampl_t s626_ai_reg_to_uint(int data); +/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */ + +//end ioctl routines + +//internal routines +static void s626_dio_init(comedi_device * dev); +static void ResetADC(comedi_device * dev, uint8_t * ppl); +static void LoadTrimDACs(comedi_device * dev); +static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan, + uint8_t DacData); +static uint8_t I2Cread(comedi_device * dev, uint8_t addr); +static uint32_t I2Chandshake(comedi_device * dev, uint32_t val); +static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata); +static void SendDAC(comedi_device * dev, uint32_t val); +static void WriteMISC2(comedi_device * dev, uint16_t NewImage); +static void DEBItransfer(comedi_device * dev); +static uint16_t DEBIread(comedi_device * dev, uint16_t addr); +static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata); +static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask, + uint16_t wdata); +static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize); + +// COUNTER OBJECT ------------------------------------------------ +typedef struct enc_private_struct { + // Pointers to functions that differ for A and B counters: + uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); //Return clock enable. + uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); //Return interrupt source. + uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); //Return preload trigger source. + uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); //Return standardized operating mode. + void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); //Generate soft index strobe. + void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); //Program clock enable. + void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); //Program interrupt source. + void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); //Program preload trigger source. + void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); //Program standardized operating mode. + void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); //Reset event capture flags. + + uint16_t MyCRA; // Address of CRA register. + uint16_t MyCRB; // Address of CRB register. + uint16_t MyLatchLsw; // Address of Latch least-significant-word + // register. + uint16_t MyEventBits[4]; // Bit translations for IntSrc -->RDMISC2. +} enc_private; //counter object + +#define encpriv ((enc_private *)(dev->subdevices+5)->private) + +//counters routines +static void s626_timer_load(comedi_device * dev, enc_private * k, int tick); +static uint32_t ReadLatch(comedi_device * dev, enc_private * k); +static void ResetCapFlags_A(comedi_device * dev, enc_private * k); +static void ResetCapFlags_B(comedi_device * dev, enc_private * k); +static uint16_t GetMode_A(comedi_device * dev, enc_private * k); +static uint16_t GetMode_B(comedi_device * dev, enc_private * k); +static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup, + uint16_t DisableIntSrc); +static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup, + uint16_t DisableIntSrc); +static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab); +static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab); +static uint16_t GetEnable_A(comedi_device * dev, enc_private * k); +static uint16_t GetEnable_B(comedi_device * dev, enc_private * k); +static void SetLatchSource(comedi_device * dev, enc_private * k, + uint16_t value); +/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */ +static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig); +static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig); +static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k); +static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k); +static void SetIntSrc_B(comedi_device * dev, enc_private * k, + uint16_t IntSource); +static void SetIntSrc_A(comedi_device * dev, enc_private * k, + uint16_t IntSource); +static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k); +static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k); +/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */ +/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */ +/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */ +/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */ +/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */ +/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ); */ +/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */ +/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k ); */ +static void PulseIndex_A(comedi_device * dev, enc_private * k); +static void PulseIndex_B(comedi_device * dev, enc_private * k); +static void Preload(comedi_device * dev, enc_private * k, uint32_t value); +static void CountersInit(comedi_device * dev); +//end internal routines + +///////////////////////////////////////////////////////////////////////// +// Counter objects constructor. + +// Counter overflow/index event flag masks for RDMISC2. +#define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) ) +#define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) ) +#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) } + +// Translation table to map IntSrc into equivalent RDMISC2 event flag +// bits. +//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; + +/* enc_private; */ +static enc_private enc_private_data[] = { + { + GetEnable:GetEnable_A, + GetIntSrc:GetIntSrc_A, + GetLoadTrig:GetLoadTrig_A, + GetMode: GetMode_A, + PulseIndex:PulseIndex_A, + SetEnable:SetEnable_A, + SetIntSrc:SetIntSrc_A, + SetLoadTrig:SetLoadTrig_A, + SetMode: SetMode_A, + ResetCapFlags:ResetCapFlags_A, + MyCRA: LP_CR0A, + MyCRB: LP_CR0B, + MyLatchLsw:LP_CNTR0ALSW, + MyEventBits:EVBITS(0), + }, + { + GetEnable:GetEnable_A, + GetIntSrc:GetIntSrc_A, + GetLoadTrig:GetLoadTrig_A, + GetMode: GetMode_A, + PulseIndex:PulseIndex_A, + SetEnable:SetEnable_A, + SetIntSrc:SetIntSrc_A, + SetLoadTrig:SetLoadTrig_A, + SetMode: SetMode_A, + ResetCapFlags:ResetCapFlags_A, + MyCRA: LP_CR1A, + MyCRB: LP_CR1B, + MyLatchLsw:LP_CNTR1ALSW, + MyEventBits:EVBITS(1), + }, + { + GetEnable:GetEnable_A, + GetIntSrc:GetIntSrc_A, + GetLoadTrig:GetLoadTrig_A, + GetMode: GetMode_A, + PulseIndex:PulseIndex_A, + SetEnable:SetEnable_A, + SetIntSrc:SetIntSrc_A, + SetLoadTrig:SetLoadTrig_A, + SetMode: SetMode_A, + ResetCapFlags:ResetCapFlags_A, + MyCRA: LP_CR2A, + MyCRB: LP_CR2B, + MyLatchLsw:LP_CNTR2ALSW, + MyEventBits:EVBITS(2), + }, + { + GetEnable:GetEnable_B, + GetIntSrc:GetIntSrc_B, + GetLoadTrig:GetLoadTrig_B, + GetMode: GetMode_B, + PulseIndex:PulseIndex_B, + SetEnable:SetEnable_B, + SetIntSrc:SetIntSrc_B, + SetLoadTrig:SetLoadTrig_B, + SetMode: SetMode_B, + ResetCapFlags:ResetCapFlags_B, + MyCRA: LP_CR0A, + MyCRB: LP_CR0B, + MyLatchLsw:LP_CNTR0BLSW, + MyEventBits:EVBITS(3), + }, + { + GetEnable:GetEnable_B, + GetIntSrc:GetIntSrc_B, + GetLoadTrig:GetLoadTrig_B, + GetMode: GetMode_B, + PulseIndex:PulseIndex_B, + SetEnable:SetEnable_B, + SetIntSrc:SetIntSrc_B, + SetLoadTrig:SetLoadTrig_B, + SetMode: SetMode_B, + ResetCapFlags:ResetCapFlags_B, + MyCRA: LP_CR1A, + MyCRB: LP_CR1B, + MyLatchLsw:LP_CNTR1BLSW, + MyEventBits:EVBITS(4), + }, + { + GetEnable:GetEnable_B, + GetIntSrc:GetIntSrc_B, + GetLoadTrig:GetLoadTrig_B, + GetMode: GetMode_B, + PulseIndex:PulseIndex_B, + SetEnable:SetEnable_B, + SetIntSrc:SetIntSrc_B, + SetLoadTrig:SetLoadTrig_B, + SetMode: SetMode_B, + ResetCapFlags:ResetCapFlags_B, + MyCRA: LP_CR2A, + MyCRB: LP_CR2B, + MyLatchLsw:LP_CNTR2BLSW, + MyEventBits:EVBITS(5), + }, +}; + +// enab/disable a function or test status bit(s) that are accessed +// through Main Control Registers 1 or 2. +#define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) ) + +#define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) ) + +#define MC_TEST( REGADRS, CTRLWORD ) ( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 ) + +/* #define WR7146(REGARDS,CTRLWORD) + writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */ +#define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS)) + +/* #define RR7146(REGARDS) + readl((uint32_t)(devpriv->base_addr+(REGARDS))) */ +#define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS)) + +#define BUGFIX_STREG(REGADRS) ( REGADRS - 4 ) + +// Write a time slot control record to TSL2. +#define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 )) +#define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL)) + +// Code macros used for constructing I2C command bytes. +#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) ) +#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) ) +#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) ) + +static const comedi_lrange s626_range_table = { 2, { + RANGE(-5, 5), + RANGE(-10, 10), + } +}; + +static int s626_attach(comedi_device * dev, comedi_devconfig * it) +{ +/* uint8_t PollList; */ +/* uint16_t AdcData; */ +/* uint16_t StartVal; */ +/* uint16_t index; */ +/* unsigned int data[16]; */ + int result; + int i; + int ret; + resource_size_t resourceStart; + dma_addr_t appdma; + comedi_subdevice *s; + struct pci_dev *pdev; + + if (alloc_private(dev, sizeof(s626_private)) < 0) + return -ENOMEM; + + for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, + NULL); pdev != NULL; + pdev = pci_get_device(PCI_VENDOR_ID_S626, + PCI_DEVICE_ID_S626, pdev)) { + if (it->options[0] || it->options[1]) { + if (pdev->bus->number == it->options[0] && + PCI_SLOT(pdev->devfn) == it->options[1]) { + /* matches requested bus/slot */ + break; + } + } else { + /* no bus/slot specified */ + break; + } + } + devpriv->pdev = pdev; + + if (pdev == NULL) { + printk("s626_attach: Board not present!!!\n"); + return -ENODEV; + } + + if ((result = comedi_pci_enable(pdev, "s626")) < 0) { + printk("s626_attach: comedi_pci_enable fails\n"); + return -ENODEV; + } + devpriv->got_regions = 1; + + resourceStart = pci_resource_start(devpriv->pdev, 0); + + devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE); + if (devpriv->base_addr == NULL) { + printk("s626_attach: IOREMAP failed\n"); + return -ENODEV; + } + + if (devpriv->base_addr) { + //disable master interrupt + writel(0, devpriv->base_addr + P_IER); + + //soft reset + writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1); + + //DMA FIXME DMA// + DEBUG("s626_attach: DMA ALLOCATION\n"); + + //adc buffer allocation + devpriv->allocatedBuf = 0; + + if ((devpriv->ANABuf.LogicalBase = + pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, + &appdma)) == NULL) { + printk("s626_attach: DMA Memory mapping error\n"); + return -ENOMEM; + } + + devpriv->ANABuf.PhysicalBase = appdma; + + DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase); + + devpriv->allocatedBuf++; + + if ((devpriv->RPSBuf.LogicalBase = + pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, + &appdma)) == NULL) { + printk("s626_attach: DMA Memory mapping error\n"); + return -ENOMEM; + } + + devpriv->RPSBuf.PhysicalBase = appdma; + + DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase); + + devpriv->allocatedBuf++; + + } + + dev->board_ptr = s626_boards; + dev->board_name = thisboard->name; + + if (alloc_subdevices(dev, 6) < 0) + return -ENOMEM; + + dev->iobase = (unsigned long)devpriv->base_addr; + dev->irq = devpriv->pdev->irq; + + //set up interrupt handler + if (dev->irq == 0) { + printk(" unknown irq (bad)\n"); + } else { + if ((ret = comedi_request_irq(dev->irq, s626_irq_handler, + IRQF_SHARED, "s626", dev)) < 0) { + printk(" irq not available\n"); + dev->irq = 0; + } + } + + DEBUG("s626_attach: -- it opts %d,%d -- \n", + it->options[0], it->options[1]); + + s = dev->subdevices + 0; + /* analog input subdevice */ + dev->read_subdev = s; + /* we support single-ended (ground) and differential */ + s->type = COMEDI_SUBD_AI; + s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ; + s->n_chan = thisboard->ai_chans; + s->maxdata = (0xffff >> 2); + s->range_table = &s626_range_table; + s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist + length that the board can + handle */ + s->insn_config = s626_ai_insn_config; + s->insn_read = s626_ai_insn_read; + s->do_cmd = s626_ai_cmd; + s->do_cmdtest = s626_ai_cmdtest; + s->cancel = s626_ai_cancel; + + s = dev->subdevices + 1; + /* analog output subdevice */ + s->type = COMEDI_SUBD_AO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = thisboard->ao_chans; + s->maxdata = (0x3fff); + s->range_table = &range_bipolar10; + s->insn_write = s626_ao_winsn; + s->insn_read = s626_ao_rinsn; + + s = dev->subdevices + 2; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = S626_DIO_CHANNELS; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = &dio_private_A; + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = dev->subdevices + 3; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = 16; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = &dio_private_B; + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = dev->subdevices + 4; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = 16; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = &dio_private_C; + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = dev->subdevices + 5; + /* encoder (counter) subdevice */ + s->type = COMEDI_SUBD_COUNTER; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; + s->n_chan = thisboard->enc_chans; + s->private = enc_private_data; + s->insn_config = s626_enc_insn_config; + s->insn_read = s626_enc_insn_read; + s->insn_write = s626_enc_insn_write; + s->maxdata = 0xffffff; + s->range_table = &range_unknown; + + //stop ai_command + devpriv->ai_cmd_running = 0; + + if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) { + dma_addr_t pPhysBuf; + uint16_t chan; + + // enab DEBI and audio pins, enable I2C interface. + MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C); + // Configure DEBI operating mode. + WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 // Local bus is 16 + // bits wide. + | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) // Declare DEBI + // transfer timeout + // interval. + | DEBI_SWAP // Set up byte lane + // steering. + | DEBI_CFG_INTEL); // Intel-compatible + // local bus (DEBI + // never times out). + DEBUG("s626_attach: %d debi init -- %d\n", + DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) | + DEBI_SWAP | DEBI_CFG_INTEL, + DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ | + DEBI_CFG_16Q); + + //DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ + //| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end + + // Paging is disabled. + WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); // Disable MMU paging. + + // Init GPIO so that ADC Start* is negated. + WR7146(P_GPIO, GPIO_BASE | GPIO1_HI); + + //IsBoardRevA is a boolean that indicates whether the board is + //RevA. + + // VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC + // EEPROM ADDRESS SELECTION. Initialize the I2C interface, which + // is used to access the onboard serial EEPROM. The EEPROM's I2C + // DeviceAddress is hardwired to a value that is dependent on the + // 626 board revision. On all board revisions, the EEPROM stores + // TrimDAC calibration constants for analog I/O. On RevB and + // higher boards, the DeviceAddress is hardwired to 0 to enable + // the EEPROM to also store the PCI SubVendorID and SubDeviceID; + // this is the address at which the SAA7146 expects a + // configuration EEPROM to reside. On RevA boards, the EEPROM + // device address, which is hardwired to 4, prevents the SAA7146 + // from retrieving PCI sub-IDs, so the SAA7146 uses its built-in + // default values, instead. + + // devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM + // DeviceType (0xA0) + // and DeviceAddress<<1. + + devpriv->I2CAdrs = 0xA0; // I2C device address for onboard + // eeprom(revb) + + // Issue an I2C ABORT command to halt any I2C operation in + //progress and reset BUSY flag. + WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); // Write I2C control: + // abort any I2C + // activity. + MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command + // upload + while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; // and wait for + // upload to + // complete. + + // Per SAA7146 data sheet, write to STATUS reg twice to reset all + // I2C error flags. + for (i = 0; i < 2; i++) { + WR7146(P_I2CSTAT, I2C_CLKSEL); // Write I2C control: reset + // error flags. + MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command upload + while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; // and wait for + // upload to + // complete. + } + + // Init audio interface functional attributes: set DAC/ADC serial + // clock rates, invert DAC serial clock so that DAC data setup + // times are satisfied, enable DAC serial clock out. + WR7146(P_ACON2, ACON2_INIT); + + // Set up TSL1 slot list, which is used to control the + // accumulation of ADC data: RSD1 = shift data in on SD1. SIB_A1 + // = store data uint8_t at next available location in FB BUFFER1 + // register. + WR7146(P_TSL1, RSD1 | SIB_A1); // Fetch ADC high data + // uint8_t. + WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); // Fetch ADC low data + // uint8_t; end of + // TSL1. + + // enab TSL1 slot list so that it executes all the time. + WR7146(P_ACON1, ACON1_ADCSTART); + + // Initialize RPS registers used for ADC. + + //Physical start of RPS program. + WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase); + + WR7146(P_RPSPAGE1, 0); // RPS program performs no + // explicit mem writes. + WR7146(P_RPS1_TOUT, 0); // Disable RPS timeouts. + + // SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface to a + // known state by invoking ADCs until FB BUFFER 1 register shows + // that it is correctly receiving ADC data. This is necessary + // because the SAA7146 ADC interface does not start up in a + // defined state after a PCI reset. + +/* PollList = EOPL; // Create a simple polling */ +/* // list for analog input */ +/* // channel 0. */ +/* ResetADC( dev, &PollList ); */ + +/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */ +/* //Get initial ADC */ +/* //value. */ + +/* StartVal = data[0]; */ + +/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */ +/* // Invoke ADCs until the new ADC value differs from the initial */ +/* // value or a timeout occurs. The timeout protects against the */ +/* // possibility that the driver is restarting and the ADC data is a */ +/* // fixed value resulting from the applied ADC analog input being */ +/* // unusually quiet or at the rail. */ + +/* for ( index = 0; index < 500; index++ ) */ +/* { */ +/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */ +/* AdcData = data[0]; //ReadADC( &AdcData ); */ +/* if ( AdcData != StartVal ) */ +/* break; */ +/* } */ + + // end initADC + + // init the DAC interface + + // Init Audio2's output DMAC attributes: burst length = 1 DWORD, + // threshold = 1 DWORD. + WR7146(P_PCI_BT_A, 0); + + // Init Audio2's output DMA physical addresses. The protection + // address is set to 1 DWORD past the base address so that a + // single DWORD will be transferred each time a DMA transfer is + // enabled. + + pPhysBuf = + devpriv->ANABuf.PhysicalBase + + (DAC_WDMABUF_OS * sizeof(uint32_t)); + + WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); // Buffer base adrs. + WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); // Protection address. + + // Cache Audio2's output DMA buffer logical address. This is + // where DAC data is buffered for A2 output DMA transfers. + devpriv->pDacWBuf = + (uint32_t *) devpriv->ANABuf.LogicalBase + + DAC_WDMABUF_OS; + + // Audio2's output channels does not use paging. The protection + // violation handling bit is set so that the DMAC will + // automatically halt and its PCI address pointer will be reset + // when the protection address is reached. + WR7146(P_PAGEA2_OUT, 8); + + // Initialize time slot list 2 (TSL2), which is used to control + // the clock generation for and serialization of data to be sent + // to the DAC devices. Slot 0 is a NOP that is used to trap TSL + // execution; this permits other slots to be safely modified + // without first turning off the TSL sequencer (which is + // apparently impossible to do). Also, SD3 (which is driven by a + // pull-up resistor) is shifted in and stored to the MSB of + // FB_BUFFER2 to be used as evidence that the slot sequence has + // not yet finished executing. + SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); // Slot 0: Trap TSL + // execution, shift 0xFF + // into FB_BUFFER2. + + // Initialize slot 1, which is constant. Slot 1 causes a DWORD to + // be transferred from audio channel 2's output FIFO to the FIFO's + // output buffer so that it can be serialized and sent to the DAC + // during subsequent slots. All remaining slots are dynamically + // populated as required by the target DAC device. + SETVECT(1, LF_A2); // Slot 1: Fetch DWORD from Audio2's + // output FIFO. + + // Start DAC's audio interface (TSL2) running. + WR7146(P_ACON1, ACON1_DACSTART); + + //////////////////////////////////////////////////////// + + // end init DAC interface + + // Init Trim DACs to calibrated values. Do it twice because the + // SAA7146 audio channel does not always reset properly and + // sometimes causes the first few TrimDAC writes to malfunction. + + LoadTrimDACs(dev); + LoadTrimDACs(dev); // Insurance. + + ////////////////////////////////////////////////////////////////// + // Manually init all gate array hardware in case this is a soft + // reset (we have no way of determining whether this is a warm or + // cold start). This is necessary because the gate array will + // reset only in response to a PCI hard reset; there is no soft + // reset function. + + // Init all DAC outputs to 0V and init all DAC setpoint and + // polarity images. + for (chan = 0; chan < S626_DAC_CHANNELS; chan++) + SetDAC(dev, chan, 0); + + // Init image of WRMISC2 Battery Charger Enabled control bit. + // This image is used when the state of the charger control bit, + // which has no direct hardware readback mechanism, is queried. + devpriv->ChargeEnabled = 0; + + // Init image of watchdog timer interval in WRMISC2. This image + // maintains the value of the control bits of MISC2 are + // continuously reset to zero as long as the WD timer is disabled. + devpriv->WDInterval = 0; + + // Init Counter Interrupt enab mask for RDMISC2. This mask is + // applied against MISC2 when testing to determine which timer + // events are requesting interrupt service. + devpriv->CounterIntEnabs = 0; + + // Init counters. + CountersInit(dev); + + // Without modifying the state of the Battery Backup enab, disable + // the watchdog timer, set DIO channels 0-5 to operate in the + // standard DIO (vs. counter overflow) mode, disable the battery + // charger, and reset the watchdog interval selector to zero. + WriteMISC2(dev, (uint16_t) (DEBIread(dev, + LP_RDMISC2) & MISC2_BATT_ENABLE)); + + // Initialize the digital I/O subsystem. + s626_dio_init(dev); + + //enable interrupt test + // writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); + } + + DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor, + (uint32_t) devpriv->base_addr); + + return 1; +} + +static lsampl_t s626_ai_reg_to_uint(int data) +{ + lsampl_t tempdata; + + tempdata = (data >> 18); + if (tempdata & 0x2000) + tempdata &= 0x1fff; + else + tempdata += (1 << 13); + + return tempdata; +} + +/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */ +/* return 0; */ +/* } */ + +static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG) +{ + comedi_device *dev = d; + comedi_subdevice *s; + comedi_cmd *cmd; + enc_private *k; + unsigned long flags; + int32_t *readaddr; + uint32_t irqtype, irqstatus; + int i = 0; + sampl_t tempdata; + uint8_t group; + uint16_t irqbit; + + DEBUG("s626_irq_handler: interrupt request recieved!!!\n"); + + if (dev->attached == 0) + return IRQ_NONE; + // lock to avoid race with comedi_poll + comedi_spin_lock_irqsave(&dev->spinlock, flags); + + //save interrupt enable register state + irqstatus = readl(devpriv->base_addr + P_IER); + + //read interrupt type + irqtype = readl(devpriv->base_addr + P_ISR); + + //disable master interrupt + writel(0, devpriv->base_addr + P_IER); + + //clear interrupt + writel(irqtype, devpriv->base_addr + P_ISR); + + //do somethings + DEBUG("s626_irq_handler: interrupt type %d\n", irqtype); + + switch (irqtype) { + case IRQ_RPS1: // end_of_scan occurs + + DEBUG("s626_irq_handler: RPS1 irq detected\n"); + + // manage ai subdevice + s = dev->subdevices; + cmd = &(s->async->cmd); + + // Init ptr to DMA buffer that holds new ADC data. We skip the + // first uint16_t in the buffer because it contains junk data from + // the final ADC of the previous poll list scan. + readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1; + + // get the data and hand it over to comedi + for (i = 0; i < (s->async->cmd.chanlist_len); i++) { + // Convert ADC data to 16-bit integer values and copy to application + // buffer. + tempdata = s626_ai_reg_to_uint((int)*readaddr); + readaddr++; + + //put data into read buffer + // comedi_buf_put(s->async, tempdata); + if (cfc_write_to_buffer(s, tempdata) == 0) + printk("s626_irq_handler: cfc_write_to_buffer error!\n"); + + DEBUG("s626_irq_handler: ai channel %d acquired: %d\n", + i, tempdata); + } + + //end of scan occurs + s->async->events |= COMEDI_CB_EOS; + + if (!(devpriv->ai_continous)) + devpriv->ai_sample_count--; + if (devpriv->ai_sample_count <= 0) { + devpriv->ai_cmd_running = 0; + + // Stop RPS program. + MC_DISABLE(P_MC1, MC1_ERPS1); + + //send end of acquisition + s->async->events |= COMEDI_CB_EOA; + + //disable master interrupt + irqstatus = 0; + } + + if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) { + DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg); + + s626_dio_set_irq(dev, cmd->scan_begin_arg); + + DEBUG("s626_irq_handler: External trigger is set!!!\n"); + } + // tell comedi that data is there + DEBUG("s626_irq_handler: events %d\n", s->async->events); + comedi_event(dev, s); + break; + case IRQ_GPIO3: //check dio and conter interrupt + + DEBUG("s626_irq_handler: GPIO3 irq detected\n"); + + // manage ai subdevice + s = dev->subdevices; + cmd = &(s->async->cmd); + + //s626_dio_clear_irq(dev); + + for (group = 0; group < S626_DIO_BANKS; group++) { + irqbit = 0; + //read interrupt type + irqbit = DEBIread(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->RDCapFlg); + + //check if interrupt is generated from dio channels + if (irqbit) { + s626_dio_reset_irq(dev, group, irqbit); + DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i); + if (devpriv->ai_cmd_running) { + //check if interrupt is an ai acquisition start trigger + if ((irqbit >> (cmd->start_arg - + (16 * group))) + == 1 + && cmd->start_src == TRIG_EXT) { + DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg); + + // Start executing the RPS program. + MC_ENABLE(P_MC1, MC1_ERPS1); + + DEBUG("s626_irq_handler: aquisition start triggered!!!\n"); + + if (cmd->scan_begin_src == + TRIG_EXT) { + DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg); + + s626_dio_set_irq(dev, + cmd-> + scan_begin_arg); + + DEBUG("s626_irq_handler: External scan trigger is set!!!\n"); + } + } + if ((irqbit >> (cmd->scan_begin_arg - + (16 * group))) + == 1 + && cmd->scan_begin_src == + TRIG_EXT) { + DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg); + + // Trigger ADC scan loop start by setting RPS Signal 0. + MC_ENABLE(P_MC2, MC2_ADC_RPS); + + DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count); + if (cmd->convert_src == + TRIG_EXT) { + + DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group); + + devpriv-> + ai_convert_count + = + cmd-> + chanlist_len; + + s626_dio_set_irq(dev, + cmd-> + convert_arg); + + DEBUG("s626_irq_handler: External convert trigger is set!!!\n"); + } + + if (cmd->convert_src == + TRIG_TIMER) { + k = &encpriv[5]; + devpriv-> + ai_convert_count + = + cmd-> + chanlist_len; + k->SetEnable(dev, k, + CLKENAB_ALWAYS); + } + } + if ((irqbit >> (cmd->convert_arg - + (16 * group))) + == 1 + && cmd->convert_src == + TRIG_EXT) { + DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg); + + // Trigger ADC scan loop start by setting RPS Signal 0. + MC_ENABLE(P_MC2, MC2_ADC_RPS); + + DEBUG("s626_irq_handler: adc convert triggered!!!\n"); + + devpriv->ai_convert_count--; + + if (devpriv->ai_convert_count > + 0) { + + DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group); + + s626_dio_set_irq(dev, + cmd-> + convert_arg); + + DEBUG("s626_irq_handler: External trigger is set!!!\n"); + } + } + } + break; + } + } + + //read interrupt type + irqbit = DEBIread(dev, LP_RDMISC2); + + //check interrupt on counters + DEBUG("s626_irq_handler: check counters interrupt %d\n", + irqbit); + + if (irqbit & IRQ_COINT1A) { + DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n"); + k = &encpriv[0]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + } + if (irqbit & IRQ_COINT2A) { + DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n"); + k = &encpriv[1]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + } + if (irqbit & IRQ_COINT3A) { + DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n"); + k = &encpriv[2]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + } + if (irqbit & IRQ_COINT1B) { + DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n"); + k = &encpriv[3]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + } + if (irqbit & IRQ_COINT2B) { + DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n"); + k = &encpriv[4]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + + if (devpriv->ai_convert_count > 0) { + devpriv->ai_convert_count--; + if (devpriv->ai_convert_count == 0) + k->SetEnable(dev, k, CLKENAB_INDEX); + + if (cmd->convert_src == TRIG_TIMER) { + DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count); + + // Trigger ADC scan loop start by setting RPS Signal 0. + MC_ENABLE(P_MC2, MC2_ADC_RPS); + } + } + } + if (irqbit & IRQ_COINT3B) { + DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n"); + k = &encpriv[5]; + + //clear interrupt capture flag + k->ResetCapFlags(dev, k); + + if (cmd->scan_begin_src == TRIG_TIMER) { + DEBUG("s626_irq_handler: scan timer trigger!!!\n"); + + // Trigger ADC scan loop start by setting RPS Signal 0. + MC_ENABLE(P_MC2, MC2_ADC_RPS); + } + + if (cmd->convert_src == TRIG_TIMER) { + DEBUG("s626_irq_handler: convert timer trigger is set\n"); + k = &encpriv[4]; + devpriv->ai_convert_count = cmd->chanlist_len; + k->SetEnable(dev, k, CLKENAB_ALWAYS); + } + } + } + + //enable interrupt + writel(irqstatus, devpriv->base_addr + P_IER); + + DEBUG("s626_irq_handler: exit interrupt service routine.\n"); + + comedi_spin_unlock_irqrestore(&dev->spinlock, flags); + return IRQ_HANDLED; +} + +static int s626_detach(comedi_device * dev) +{ + if (devpriv) { + //stop ai_command + devpriv->ai_cmd_running = 0; + + if (devpriv->base_addr) { + //interrupt mask + WR7146(P_IER, 0); // Disable master interrupt. + WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); // Clear board's IRQ status flag. + + // Disable the watchdog timer and battery charger. + WriteMISC2(dev, 0); + + // Close all interfaces on 7146 device. + WR7146(P_MC1, MC1_SHUTDOWN); + WR7146(P_ACON1, ACON1_BASE); + + CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE); + CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE); + } + + if (dev->irq) { + comedi_free_irq(dev->irq, dev); + } + + if (devpriv->base_addr) { + iounmap(devpriv->base_addr); + } + + if (devpriv->pdev) { + if (devpriv->got_regions) { + comedi_pci_disable(devpriv->pdev); + } + pci_dev_put(devpriv->pdev); + } + } + + DEBUG("s626_detach: S626 detached!\n"); + + return 0; +} + +/* + * this functions build the RPS program for hardware driven acquistion + */ +void ResetADC(comedi_device * dev, uint8_t * ppl) +{ + register uint32_t *pRPS; + uint32_t JmpAdrs; + uint16_t i; + uint16_t n; + uint32_t LocalPPL; + comedi_cmd *cmd = &(dev->subdevices->async->cmd); + + // Stop RPS program in case it is currently running. + MC_DISABLE(P_MC1, MC1_ERPS1); + + // Set starting logical address to write RPS commands. + pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase; + + // Initialize RPS instruction pointer. + WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase); + + // Construct RPS program in RPSBuf DMA buffer + + if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) { + DEBUG("ResetADC: scan_begin pause inserted\n"); + // Wait for Start trigger. + *pRPS++ = RPS_PAUSE | RPS_SIGADC; + *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; + } + // SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary + // because the first RPS DEBI Write following a non-RPS DEBI write + // seems to always fail. If we don't do this dummy write, the ADC + // gain might not be set to the value required for the first slot in + // the poll list; the ADC gain would instead remain unchanged from + // the previously programmed value. + *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI Write command + // and address to shadow RAM. + *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; + *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI immediate data + // to shadow RAM: + *pRPS++ = GSEL_BIPOLAR5V; // arbitrary immediate data + // value. + *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM + // uploaded" flag. + *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload. + *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to finish. + + // Digitize all slots in the poll list. This is implemented as a + // for loop to limit the slot count to 16 in case the application + // forgot to set the EOPL flag in the final slot. + for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) { + // Convert application's poll list item to private board class + // format. Each app poll list item is an uint8_t with form + // (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = + // +-10V, 1 = +-5V, and EOPL = End of Poll List marker. + LocalPPL = + (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V : + GSEL_BIPOLAR10V); + + // Switch ADC analog gain. + *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command + // and address to + // shadow RAM. + *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; + *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI + // immediate data to + // shadow RAM. + *pRPS++ = LocalPPL; + *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded" + // flag. + *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload. + *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to + // finish. + + // Select ADC analog input channel. + *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command + // and address to + // shadow RAM. + *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL; + *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI + // immediate data to + // shadow RAM. + *pRPS++ = LocalPPL; + *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded" + // flag. + *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload. + *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to + // finish. + + // Delay at least 10 microseconds for analog input settling. + // Instead of padding with NOPs, we use RPS_JUMP instructions + // here; this allows us to produce a longer delay than is + // possible with NOPs because each RPS_JUMP flushes the RPS' + // instruction prefetch pipeline. + JmpAdrs = + (uint32_t) devpriv->RPSBuf.PhysicalBase + + (uint32_t) ((unsigned long)pRPS - + (unsigned long)devpriv->RPSBuf.LogicalBase); + for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) { + JmpAdrs += 8; // Repeat to implement time delay: + *pRPS++ = RPS_JUMP; // Jump to next RPS instruction. + *pRPS++ = JmpAdrs; + } + + if (cmd != NULL && cmd->convert_src != TRIG_NOW) { + DEBUG("ResetADC: convert pause inserted\n"); + // Wait for Start trigger. + *pRPS++ = RPS_PAUSE | RPS_SIGADC; + *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; + } + // Start ADC by pulsing GPIO1. + *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse. + *pRPS++ = GPIO_BASE | GPIO1_LO; + *pRPS++ = RPS_NOP; + // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. + *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse. + *pRPS++ = GPIO_BASE | GPIO1_HI; + + // Wait for ADC to complete (GPIO2 is asserted high when ADC not + // busy) and for data from previous conversion to shift into FB + // BUFFER 1 register. + *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done. + + // Transfer ADC data from FB BUFFER 1 register to DMA buffer. + *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); + *pRPS++ = + (uint32_t) devpriv->ANABuf.PhysicalBase + + (devpriv->AdcItems << 2); + + // If this slot's EndOfPollList flag is set, all channels have + // now been processed. + if (*ppl++ & EOPL) { + devpriv->AdcItems++; // Adjust poll list item count. + break; // Exit poll list processing loop. + } + } + DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems); + + // VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the + // ADC to stabilize for 2 microseconds before starting the final + // (dummy) conversion. This delay is necessary to allow sufficient + // time between last conversion finished and the start of the dummy + // conversion. Without this delay, the last conversion's data value + // is sometimes set to the previous conversion's data value. + for (n = 0; n < (2 * RPSCLK_PER_US); n++) + *pRPS++ = RPS_NOP; + + // Start a dummy conversion to cause the data from the last + // conversion of interest to be shifted in. + *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse. + *pRPS++ = GPIO_BASE | GPIO1_LO; + *pRPS++ = RPS_NOP; + // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. + *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse. + *pRPS++ = GPIO_BASE | GPIO1_HI; + + // Wait for the data from the last conversion of interest to arrive + // in FB BUFFER 1 register. + *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done. + + // Transfer final ADC data from FB BUFFER 1 register to DMA buffer. + *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); // + *pRPS++ = + (uint32_t) devpriv->ANABuf.PhysicalBase + + (devpriv->AdcItems << 2); + + // Indicate ADC scan loop is finished. + // *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. + + //invoke interrupt + if (devpriv->ai_cmd_running == 1) { + DEBUG("ResetADC: insert irq in ADC RPS task\n"); + *pRPS++ = RPS_IRQ; + } + // Restart RPS program at its beginning. + *pRPS++ = RPS_JUMP; // Branch to start of RPS program. + *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase; + + // End of RPS program build + // ------------------------------------------------------------ +} + +/* TO COMPLETE, IF NECESSARY */ +static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + return -EINVAL; +} + +/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */ +/* { */ +/* register uint8_t i; */ +/* register int32_t *readaddr; */ + +/* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */ + +/* // Trigger ADC scan loop start by setting RPS Signal 0. */ +/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */ + +/* // Wait until ADC scan loop is finished (RPS Signal 0 reset). */ +/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */ + +/* // Init ptr to DMA buffer that holds new ADC data. We skip the */ +/* // first uint16_t in the buffer because it contains junk data from */ +/* // the final ADC of the previous poll list scan. */ +/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */ + +/* // Convert ADC data to 16-bit integer values and copy to application */ +/* // buffer. */ +/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */ +/* *data = s626_ai_reg_to_uint( *readaddr++ ); */ +/* DEBUG("s626_ai_rinsn: data %d \n",*data); */ +/* data++; */ +/* } */ + +/* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */ +/* return i; */ +/* } */ + +static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + uint16_t chan = CR_CHAN(insn->chanspec); + uint16_t range = CR_RANGE(insn->chanspec); + uint16_t AdcSpec = 0; + uint32_t GpioImage; + int n; + +/* //interrupt call test */ +/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */ +/* //into any of the RPS_PSR */ +/* //bits causes the */ +/* //corresponding interrupt */ +/* //to be generated if */ +/* //enabled */ + + DEBUG("s626_ai_insn_read: entering\n"); + + // Convert application's ADC specification into form + // appropriate for register programming. + if (range == 0) + AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V); + else + AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V); + + // Switch ADC analog gain. + DEBIwrite(dev, LP_GSEL, AdcSpec); // Set gain. + + // Select ADC analog input channel. + DEBIwrite(dev, LP_ISEL, AdcSpec); // Select channel. + + for (n = 0; n < insn->n; n++) { + + // Delay 10 microseconds for analog input settling. + comedi_udelay(10); + + // Start ADC by pulsing GPIO1 low. + GpioImage = RR7146(P_GPIO); + // Assert ADC Start command + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + // and stretch it out. + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + // Negate ADC Start command. + WR7146(P_GPIO, GpioImage | GPIO1_HI); + + // Wait for ADC to complete (GPIO2 is asserted high when + // ADC not busy) and for data from previous conversion to + // shift into FB BUFFER 1 register. + + // Wait for ADC done. + while (!(RR7146(P_PSR) & PSR_GPIO2)) ; + + // Fetch ADC data. + if (n != 0) + data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); + + // Allow the ADC to stabilize for 4 microseconds before + // starting the next (final) conversion. This delay is + // necessary to allow sufficient time between last + // conversion finished and the start of the next + // conversion. Without this delay, the last conversion's + // data value is sometimes set to the previous + // conversion's data value. + comedi_udelay(4); + } + + // Start a dummy conversion to cause the data from the + // previous conversion to be shifted in. + GpioImage = RR7146(P_GPIO); + + //Assert ADC Start command + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + // and stretch it out. + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + WR7146(P_GPIO, GpioImage & ~GPIO1_HI); + // Negate ADC Start command. + WR7146(P_GPIO, GpioImage | GPIO1_HI); + + // Wait for the data to arrive in FB BUFFER 1 register. + + // Wait for ADC done. + while (!(RR7146(P_PSR) & PSR_GPIO2)) ; + + // Fetch ADC data from audio interface's input shift + // register. + + // Fetch ADC data. + if (n != 0) + data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); + + DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]); + + return n; +} + +static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd) +{ + + int n; + + for (n = 0; n < cmd->chanlist_len; n++) { + if (CR_RANGE((cmd->chanlist)[n]) == 0) + ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V); + else + ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V); + } + ppl[n - 1] |= EOPL; + + return n; +} + +static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s, + unsigned int trignum) +{ + if (trignum != 0) + return -EINVAL; + + DEBUG("s626_ai_inttrig: trigger adc start..."); + + // Start executing the RPS program. + MC_ENABLE(P_MC1, MC1_ERPS1); + + s->async->inttrig = NULL; + + DEBUG(" done\n"); + + return 1; +} + +/* TO COMPLETE */ +static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s) +{ + + uint8_t ppl[16]; + comedi_cmd *cmd = &s->async->cmd; + enc_private *k; + int tick; + + DEBUG("s626_ai_cmd: entering command function\n"); + + if (devpriv->ai_cmd_running) { + printk("s626_ai_cmd: Another ai_cmd is running %d\n", + dev->minor); + return -EBUSY; + } + //disable interrupt + writel(0, devpriv->base_addr + P_IER); + + //clear interrupt request + writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR); + + //clear any pending interrupt + s626_dio_clear_irq(dev); + // s626_enc_clear_irq(dev); + + //reset ai_cmd_running flag + devpriv->ai_cmd_running = 0; + + // test if cmd is valid + if (cmd == NULL) { + DEBUG("s626_ai_cmd: NULL command\n"); + return -EINVAL; + } else { + DEBUG("s626_ai_cmd: command recieved!!!\n"); + } + + if (dev->irq == 0) { + comedi_error(dev, + "s626_ai_cmd: cannot run command without an irq"); + return -EIO; + } + + s626_ai_load_polllist(ppl, cmd); + devpriv->ai_cmd_running = 1; + devpriv->ai_convert_count = 0; + + switch (cmd->scan_begin_src) { + case TRIG_FOLLOW: + break; + case TRIG_TIMER: + // set a conter to generate adc trigger at scan_begin_arg interval + k = &encpriv[5]; + tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg, + cmd->flags & TRIG_ROUND_MASK); + + //load timer value and enable interrupt + s626_timer_load(dev, k, tick); + k->SetEnable(dev, k, CLKENAB_ALWAYS); + + DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n", + tick); + + break; + case TRIG_EXT: + // set the digital line and interrupt for scan trigger + if (cmd->start_src != TRIG_EXT) + s626_dio_set_irq(dev, cmd->scan_begin_arg); + + DEBUG("s626_ai_cmd: External scan trigger is set!!!\n"); + + break; + } + + switch (cmd->convert_src) { + case TRIG_NOW: + break; + case TRIG_TIMER: + // set a conter to generate adc trigger at convert_arg interval + k = &encpriv[4]; + tick = s626_ns_to_timer((int *)&cmd->convert_arg, + cmd->flags & TRIG_ROUND_MASK); + + //load timer value and enable interrupt + s626_timer_load(dev, k, tick); + k->SetEnable(dev, k, CLKENAB_INDEX); + + DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick); + break; + case TRIG_EXT: + // set the digital line and interrupt for convert trigger + if (cmd->scan_begin_src != TRIG_EXT + && cmd->start_src == TRIG_EXT) + s626_dio_set_irq(dev, cmd->convert_arg); + + DEBUG("s626_ai_cmd: External convert trigger is set!!!\n"); + + break; + } + + switch (cmd->stop_src) { + case TRIG_COUNT: + // data arrives as one packet + devpriv->ai_sample_count = cmd->stop_arg; + devpriv->ai_continous = 0; + break; + case TRIG_NONE: + // continous aquisition + devpriv->ai_continous = 1; + devpriv->ai_sample_count = 0; + break; + } + + ResetADC(dev, ppl); + + switch (cmd->start_src) { + case TRIG_NOW: + // Trigger ADC scan loop start by setting RPS Signal 0. + // MC_ENABLE( P_MC2, MC2_ADC_RPS ); + + // Start executing the RPS program. + MC_ENABLE(P_MC1, MC1_ERPS1); + + DEBUG("s626_ai_cmd: ADC triggered\n"); + s->async->inttrig = NULL; + break; + case TRIG_EXT: + //configure DIO channel for acquisition trigger + s626_dio_set_irq(dev, cmd->start_arg); + + DEBUG("s626_ai_cmd: External start trigger is set!!!\n"); + + s->async->inttrig = NULL; + break; + case TRIG_INT: + s->async->inttrig = s626_ai_inttrig; + break; + } + + //enable interrupt + writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); + + DEBUG("s626_ai_cmd: command function terminated\n"); + + return 0; +} + +static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s, + comedi_cmd * cmd) +{ + int err = 0; + int tmp; + + /* cmdtest tests a particular command to see if it is valid. Using + * the cmdtest ioctl, a user can create a valid cmd and then have it + * executes by the cmd ioctl. + * + * cmdtest returns 1,2,3,4 or 0, depending on which tests the + * command passes. */ + + /* step 1: make sure trigger sources are trivially valid */ + + tmp = cmd->start_src; + cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT; + if (!cmd->start_src || tmp != cmd->start_src) + err++; + + tmp = cmd->scan_begin_src; + cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW; + if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src) + err++; + + tmp = cmd->convert_src; + cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW; + if (!cmd->convert_src || tmp != cmd->convert_src) + err++; + + tmp = cmd->scan_end_src; + cmd->scan_end_src &= TRIG_COUNT; + if (!cmd->scan_end_src || tmp != cmd->scan_end_src) + err++; + + tmp = cmd->stop_src; + cmd->stop_src &= TRIG_COUNT | TRIG_NONE; + if (!cmd->stop_src || tmp != cmd->stop_src) + err++; + + if (err) + return 1; + + /* step 2: make sure trigger sources are unique and mutually + compatible */ + + /* note that mutual compatiblity is not an issue here */ + if (cmd->scan_begin_src != TRIG_TIMER && + cmd->scan_begin_src != TRIG_EXT + && cmd->scan_begin_src != TRIG_FOLLOW) + err++; + if (cmd->convert_src != TRIG_TIMER && + cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW) + err++; + if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE) + err++; + + if (err) + return 2; + + /* step 3: make sure arguments are trivially compatible */ + + if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) { + cmd->start_arg = 0; + err++; + } + + if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) { + cmd->start_arg = 0; + err++; + } + + if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) { + cmd->start_arg = 39; + err++; + } + + if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) { + cmd->scan_begin_arg = 0; + err++; + } + + if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) { + cmd->scan_begin_arg = 39; + err++; + } + + if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) { + cmd->convert_arg = 0; + err++; + } + + if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) { + cmd->convert_arg = 39; + err++; + } +#define MAX_SPEED 200000 /* in nanoseconds */ +#define MIN_SPEED 2000000000 /* in nanoseconds */ + + if (cmd->scan_begin_src == TRIG_TIMER) { + if (cmd->scan_begin_arg < MAX_SPEED) { + cmd->scan_begin_arg = MAX_SPEED; + err++; + } + if (cmd->scan_begin_arg > MIN_SPEED) { + cmd->scan_begin_arg = MIN_SPEED; + err++; + } + } else { + /* external trigger */ + /* should be level/edge, hi/lo specification here */ + /* should specify multiple external triggers */ +/* if(cmd->scan_begin_arg>9){ */ +/* cmd->scan_begin_arg=9; */ +/* err++; */ +/* } */ + } + if (cmd->convert_src == TRIG_TIMER) { + if (cmd->convert_arg < MAX_SPEED) { + cmd->convert_arg = MAX_SPEED; + err++; + } + if (cmd->convert_arg > MIN_SPEED) { + cmd->convert_arg = MIN_SPEED; + err++; + } + } else { + /* external trigger */ + /* see above */ +/* if(cmd->convert_arg>9){ */ +/* cmd->convert_arg=9; */ +/* err++; */ +/* } */ + } + + if (cmd->scan_end_arg != cmd->chanlist_len) { + cmd->scan_end_arg = cmd->chanlist_len; + err++; + } + if (cmd->stop_src == TRIG_COUNT) { + if (cmd->stop_arg > 0x00ffffff) { + cmd->stop_arg = 0x00ffffff; + err++; + } + } else { + /* TRIG_NONE */ + if (cmd->stop_arg != 0) { + cmd->stop_arg = 0; + err++; + } + } + + if (err) + return 3; + + /* step 4: fix up any arguments */ + + if (cmd->scan_begin_src == TRIG_TIMER) { + tmp = cmd->scan_begin_arg; + s626_ns_to_timer((int *)&cmd->scan_begin_arg, + cmd->flags & TRIG_ROUND_MASK); + if (tmp != cmd->scan_begin_arg) + err++; + } + if (cmd->convert_src == TRIG_TIMER) { + tmp = cmd->convert_arg; + s626_ns_to_timer((int *)&cmd->convert_arg, + cmd->flags & TRIG_ROUND_MASK); + if (tmp != cmd->convert_arg) + err++; + if (cmd->scan_begin_src == TRIG_TIMER && + cmd->scan_begin_arg < + cmd->convert_arg * cmd->scan_end_arg) { + cmd->scan_begin_arg = + cmd->convert_arg * cmd->scan_end_arg; + err++; + } + } + + if (err) + return 4; + + return 0; +} + +static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s) +{ + // Stop RPS program in case it is currently running. + MC_DISABLE(P_MC1, MC1_ERPS1); + + //disable master interrupt + writel(0, devpriv->base_addr + P_IER); + + devpriv->ai_cmd_running = 0; + + return 0; +} + +/* This function doesn't require a particular form, this is just what + * happens to be used in some of the drivers. It should convert ns + * nanoseconds to a counter value suitable for programming the device. + * Also, it should adjust ns so that it cooresponds to the actual time + * that the device will use. */ +static int s626_ns_to_timer(int *nanosec, int round_mode) +{ + int divider, base; + + base = 500; //2MHz internal clock + + switch (round_mode) { + case TRIG_ROUND_NEAREST: + default: + divider = (*nanosec + base / 2) / base; + break; + case TRIG_ROUND_DOWN: + divider = (*nanosec) / base; + break; + case TRIG_ROUND_UP: + divider = (*nanosec + base - 1) / base; + break; + } + + *nanosec = base * divider; + return divider - 1; +} + +static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + int i; + uint16_t chan = CR_CHAN(insn->chanspec); + int16_t dacdata; + + for (i = 0; i < insn->n; i++) { + dacdata = (int16_t) data[i]; + devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i]; + dacdata -= (0x1fff); + + SetDAC(dev, chan, dacdata); + } + + return i; +} + +static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + int i; + + for (i = 0; i < insn->n; i++) { + data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)]; + } + + return i; +} + +///////////////////////////////////////////////////////////////////// +/////////////// DIGITAL I/O FUNCTIONS ///////////////////////////// +///////////////////////////////////////////////////////////////////// +// All DIO functions address a group of DIO channels by means of +// "group" argument. group may be 0, 1 or 2, which correspond to DIO +// ports A, B and C, respectively. +///////////////////////////////////////////////////////////////////// + +static void s626_dio_init(comedi_device * dev) +{ + uint16_t group; + comedi_subdevice *s; + + // Prepare to treat writes to WRCapSel as capture disables. + DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); + + // For each group of sixteen channels ... + for (group = 0; group < S626_DIO_BANKS; group++) { + s = dev->subdevices + 2 + group; + DEBIwrite(dev, diopriv->WRIntSel, 0); // Disable all interrupts. + DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); // Disable all event + // captures. + DEBIwrite(dev, diopriv->WREdgSel, 0); // Init all DIOs to + // default edge + // polarity. + DEBIwrite(dev, diopriv->WRDOut, 0); // Program all outputs + // to inactive state. + } + DEBUG("s626_dio_init: DIO initialized \n"); +} + +/* DIO devices are slightly special. Although it is possible to + * implement the insn_read/insn_write interface, it is much more + * useful to applications if you implement the insn_bits interface. + * This allows packed reading/writing of the DIO channels. The comedi + * core can convert between insn_bits and insn_read/write */ + +static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + /* Length of data must be 2 (mask and new data, see below) */ + if (insn->n == 0) { + return 0; + } + if (insn->n != 2) { + printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor); + return -EINVAL; + } + + /* + * The insn data consists of a mask in data[0] and the new data in + * data[1]. The mask defines which bits we are concerning about. + * The new data must be anded with the mask. Each channel + * corresponds to a bit. + */ + if (data[0]) { + /* Check if requested ports are configured for output */ + if ((s->io_bits & data[0]) != data[0]) + return -EIO; + + s->state &= ~data[0]; + s->state |= data[0] & data[1]; + + /* Write out the new digital output lines */ + + DEBIwrite(dev, diopriv->WRDOut, s->state); + } + data[1] = DEBIread(dev, diopriv->RDDIn); + + return 2; +} + +static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + switch (data[0]) { + case INSN_CONFIG_DIO_QUERY: + data[1] = + (s->io_bits & (1 << CR_CHAN(insn-> + chanspec))) ? COMEDI_OUTPUT : + COMEDI_INPUT; + return insn->n; + break; + case COMEDI_INPUT: + s->io_bits &= ~(1 << CR_CHAN(insn->chanspec)); + break; + case COMEDI_OUTPUT: + s->io_bits |= 1 << CR_CHAN(insn->chanspec); + break; + default: + return -EINVAL; + break; + } + DEBIwrite(dev, diopriv->WRDOut, s->io_bits); + + return 1; +} + +static int s626_dio_set_irq(comedi_device * dev, unsigned int chan) +{ + unsigned int group; + unsigned int bitmask; + unsigned int status; + + //select dio bank + group = chan / 16; + bitmask = 1 << (chan - (16 * group)); + DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n", + chan - (16 * group), group); + + //set channel to capture positive edge + status = DEBIread(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->RDEdgSel); + DEBIwrite(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->WREdgSel, bitmask | status); + + //enable interrupt on selected channel + status = DEBIread(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->RDIntSel); + DEBIwrite(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->WRIntSel, bitmask | status); + + //enable edge capture write command + DEBIwrite(dev, LP_MISC1, MISC1_EDCAP); + + //enable edge capture on selected channel + status = DEBIread(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->RDCapSel); + DEBIwrite(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->WRCapSel, bitmask | status); + + return 0; +} + +static int s626_dio_reset_irq(comedi_device * dev, unsigned int group, + unsigned int mask) +{ + DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group); + + //disable edge capture write command + DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); + + //enable edge capture on selected channel + DEBIwrite(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->WRCapSel, mask); + + return 0; +} + +static int s626_dio_clear_irq(comedi_device * dev) +{ + unsigned int group; + + //disable edge capture write command + DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); + + for (group = 0; group < S626_DIO_BANKS; group++) { + //clear pending events and interrupt + DEBIwrite(dev, + ((dio_private *) (dev->subdevices + 2 + + group)->private)->WRCapSel, 0xffff); + } + + return 0; +} + +/* Now this function initializes the value of the counter (data[0]) + and set the subdevice. To complete with trigger and interrupt + configuration */ +static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon + // index. + (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index. + (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter. + (CLKPOL_POS << BF_CLKPOL) | // Active high clock. + //( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. + (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x. + (CLKENAB_INDEX << BF_CLKENAB); + /* uint16_t DisableIntSrc=TRUE; */ + // uint32_t Preloadvalue; //Counter initial value + uint16_t valueSrclatch = LATCHSRC_AB_READ; + uint16_t enab = CLKENAB_ALWAYS; + enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; + + DEBUG("s626_enc_insn_config: encoder config\n"); + + // (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); + + k->SetMode(dev, k, Setup, TRUE); + Preload(dev, k, *(insn->data)); + k->PulseIndex(dev, k); + SetLatchSource(dev, k, valueSrclatch); + k->SetEnable(dev, k, (uint16_t) (enab != 0)); + + return insn->n; +} + +static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + int n; + enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; + + DEBUG("s626_enc_insn_read: encoder read channel %d \n", + CR_CHAN(insn->chanspec)); + + for (n = 0; n < insn->n; n++) + data[n] = ReadLatch(dev, k); + + DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]); + + return n; +} + +static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + + enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; + + DEBUG("s626_enc_insn_write: encoder write channel %d \n", + CR_CHAN(insn->chanspec)); + + // Set the preload register + Preload(dev, k, data[0]); + + // Software index pulse forces the preload register to load + // into the counter + k->SetLoadTrig(dev, k, 0); + k->PulseIndex(dev, k); + k->SetLoadTrig(dev, k, 2); + + DEBUG("s626_enc_insn_write: End encoder write\n"); + + return 1; +} + +static void s626_timer_load(comedi_device * dev, enc_private * k, int tick) +{ + uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon + // index. + (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index. + (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer. + (CLKPOL_POS << BF_CLKPOL) | // Active high clock. + (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down. + (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x. + (CLKENAB_INDEX << BF_CLKENAB); + uint16_t valueSrclatch = LATCHSRC_A_INDXA; + // uint16_t enab=CLKENAB_ALWAYS; + + k->SetMode(dev, k, Setup, FALSE); + + // Set the preload register + Preload(dev, k, tick); + + // Software index pulse forces the preload register to load + // into the counter + k->SetLoadTrig(dev, k, 0); + k->PulseIndex(dev, k); + + //set reload on counter overflow + k->SetLoadTrig(dev, k, 1); + + //set interrupt on overflow + k->SetIntSrc(dev, k, INTSRC_OVER); + + SetLatchSource(dev, k, valueSrclatch); + // k->SetEnable(dev,k,(uint16_t)(enab != 0)); +} + +/////////////////////////////////////////////////////////////////////// +///////////////////// DAC FUNCTIONS ///////////////////////////////// +/////////////////////////////////////////////////////////////////////// + +// Slot 0 base settings. +#define VECT0 ( XSD2 | RSD3 | SIB_A2 ) // Slot 0 always shifts in + // 0xFF and store it to + // FB_BUFFER2. + +// TrimDac LogicalChan-to-PhysicalChan mapping table. +static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; + +// TrimDac LogicalChan-to-EepromAdrs mapping table. +static uint8_t trimadrs[] = + { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 }; + +static void LoadTrimDACs(comedi_device * dev) +{ + register uint8_t i; + + // Copy TrimDac setpoint values from EEPROM to TrimDacs. + for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++) + WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i])); +} + +static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan, + uint8_t DacData) +{ + uint32_t chan; + + // Save the new setpoint in case the application needs to read it back later. + devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData; + + // Map logical channel number to physical channel number. + chan = (uint32_t) trimchan[LogicalChan]; + + // Set up TSL2 records for TrimDac write operation. All slots shift + // 0xFF in from pulled-up SD3 so that the end of the slot sequence + // can be detected. + SETVECT(2, XSD2 | XFIFO_1 | WS3); // Slot 2: Send high uint8_t + // to target TrimDac. + SETVECT(3, XSD2 | XFIFO_0 | WS3); // Slot 3: Send low uint8_t to + // target TrimDac. + SETVECT(4, XSD2 | XFIFO_3 | WS1); // Slot 4: Send NOP high + // uint8_t to DAC0 to keep + // clock running. + SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); // Slot 5: Send NOP low + // uint8_t to DAC0. + + // Construct and transmit target DAC's serial packet: ( 0000 AAAA + // ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC + // channel's address, and D<7:0> is the DAC setpoint. Append a WORD + // value (that writes a channel 0 NOP command to a non-existent main + // DAC channel) that serves to keep the clock running after the + // packet has been sent to the target DAC. + + SendDAC(dev, ((uint32_t) chan << 8) // Address the DAC channel + // within the trimdac device. + | (uint32_t) DacData); // Include DAC setpoint data. +} + +///////////////////////////////////////////////////////////////////////// +//////////////// EEPROM ACCESS FUNCTIONS ////////////////////////////// +///////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////// +// Read uint8_t from EEPROM. + +static uint8_t I2Cread(comedi_device * dev, uint8_t addr) +{ + uint8_t rtnval; + + // Send EEPROM target address. + if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) // Byte2 = I2C + // command: + // write to + // I2C EEPROM + // device. + | I2C_B1(I2C_ATTRSTOP, addr) // Byte1 = EEPROM + // internal target + // address. + | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not + // sent. + { + // Abort function and declare error if handshake failed. + DEBUG("I2Cread: error handshake I2Cread a\n"); + return 0; + } + // Execute EEPROM read. + if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) // Byte2 = I2C + // command: read + // from I2C EEPROM + // device. + | I2C_B1(I2C_ATTRSTOP, 0) // Byte1 receives + // uint8_t from + // EEPROM. + | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not + // sent. + { + // Abort function and declare error if handshake failed. + DEBUG("I2Cread: error handshake I2Cread b\n"); + return 0; + } + // Return copy of EEPROM value. + rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16); + return rtnval; +} + +static uint32_t I2Chandshake(comedi_device * dev, uint32_t val) +{ + // Write I2C command to I2C Transfer Control shadow register. + WR7146(P_I2CCTRL, val); + + // Upload I2C shadow registers into working registers and wait for + // upload confirmation. + + MC_ENABLE(P_MC2, MC2_UPLD_IIC); + while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; + + // Wait until I2C bus transfer is finished or an error occurs. + while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ; + + // Return non-zero if I2C error occured. + return RR7146(P_I2CCTRL) & I2C_ERR; + +} + +// Private helper function: Write setpoint to an application DAC channel. + +static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata) +{ + register uint16_t signmask; + register uint32_t WSImage; + + // Adjust DAC data polarity and set up Polarity Control Register + // image. + signmask = 1 << chan; + if (dacdata < 0) { + dacdata = -dacdata; + devpriv->Dacpol |= signmask; + } else + devpriv->Dacpol &= ~signmask; + + // Limit DAC setpoint value to valid range. + if ((uint16_t) dacdata > 0x1FFF) + dacdata = 0x1FFF; + + // Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 + // and V3 transmit the setpoint to the target DAC. V4 and V5 send + // data to a non-existent TrimDac channel just to keep the clock + // running after sending data to the target DAC. This is necessary + // to eliminate the clock glitch that would otherwise occur at the + // end of the target DAC's serial data stream. When the sequence + // restarts at V0 (after executing V5), the gate array automatically + // disables gating for the DAC clock and all DAC chip selects. + WSImage = (chan & 2) ? WS1 : WS2; // Choose DAC chip select to + // be asserted. + SETVECT(2, XSD2 | XFIFO_1 | WSImage); // Slot 2: Transmit high + // data byte to target DAC. + SETVECT(3, XSD2 | XFIFO_0 | WSImage); // Slot 3: Transmit low data + // byte to target DAC. + SETVECT(4, XSD2 | XFIFO_3 | WS3); // Slot 4: Transmit to + // non-existent TrimDac + // channel to keep clock + SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); // Slot 5: running after + // writing target DAC's + // low data byte. + + // Construct and transmit target DAC's serial packet: ( A10D DDDD + // ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0> + // is the DAC setpoint. Append a WORD value (that writes to a + // non-existent TrimDac channel) that serves to keep the clock + // running after the packet has been sent to the target DAC. + SendDAC(dev, 0x0F000000 //Continue clock after target DAC + //data (write to non-existent + //trimdac). + | 0x00004000 // Address the two main dual-DAC + // devices (TSL's chip select enables + // target device). + | ((uint32_t) (chan & 1) << 15) // Address the DAC + // channel within the + // device. + | (uint32_t) dacdata); // Include DAC setpoint data. + +} + +//////////////////////////////////////////////////////// +// Private helper function: Transmit serial data to DAC via Audio +// channel 2. Assumes: (1) TSL2 slot records initialized, and (2) +// Dacpol contains valid target image. + +static void SendDAC(comedi_device * dev, uint32_t val) +{ + + // START THE SERIAL CLOCK RUNNING ------------- + + // Assert DAC polarity control and enable gating of DAC serial clock + // and audio bit stream signals. At this point in time we must be + // assured of being in time slot 0. If we are not in slot 0, the + // serial clock and audio stream signals will be disabled; this is + // because the following DEBIwrite statement (which enables signals + // to be passed through the gate array) would execute before the + // trailing edge of WS1/WS3 (which turns off the signals), thus + // causing the signals to be inactive during the DAC write. + DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol); + + // TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- + + // Copy DAC setpoint value to DAC's output DMA buffer. + + //WR7146( (uint32_t)devpriv->pDacWBuf, val ); + *devpriv->pDacWBuf = val; + + // enab the output DMA transfer. This will cause the DMAC to copy + // the DAC's data value to A2's output FIFO. The DMA transfer will + // then immediately terminate because the protection address is + // reached upon transfer of the first DWORD value. + MC_ENABLE(P_MC1, MC1_A2OUT); + + // While the DMA transfer is executing ... + + // Reset Audio2 output FIFO's underflow flag (along with any other + // FIFO underflow/overflow flags). When set, this flag will + // indicate that we have emerged from slot 0. + WR7146(P_ISR, ISR_AFOU); + + // Wait for the DMA transfer to finish so that there will be data + // available in the FIFO when time slot 1 tries to transfer a DWORD + // from the FIFO to the output buffer register. We test for DMA + // Done by polling the DMAC enable flag; this flag is automatically + // cleared when the transfer has finished. + while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ; + + // START THE OUTPUT STREAM TO THE TARGET DAC -------------------- + + // FIFO data is now available, so we enable execution of time slots + // 1 and higher by clearing the EOS flag in slot 0. Note that SD3 + // will be shifted in and stored in FB_BUFFER2 for end-of-slot-list + // detection. + SETVECT(0, XSD2 | RSD3 | SIB_A2); + + // Wait for slot 1 to execute to ensure that the Packet will be + // transmitted. This is detected by polling the Audio2 output FIFO + // underflow flag, which will be set when slot 1 execution has + // finished transferring the DAC's data DWORD from the output FIFO + // to the output buffer register. + while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ; + + // Set up to trap execution at slot 0 when the TSL sequencer cycles + // back to slot 0 after executing the EOS in slot 5. Also, + // simultaneously shift out and in the 0x00 that is ALWAYS the value + // stored in the last byte to be shifted out of the FIFO's DWORD + // buffer register. + SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS); + + // WAIT FOR THE TRANSACTION TO FINISH ----------------------- + + // Wait for the TSL to finish executing all time slots before + // exiting this function. We must do this so that the next DAC + // write doesn't start, thereby enabling clock/chip select signals: + // 1. Before the TSL sequence cycles back to slot 0, which disables + // the clock/cs signal gating and traps slot // list execution. If + // we have not yet finished slot 5 then the clock/cs signals are + // still gated and we have // not finished transmitting the stream. + // 2. While slots 2-5 are executing due to a late slot 0 trap. In + // this case, the slot sequence is currently // repeating, but with + // clock/cs signals disabled. We must wait for slot 0 to trap + // execution before setting // up the next DAC setpoint DMA transfer + // and enabling the clock/cs signals. To detect the end of slot 5, + // we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If + // the TSL has not yet finished executing slot 5 ... + if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) { + // The trap was set on time and we are still executing somewhere + // in slots 2-5, so we now wait for slot 0 to execute and trap + // TSL execution. This is detected when FB_BUFFER2 MSB changes + // from 0xFF to 0x00, which slot 0 causes to happen by shifting + // out/in on SD2 the 0x00 that is always referenced by slot 5. + while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ; + } + // Either (1) we were too late setting the slot 0 trap; the TSL + // sequencer restarted slot 0 before we could set the EOS trap flag, + // or (2) we were not late and execution is now trapped at slot 0. + // In either case, we must now change slot 0 so that it will store + // value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. + // In order to do this, we reprogram slot 0 so that it will shift in + // SD3, which is driven only by a pull-up resistor. + SETVECT(0, RSD3 | SIB_A2 | EOS); + + // Wait for slot 0 to execute, at which time the TSL is setup for + // the next DAC write. This is detected when FB_BUFFER2 MSB changes + // from 0x00 to 0xFF. + while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ; +} + +static void WriteMISC2(comedi_device * dev, uint16_t NewImage) +{ + DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); // enab writes to + // MISC2 register. + DEBIwrite(dev, LP_WRMISC2, NewImage); // Write new image to MISC2. + DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); // Disable writes to MISC2. +} + +///////////////////////////////////////////////////////////////////// +// Initialize the DEBI interface for all transfers. + +static uint16_t DEBIread(comedi_device * dev, uint16_t addr) +{ + uint16_t retval; + + // Set up DEBI control register value in shadow RAM. + WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); + + // Execute the DEBI transfer. + DEBItransfer(dev); + + // Fetch target register value. + retval = (uint16_t) RR7146(P_DEBIAD); + + // Return register value. + return retval; +} + +// Execute a DEBI transfer. This must be called from within a +// critical section. +static void DEBItransfer(comedi_device * dev) +{ + // Initiate upload of shadow RAM to DEBI control register. + MC_ENABLE(P_MC2, MC2_UPLD_DEBI); + + // Wait for completion of upload from shadow RAM to DEBI control + // register. + while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ; + + // Wait until DEBI transfer is done. + while (RR7146(P_PSR) & PSR_DEBI_S) ; +} + +// Write a value to a gate array register. +static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata) +{ + + // Set up DEBI control register value in shadow RAM. + WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); + WR7146(P_DEBIAD, wdata); + + // Execute the DEBI transfer. + DEBItransfer(dev); +} + +///////////////////////////////////////////////////////////////////////////// +// Replace the specified bits in a gate array register. Imports: mask +// specifies bits that are to be preserved, wdata is new value to be +// or'd with the masked original. +static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask, + uint16_t wdata) +{ + + // Copy target gate array register into P_DEBIAD register. + WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); // Set up DEBI control + // reg value in shadow + // RAM. + DEBItransfer(dev); // Execute the DEBI + // Read transfer. + + // Write back the modified image. + WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); // Set up DEBI control + // reg value in shadow + // RAM. + + WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); // Modify the register image. + DEBItransfer(dev); // Execute the DEBI Write transfer. +} + +static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize) +{ + void *vbptr; + dma_addr_t vpptr; + + DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n"); + if (pdma == NULL) + return; + //find the matching allocation from the board struct + + vbptr = pdma->LogicalBase; + vpptr = pdma->PhysicalBase; + if (vbptr) { + pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr); + pdma->LogicalBase = 0; + pdma->PhysicalBase = 0; + + DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n", + vbptr, bsize, (uint32_t) vpptr); + } +} + +//////////////////////////////////////////////////////////////////////// +///////////////// COUNTER FUNCTIONS ////////////////////////////////// +//////////////////////////////////////////////////////////////////////// +// All counter functions address a specific counter by means of the +// "Counter" argument, which is a logical counter number. The Counter +// argument may have any of the following legal values: 0=0A, 1=1A, +// 2=2A, 3=0B, 4=1B, 5=2B. +//////////////////////////////////////////////////////////////////////// + +// Forward declarations for functions that are common to both A and B +// counters: + +///////////////////////////////////////////////////////////////////// +//////////////////// PRIVATE COUNTER FUNCTIONS ///////////////////// +///////////////////////////////////////////////////////////////////// + +///////////////////////////////////////////////////////////////// +// Read a counter's output latch. + +static uint32_t ReadLatch(comedi_device * dev, enc_private * k) +{ + register uint32_t value; + //DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); + + // Latch counts and fetch LSW of latched counts value. + value = (uint32_t) DEBIread(dev, k->MyLatchLsw); + + // Fetch MSW of latched counts and combine with LSW. + value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16); + + // DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); + + // Return latched counts. + return value; +} + +/////////////////////////////////////////////////////////////////// +// Reset a counter's index and overflow event capture flags. + +static void ResetCapFlags_A(comedi_device * dev, enc_private * k) +{ + DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), + CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A); +} + +static void ResetCapFlags_B(comedi_device * dev, enc_private * k) +{ + DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), + CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B); +} + +///////////////////////////////////////////////////////////////////////// +// Return counter setup in a format (COUNTER_SETUP) that is consistent +// for both A and B counters. + +static uint16_t GetMode_A(comedi_device * dev, enc_private * k) +{ + register uint16_t cra; + register uint16_t crb; + register uint16_t setup; + + // Fetch CRA and CRB register images. + cra = DEBIread(dev, k->MyCRA); + crb = DEBIread(dev, k->MyCRB); + + // Populate the standardized counter setup bit fields. Note: + // IndexSrc is restricted to ENC_X or IndxPol. + setup = ((cra & STDMSK_LOADSRC) // LoadSrc = LoadSrcA. + | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcA. + | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) // IntSrc = IntSrcA. + | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) // IndxSrc = IndxSrcA<1>. + | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) // IndxPol = IndxPolA. + | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); // ClkEnab = ClkEnabA. + + // Adjust mode-dependent parameters. + if (cra & (2 << CRABIT_CLKSRC_A)) // If Timer mode (ClkSrcA<1> == 1): + setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode. + | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) // Set ClkPol to indicate count direction (ClkSrcA<0>). + | (MULT_X1 << STDBIT_CLKMULT)); // ClkMult must be 1x in Timer mode. + + else // If Counter mode (ClkSrcA<1> == 0): + setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Counter mode. + | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) // Pass through ClkPol. + | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? // Force ClkMult to 1x if not legal, else pass through. + (MULT_X1 << STDBIT_CLKMULT) : + ((cra >> (CRABIT_CLKMULT_A - + STDBIT_CLKMULT)) & + STDMSK_CLKMULT))); + + // Return adjusted counter setup. + return setup; +} + +static uint16_t GetMode_B(comedi_device * dev, enc_private * k) +{ + register uint16_t cra; + register uint16_t crb; + register uint16_t setup; + + // Fetch CRA and CRB register images. + cra = DEBIread(dev, k->MyCRA); + crb = DEBIread(dev, k->MyCRB); + + // Populate the standardized counter setup bit fields. Note: + // IndexSrc is restricted to ENC_X or IndxPol. + setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) // IntSrc = IntSrcB. + | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcB. + | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) // LoadSrc = LoadSrcB. + | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) // IndxPol = IndxPolB. + | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) // ClkEnab = ClkEnabB. + | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); // IndxSrc = IndxSrcB<1>. + + // Adjust mode-dependent parameters. + if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) // If Extender mode (ClkMultB == MULT_X0): + setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) // Indicate Extender mode. + | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x. + | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>). + + else if (cra & (2 << CRABIT_CLKSRC_B)) // If Timer mode (ClkSrcB<1> == 1): + setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode. + | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x. + | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>). + + else // If Counter mode (ClkSrcB<1> == 0): + setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Timer mode. + | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) // Clock multiplier is passed through. + | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); // Clock polarity is passed through. + + // Return adjusted counter setup. + return setup; +} + +///////////////////////////////////////////////////////////////////////////////////////////// +// Set the operating mode for the specified counter. The setup +// parameter is treated as a COUNTER_SETUP data type. The following +// parameters are programmable (all other parms are ignored): ClkMult, +// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. + +static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup, + uint16_t DisableIntSrc) +{ + register uint16_t cra; + register uint16_t crb; + register uint16_t setup = Setup; // Cache the Standard Setup. + + // Initialize CRA and CRB images. + cra = ((setup & CRAMSK_LOADSRC_A) // Preload trigger is passed through. + | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); // IndexSrc is restricted to ENC_X or IndxPol. + + crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A // Reset any pending CounterA event captures. + | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); // Clock enable is passed through. + + // Force IntSrc to Disabled if DisableIntSrc is asserted. + if (!DisableIntSrc) + cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - + CRABIT_INTSRC_A)); + + // Populate all mode-dependent attributes of CRA & CRB images. + switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { + case CLKSRC_EXTENDER: // Extender Mode: Force to Timer mode + // (Extender valid only for B counters). + + case CLKSRC_TIMER: // Timer Mode: + cra |= ((2 << CRABIT_CLKSRC_A) // ClkSrcA<1> selects system clock + | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) // with count direction (ClkSrcA<0>) obtained from ClkPol. + | (1 << CRABIT_CLKPOL_A) // ClkPolA behaves as always-on clock enable. + | (MULT_X1 << CRABIT_CLKMULT_A)); // ClkMult must be 1x. + break; + + default: // Counter Mode: + cra |= (CLKSRC_COUNTER // Select ENC_C and ENC_D as clock/direction inputs. + | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) // Clock polarity is passed through. + | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force multiplier to x1 if not legal, otherwise pass through. + (MULT_X1 << CRABIT_CLKMULT_A) : + ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A - + STDBIT_CLKMULT)))); + } + + // Force positive index polarity if IndxSrc is software-driven only, + // otherwise pass it through. + if (~setup & STDMSK_INDXSRC) + cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A - + STDBIT_INDXPOL)); + + // If IntSrc has been forced to Disabled, update the MISC2 interrupt + // enable mask to indicate the counter interrupt is disabled. + if (DisableIntSrc) + devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; + + // While retaining CounterB and LatchSrc configurations, program the + // new counter operating mode. + DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra); + DEBIreplace(dev, k->MyCRB, + (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb); +} + +static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup, + uint16_t DisableIntSrc) +{ + register uint16_t cra; + register uint16_t crb; + register uint16_t setup = Setup; // Cache the Standard Setup. + + // Initialize CRA and CRB images. + cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); // IndexSrc field is restricted to ENC_X or IndxPol. + + crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B // Reset event captures and disable interrupts. + | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) // Clock enable is passed through. + | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); // Preload trigger source is passed through. + + // Force IntSrc to Disabled if DisableIntSrc is asserted. + if (!DisableIntSrc) + crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - + CRBBIT_INTSRC_B)); + + // Populate all mode-dependent attributes of CRA & CRB images. + switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { + case CLKSRC_TIMER: // Timer Mode: + cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB<1> selects system clock + | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction (ClkSrcB<0>) obtained from ClkPol. + crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB behaves as always-on clock enable. + | (MULT_X1 << CRBBIT_CLKMULT_B)); // ClkMultB must be 1x. + break; + + case CLKSRC_EXTENDER: // Extender Mode: + cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB source is OverflowA (same as "timer") + | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction obtained from ClkPol. + crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB controls IndexB -- always set to active. + | (MULT_X0 << CRBBIT_CLKMULT_B)); // ClkMultB selects OverflowA as the clock source. + break; + + default: // Counter Mode: + cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); // Select ENC_C and ENC_D as clock/direction inputs. + crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) // ClkPol is passed through. + | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force ClkMult to x1 if not legal, otherwise pass through. + (MULT_X1 << CRBBIT_CLKMULT_B) : + ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B - + STDBIT_CLKMULT)))); + } + + // Force positive index polarity if IndxSrc is software-driven only, + // otherwise pass it through. + if (~setup & STDMSK_INDXSRC) + crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL - + CRBBIT_INDXPOL_B)); + + // If IntSrc has been forced to Disabled, update the MISC2 interrupt + // enable mask to indicate the counter interrupt is disabled. + if (DisableIntSrc) + devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; + + // While retaining CounterA and LatchSrc configurations, program the + // new counter operating mode. + DEBIreplace(dev, k->MyCRA, + (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra); + DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb); +} + +//////////////////////////////////////////////////////////////////////// +// Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. + +static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab) +{ + DEBUG("SetEnable_A: SetEnable_A enter 3541\n"); + DEBIreplace(dev, k->MyCRB, + (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), + (uint16_t) (enab << CRBBIT_CLKENAB_A)); +} + +static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab) +{ + DEBIreplace(dev, k->MyCRB, + (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)), + (uint16_t) (enab << CRBBIT_CLKENAB_B)); +} + +static uint16_t GetEnable_A(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1; +} + +static uint16_t GetEnable_B(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1; +} + +//////////////////////////////////////////////////////////////////////// +// Return/set a counter pair's latch trigger source. 0: On read +// access, 1: A index latches A, 2: B index latches B, 3: A overflow +// latches B. + +static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value) +{ + DEBUG("SetLatchSource: SetLatchSource enter 3550 \n"); + DEBIreplace(dev, k->MyCRB, + (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)), + (uint16_t) (value << CRBBIT_LATCHSRC)); + + DEBUG("SetLatchSource: SetLatchSource exit \n"); +} + +/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */ +/* { */ +/* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */ +/* } */ + +///////////////////////////////////////////////////////////////////////// +// Return/set the event that will trigger transfer of the preload +// register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow, +// 2=OverflowA (B counters only), 3=disabled. + +static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig) +{ + DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A), + (uint16_t) (Trig << CRABIT_LOADSRC_A)); +} + +static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig) +{ + DEBIreplace(dev, k->MyCRB, + (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)), + (uint16_t) (Trig << CRBBIT_LOADSRC_B)); +} + +static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3; +} + +static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3; +} + +//////////////////// +// Return/set counter interrupt source and clear any captured +// index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly, +// 2=IndexOnly, 3=IndexAndOverflow. + +static void SetIntSrc_A(comedi_device * dev, enc_private * k, + uint16_t IntSource) +{ + // Reset any pending counter overflow or index captures. + DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), + CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A); + + // Program counter interrupt source. + DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A, + (uint16_t) (IntSource << CRABIT_INTSRC_A)); + + // Update MISC2 interrupt enable mask. + devpriv->CounterIntEnabs = + (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k-> + MyEventBits[IntSource]; +} + +static void SetIntSrc_B(comedi_device * dev, enc_private * k, + uint16_t IntSource) +{ + uint16_t crb; + + // Cache writeable CRB register image. + crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; + + // Reset any pending counter overflow or index captures. + DEBIwrite(dev, k->MyCRB, + (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B)); + + // Program counter interrupt source. + DEBIwrite(dev, k->MyCRB, + (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource << + CRBBIT_INTSRC_B))); + + // Update MISC2 interrupt enable mask. + devpriv->CounterIntEnabs = + (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k-> + MyEventBits[IntSource]; +} + +static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3; +} + +static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k) +{ + return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3; +} + +///////////////////////////////////////////////////////////////////////// +// Return/set the clock multiplier. + +/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */ +/* { */ +/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */ +/* } */ + +/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) */ +/* { */ +/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */ +/* } */ + +/* ////////////////////////////////////////////////////////////////////////// */ +/* // Return/set the clock polarity. */ + +/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */ +/* { */ +/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */ +/* } */ + +/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) */ +/* { */ +/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */ +/* } */ + +/* /////////////////////////////////////////////////////////////////////// */ +/* // Return/set the clock source. */ + +/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */ +/* { */ +/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */ +/* } */ + +/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ) */ +/* { */ +/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */ +/* } */ + +/* //////////////////////////////////////////////////////////////////////// */ +/* // Return/set the index polarity. */ + +/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */ +/* { */ +/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */ +/* } */ + +/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k ) */ +/* { */ +/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */ +/* } */ + +/* //////////////////////////////////////////////////////////////////////// */ +/* // Return/set the index source. */ + +/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */ +/* { */ +/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */ +/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */ +/* } */ + +/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k ) */ +/* { */ +/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */ +/* } */ + +/////////////////////////////////////////////////////////////////// +// Generate an index pulse. + +static void PulseIndex_A(comedi_device * dev, enc_private * k) +{ + register uint16_t cra; + + DEBUG("PulseIndex_A: pulse index enter\n"); + + cra = DEBIread(dev, k->MyCRA); // Pulse index. + DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A)); + DEBUG("PulseIndex_A: pulse index step1\n"); + DEBIwrite(dev, k->MyCRA, cra); +} + +static void PulseIndex_B(comedi_device * dev, enc_private * k) +{ + register uint16_t crb; + + crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; // Pulse index. + DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B)); + DEBIwrite(dev, k->MyCRB, crb); +} + +///////////////////////////////////////////////////////// +// Write value into counter preload register. + +static void Preload(comedi_device * dev, enc_private * k, uint32_t value) +{ + DEBUG("Preload: preload enter\n"); + DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); // Write value to preload register. + DEBUG("Preload: preload step 1\n"); + DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2), + (uint16_t) (value >> 16)); +} + +static void CountersInit(comedi_device * dev) +{ + int chan; + enc_private *k; + uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon + // index. + (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index. + (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is counter. + (CLKPOL_POS << BF_CLKPOL) | // Active high clock. + (CNTDIR_UP << BF_CLKPOL) | // Count direction is up. + (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x. + (CLKENAB_INDEX << BF_CLKENAB); // Enabled by index + + // Disable all counter interrupts and clear any captured counter events. + for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) { + k = &encpriv[chan]; + k->SetMode(dev, k, Setup, TRUE); + k->SetIntSrc(dev, k, 0); + k->ResetCapFlags(dev, k); + k->SetEnable(dev, k, CLKENAB_ALWAYS); + } + DEBUG("CountersInit: counters initialized \n"); + +} diff --git a/drivers/staging/comedi/drivers/s626.h b/drivers/staging/comedi/drivers/s626.h new file mode 100644 index 0000000..11d8b1c --- /dev/null +++ b/drivers/staging/comedi/drivers/s626.h @@ -0,0 +1,802 @@ +/* + comedi/drivers/s626.h + Sensoray s626 Comedi driver, header file + + COMEDI - Linux Control and Measurement Device Interface + Copyright (C) 2000 David A. Schleef <ds@schleef.org> + + Based on Sensoray Model 626 Linux driver Version 0.2 + Copyright (C) 2002-2004 Sensoray Co., Inc. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + +*/ + +/* + Driver: s626.o (s626.ko) + Description: Sensoray 626 driver + Devices: Sensoray s626 + Authors: Gianluca Palli <gpalli@deis.unibo.it>, + Updated: Thu, 12 Jul 2005 + Status: experimental + + Configuration Options: + analog input: + none + + analog output: + none + + digital channel: + s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels + supported configuration options: + INSN_CONFIG_DIO_QUERY + COMEDI_INPUT + COMEDI_OUTPUT + + encoder: + Every channel must be configured before reading. + + Example code + + insn.insn=INSN_CONFIG; //configuration instruction + insn.n=1; //number of operation (must be 1) + insn.data=&initialvalue; //initial value loaded into encoder + //during configuration + insn.subdev=5; //encoder subdevice + insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel + //to configure + + comedi_do_insn(cf,&insn); //executing configuration +*/ + +#ifdef _DEBUG_ +#define DEBUG(...); rt_printk(__VA_ARGS__); +#else +#define DEBUG(...) +#endif + +#if !defined(TRUE) +#define TRUE (1) +#endif + +#if !defined(FALSE) +#define FALSE (0) +#endif + +#if !defined(EXTERN) +#if defined(__cplusplus) +#define EXTERN extern "C" +#else +#define EXTERN extern +#endif +#endif + +#if !defined(INLINE) +#define INLINE static __inline +#endif + +///////////////////////////////////////////////////// +#include<linux/slab.h> + +#define S626_SIZE 0x0200 +#define SIZEOF_ADDRESS_SPACE 0x0200 +#define DMABUF_SIZE 4096 // 4k pages + +#define S626_ADC_CHANNELS 16 +#define S626_DAC_CHANNELS 4 +#define S626_ENCODER_CHANNELS 6 +#define S626_DIO_CHANNELS 48 +#define S626_DIO_BANKS 3 // Number of DIO groups. +#define S626_DIO_EXTCHANS 40 // Number of + // extended-capability + // DIO channels. + +#define NUM_TRIMDACS 12 // Number of valid TrimDAC channels. + +// PCI bus interface types. +#define INTEL 1 // Intel bus type. +#define MOTOROLA 2 // Motorola bus type. + +////////////////////////////////////////////////////////// + +////////////////////////////////////////////////////////// +#define PLATFORM INTEL // *** SELECT PLATFORM TYPE *** +////////////////////////////////////////////////////////// + +#define RANGE_5V 0x10 // +/-5V range +#define RANGE_10V 0x00 // +/-10V range + +#define EOPL 0x80 // End of ADC poll list marker. +#define GSEL_BIPOLAR5V 0x00F0 // LP_GSEL setting for 5V bipolar range. +#define GSEL_BIPOLAR10V 0x00A0 // LP_GSEL setting for 10V bipolar range. + +// Error codes that must be visible to this base class. +#define ERR_ILLEGAL_PARM 0x00010000 // Illegal function parameter value was specified. +#define ERR_I2C 0x00020000 // I2C error. +#define ERR_COUNTERSETUP 0x00200000 // Illegal setup specified for counter channel. +#define ERR_DEBI_TIMEOUT 0x00400000 // DEBI transfer timed out. + +// Organization (physical order) and size (in DWORDs) of logical DMA buffers contained by ANA_DMABUF. +#define ADC_DMABUF_DWORDS 40 // ADC DMA buffer must hold 16 samples, plus pre/post garbage samples. +#define DAC_WDMABUF_DWORDS 1 // DAC output DMA buffer holds a single sample. + +// All remaining space in 4KB DMA buffer is available for the RPS1 program. + +// Address offsets, in DWORDS, from base of DMA buffer. +#define DAC_WDMABUF_OS ADC_DMABUF_DWORDS + +// Interrupt enab bit in ISR and IER. +#define IRQ_GPIO3 0x00000040 // IRQ enable for GPIO3. +#define IRQ_RPS1 0x10000000 +#define ISR_AFOU 0x00000800 // Audio fifo + // under/overflow + // detected. +#define IRQ_COINT1A 0x0400 // conter 1A overflow + // interrupt mask +#define IRQ_COINT1B 0x0800 // conter 1B overflow + // interrupt mask +#define IRQ_COINT2A 0x1000 // conter 2A overflow + // interrupt mask +#define IRQ_COINT2B 0x2000 // conter 2B overflow + // interrupt mask +#define IRQ_COINT3A 0x4000 // conter 3A overflow + // interrupt mask +#define IRQ_COINT3B 0x8000 // conter 3B overflow + // interrupt mask + +// RPS command codes. +#define RPS_CLRSIGNAL 0x00000000 // CLEAR SIGNAL +#define RPS_SETSIGNAL 0x10000000 // SET SIGNAL +#define RPS_NOP 0x00000000 // NOP +#define RPS_PAUSE 0x20000000 // PAUSE +#define RPS_UPLOAD 0x40000000 // UPLOAD +#define RPS_JUMP 0x80000000 // JUMP +#define RPS_LDREG 0x90000100 // LDREG (1 uint32_t only) +#define RPS_STREG 0xA0000100 // STREG (1 uint32_t only) +#define RPS_STOP 0x50000000 // STOP +#define RPS_IRQ 0x60000000 // IRQ + +#define RPS_LOGICAL_OR 0x08000000 // Logical OR conditionals. +#define RPS_INVERT 0x04000000 // Test for negated semaphores. +#define RPS_DEBI 0x00000002 // DEBI done + +#define RPS_SIG0 0x00200000 // RPS semaphore 0 (used by ADC). +#define RPS_SIG1 0x00400000 // RPS semaphore 1 (used by DAC). +#define RPS_SIG2 0x00800000 // RPS semaphore 2 (not used). +#define RPS_GPIO2 0x00080000 // RPS GPIO2 +#define RPS_GPIO3 0x00100000 // RPS GPIO3 + +#define RPS_SIGADC RPS_SIG0 // Trigger/status for ADC's RPS program. +#define RPS_SIGDAC RPS_SIG1 // Trigger/status for DAC's RPS program. + +// RPS clock parameters. +#define RPSCLK_SCALAR 8 // This is apparent ratio of PCI/RPS clks (undocumented!!). +#define RPSCLK_PER_US ( 33 / RPSCLK_SCALAR ) // Number of RPS clocks in one microsecond. + +// Event counter source addresses. +#define SBA_RPS_A0 0x27 // Time of RPS0 busy, in PCI clocks. + +// GPIO constants. +#define GPIO_BASE 0x10004000 // GPIO 0,2,3 = inputs, GPIO3 = IRQ; GPIO1 = out. +#define GPIO1_LO 0x00000000 // GPIO1 set to LOW. +#define GPIO1_HI 0x00001000 // GPIO1 set to HIGH. + +// Primary Status Register (PSR) constants. +#define PSR_DEBI_E 0x00040000 // DEBI event flag. +#define PSR_DEBI_S 0x00080000 // DEBI status flag. +#define PSR_A2_IN 0x00008000 // Audio output DMA2 protection address reached. +#define PSR_AFOU 0x00000800 // Audio FIFO under/overflow detected. +#define PSR_GPIO2 0x00000020 // GPIO2 input pin: 0=AdcBusy, 1=AdcIdle. +#define PSR_EC0S 0x00000001 // Event counter 0 threshold reached. + +// Secondary Status Register (SSR) constants. +#define SSR_AF2_OUT 0x00000200 // Audio 2 output FIFO under/overflow detected. + +// Master Control Register 1 (MC1) constants. +#define MC1_SOFT_RESET 0x80000000 // Invoke 7146 soft reset. +#define MC1_SHUTDOWN 0x3FFF0000 // Shut down all MC1-controlled enables. + +#define MC1_ERPS1 0x2000 // enab/disable RPS task 1. +#define MC1_ERPS0 0x1000 // enab/disable RPS task 0. +#define MC1_DEBI 0x0800 // enab/disable DEBI pins. +#define MC1_AUDIO 0x0200 // enab/disable audio port pins. +#define MC1_I2C 0x0100 // enab/disable I2C interface. +#define MC1_A2OUT 0x0008 // enab/disable transfer on A2 out. +#define MC1_A2IN 0x0004 // enab/disable transfer on A2 in. +#define MC1_A1IN 0x0001 // enab/disable transfer on A1 in. + +// Master Control Register 2 (MC2) constants. +#define MC2_UPLD_DEBIq 0x00020002 // Upload DEBI registers. +#define MC2_UPLD_IICq 0x00010001 // Upload I2C registers. +#define MC2_RPSSIG2_ONq 0x20002000 // Assert RPS_SIG2. +#define MC2_RPSSIG1_ONq 0x10001000 // Assert RPS_SIG1. +#define MC2_RPSSIG0_ONq 0x08000800 // Assert RPS_SIG0. +#define MC2_UPLD_DEBI_MASKq 0x00000002 // Upload DEBI mask. +#define MC2_UPLD_IIC_MASKq 0x00000001 // Upload I2C mask. +#define MC2_RPSSIG2_MASKq 0x00002000 // RPS_SIG2 bit mask. +#define MC2_RPSSIG1_MASKq 0x00001000 // RPS_SIG1 bit mask. +#define MC2_RPSSIG0_MASKq 0x00000800 // RPS_SIG0 bit mask. + +#define MC2_DELAYTRIG_4USq MC2_RPSSIG1_ON +#define MC2_DELAYBUSY_4USq MC2_RPSSIG1_MASK + +#define MC2_DELAYTRIG_6USq MC2_RPSSIG2_ON +#define MC2_DELAYBUSY_6USq MC2_RPSSIG2_MASK + +#define MC2_UPLD_DEBI 0x0002 // Upload DEBI. +#define MC2_UPLD_IIC 0x0001 // Upload I2C. +#define MC2_RPSSIG2 0x2000 // RPS signal 2 (not used). +#define MC2_RPSSIG1 0x1000 // RPS signal 1 (DAC RPS busy). +#define MC2_RPSSIG0 0x0800 // RPS signal 0 (ADC RPS busy). + +#define MC2_ADC_RPS MC2_RPSSIG0 // ADC RPS busy. +#define MC2_DAC_RPS MC2_RPSSIG1 // DAC RPS busy. + +///////////////////oldies/////////// +#define MC2_UPLD_DEBIQ 0x00020002 // Upload DEBI registers. +#define MC2_UPLD_IICQ 0x00010001 // Upload I2C registers. +//////////////////////////////////////// + +// PCI BUS (SAA7146) REGISTER ADDRESS OFFSETS //////////////////////// +#define P_PCI_BT_A 0x004C // Audio DMA + // burst/threshold + // control. +#define P_DEBICFG 0x007C // DEBI configuration. +#define P_DEBICMD 0x0080 // DEBI command. +#define P_DEBIPAGE 0x0084 // DEBI page. +#define P_DEBIAD 0x0088 // DEBI target address. +#define P_I2CCTRL 0x008C // I2C control. +#define P_I2CSTAT 0x0090 // I2C status. +#define P_BASEA2_IN 0x00AC // Audio input 2 base + // physical DMAbuf + // address. +#define P_PROTA2_IN 0x00B0 // Audio input 2 + // physical DMAbuf + // protection address. +#define P_PAGEA2_IN 0x00B4 // Audio input 2 + // paging attributes. +#define P_BASEA2_OUT 0x00B8 // Audio output 2 base + // physical DMAbuf + // address. +#define P_PROTA2_OUT 0x00BC // Audio output 2 + // physical DMAbuf + // protection address. +#define P_PAGEA2_OUT 0x00C0 // Audio output 2 + // paging attributes. +#define P_RPSPAGE0 0x00C4 // RPS0 page. +#define P_RPSPAGE1 0x00C8 // RPS1 page. +#define P_RPS0_TOUT 0x00D4 // RPS0 time-out. +#define P_RPS1_TOUT 0x00D8 // RPS1 time-out. +#define P_IER 0x00DC // Interrupt enable. +#define P_GPIO 0x00E0 // General-purpose I/O. +#define P_EC1SSR 0x00E4 // Event counter set 1 + // source select. +#define P_ECT1R 0x00EC // Event counter + // threshold set 1. +#define P_ACON1 0x00F4 // Audio control 1. +#define P_ACON2 0x00F8 // Audio control 2. +#define P_MC1 0x00FC // Master control 1. +#define P_MC2 0x0100 // Master control 2. +#define P_RPSADDR0 0x0104 // RPS0 instruction pointer. +#define P_RPSADDR1 0x0108 // RPS1 instruction pointer. +#define P_ISR 0x010C // Interrupt status. +#define P_PSR 0x0110 // Primary status. +#define P_SSR 0x0114 // Secondary status. +#define P_EC1R 0x0118 // Event counter set 1. +#define P_ADP4 0x0138 // Logical audio DMA + // pointer of audio + // input FIFO A2_IN. +#define P_FB_BUFFER1 0x0144 // Audio feedback buffer 1. +#define P_FB_BUFFER2 0x0148 // Audio feedback buffer 2. +#define P_TSL1 0x0180 // Audio time slot list 1. +#define P_TSL2 0x01C0 // Audio time slot list 2. + +// LOCAL BUS (GATE ARRAY) REGISTER ADDRESS OFFSETS ///////////////// +// Analog I/O registers: +#define LP_DACPOL 0x0082 // Write DAC polarity. +#define LP_GSEL 0x0084 // Write ADC gain. +#define LP_ISEL 0x0086 // Write ADC channel select. +// Digital I/O (write only): +#define LP_WRINTSELA 0x0042 // Write A interrupt enable. +#define LP_WREDGSELA 0x0044 // Write A edge selection. +#define LP_WRCAPSELA 0x0046 // Write A capture enable. +#define LP_WRDOUTA 0x0048 // Write A digital output. +#define LP_WRINTSELB 0x0052 // Write B interrupt enable. +#define LP_WREDGSELB 0x0054 // Write B edge selection. +#define LP_WRCAPSELB 0x0056 // Write B capture enable. +#define LP_WRDOUTB 0x0058 // Write B digital output. +#define LP_WRINTSELC 0x0062 // Write C interrupt enable. +#define LP_WREDGSELC 0x0064 // Write C edge selection. +#define LP_WRCAPSELC 0x0066 // Write C capture enable. +#define LP_WRDOUTC 0x0068 // Write C digital output. + +// Digital I/O (read only): +#define LP_RDDINA 0x0040 // Read digital input. +#define LP_RDCAPFLGA 0x0048 // Read edges captured. +#define LP_RDINTSELA 0x004A // Read interrupt + // enable register. +#define LP_RDEDGSELA 0x004C // Read edge + // selection + // register. +#define LP_RDCAPSELA 0x004E // Read capture + // enable register. +#define LP_RDDINB 0x0050 // Read digital input. +#define LP_RDCAPFLGB 0x0058 // Read edges captured. +#define LP_RDINTSELB 0x005A // Read interrupt + // enable register. +#define LP_RDEDGSELB 0x005C // Read edge + // selection + // register. +#define LP_RDCAPSELB 0x005E // Read capture + // enable register. +#define LP_RDDINC 0x0060 // Read digital input. +#define LP_RDCAPFLGC 0x0068 // Read edges captured. +#define LP_RDINTSELC 0x006A // Read interrupt + // enable register. +#define LP_RDEDGSELC 0x006C // Read edge + // selection + // register. +#define LP_RDCAPSELC 0x006E // Read capture + // enable register. +// Counter Registers (read/write): +#define LP_CR0A 0x0000 // 0A setup register. +#define LP_CR0B 0x0002 // 0B setup register. +#define LP_CR1A 0x0004 // 1A setup register. +#define LP_CR1B 0x0006 // 1B setup register. +#define LP_CR2A 0x0008 // 2A setup register. +#define LP_CR2B 0x000A // 2B setup register. +// Counter PreLoad (write) and Latch (read) Registers: +#define LP_CNTR0ALSW 0x000C // 0A lsw. +#define LP_CNTR0AMSW 0x000E // 0A msw. +#define LP_CNTR0BLSW 0x0010 // 0B lsw. +#define LP_CNTR0BMSW 0x0012 // 0B msw. +#define LP_CNTR1ALSW 0x0014 // 1A lsw. +#define LP_CNTR1AMSW 0x0016 // 1A msw. +#define LP_CNTR1BLSW 0x0018 // 1B lsw. +#define LP_CNTR1BMSW 0x001A // 1B msw. +#define LP_CNTR2ALSW 0x001C // 2A lsw. +#define LP_CNTR2AMSW 0x001E // 2A msw. +#define LP_CNTR2BLSW 0x0020 // 2B lsw. +#define LP_CNTR2BMSW 0x0022 // 2B msw. +// Miscellaneous Registers (read/write): +#define LP_MISC1 0x0088 // Read/write Misc1. +#define LP_WRMISC2 0x0090 // Write Misc2. +#define LP_RDMISC2 0x0082 // Read Misc2. + +// Bit masks for MISC1 register that are the same for reads and writes. +#define MISC1_WENABLE 0x8000 // enab writes to + // MISC2 (except Clear + // Watchdog bit). +#define MISC1_WDISABLE 0x0000 // Disable writes to MISC2. +#define MISC1_EDCAP 0x1000 // enab edge capture + // on DIO chans + // specified by + // LP_WRCAPSELx. +#define MISC1_NOEDCAP 0x0000 // Disable edge + // capture on + // specified DIO + // chans. + +// Bit masks for MISC1 register reads. +#define RDMISC1_WDTIMEOUT 0x4000 // Watchdog timer timed out. + +// Bit masks for MISC2 register writes. +#define WRMISC2_WDCLEAR 0x8000 // Reset watchdog + // timer to zero. +#define WRMISC2_CHARGE_ENABLE 0x4000 // enab battery + // trickle charging. + +// Bit masks for MISC2 register that are the same for reads and writes. +#define MISC2_BATT_ENABLE 0x0008 // Backup battery enable. +#define MISC2_WDENABLE 0x0004 // Watchdog timer enable. +#define MISC2_WDPERIOD_MASK 0x0003 // Watchdog interval + // select mask. + +// Bit masks for ACON1 register. +#define A2_RUN 0x40000000 // Run A2 based on TSL2. +#define A1_RUN 0x20000000 // Run A1 based on TSL1. +#define A1_SWAP 0x00200000 // Use big-endian for A1. +#define A2_SWAP 0x00100000 // Use big-endian for A2. +#define WS_MODES 0x00019999 // WS0 = TSL1 trigger + // input, WS1-WS4 = + // CS* outputs. + +#if PLATFORM == INTEL // Base ACON1 config: + // always run A1 based + // on TSL1. +#define ACON1_BASE ( WS_MODES | A1_RUN ) +#elif PLATFORM == MOTOROLA +#define ACON1_BASE ( WS_MODES | A1_RUN | A1_SWAP | A2_SWAP ) +#endif + +#define ACON1_ADCSTART ACON1_BASE // Start ADC: run A1 + // based on TSL1. +#define ACON1_DACSTART ( ACON1_BASE | A2_RUN ) // Start + // transmit to + // DAC: run A2 + // based on + // TSL2. +#define ACON1_DACSTOP ACON1_BASE // Halt A2. + +// Bit masks for ACON2 register. +#define A1_CLKSRC_BCLK1 0x00000000 // A1 bit rate = BCLK1 (ADC). +#define A2_CLKSRC_X1 0x00800000 // A2 bit rate = ACLK/1 (DACs). +#define A2_CLKSRC_X2 0x00C00000 // A2 bit rate = ACLK/2 (DACs). +#define A2_CLKSRC_X4 0x01400000 // A2 bit rate = ACLK/4 (DACs). +#define INVERT_BCLK2 0x00100000 // Invert BCLK2 (DACs). +#define BCLK2_OE 0x00040000 // enab BCLK2 (DACs). +#define ACON2_XORMASK 0x000C0000 // XOR mask for ACON2 + // active-low bits. + +#define ACON2_INIT ( ACON2_XORMASK ^ ( A1_CLKSRC_BCLK1 | A2_CLKSRC_X2 | INVERT_BCLK2 | BCLK2_OE ) ) + +// Bit masks for timeslot records. +#define WS1 0x40000000 // WS output to assert. +#define WS2 0x20000000 +#define WS3 0x10000000 +#define WS4 0x08000000 +#define RSD1 0x01000000 // Shift A1 data in on SD1. +#define SDW_A1 0x00800000 // Store rcv'd char at + // next char slot of + // DWORD1 buffer. +#define SIB_A1 0x00400000 // Store rcv'd char at + // next char slot of + // FB1 buffer. +#define SF_A1 0x00200000 // Write unsigned long + // buffer to input + // FIFO. + +//Select parallel-to-serial converter's data source: +#define XFIFO_0 0x00000000 // Data fifo byte 0. +#define XFIFO_1 0x00000010 // Data fifo byte 1. +#define XFIFO_2 0x00000020 // Data fifo byte 2. +#define XFIFO_3 0x00000030 // Data fifo byte 3. +#define XFB0 0x00000040 // FB_BUFFER byte 0. +#define XFB1 0x00000050 // FB_BUFFER byte 1. +#define XFB2 0x00000060 // FB_BUFFER byte 2. +#define XFB3 0x00000070 // FB_BUFFER byte 3. +#define SIB_A2 0x00000200 // Store next dword + // from A2's input + // shifter to FB2 + // buffer. +#define SF_A2 0x00000100 // Store next dword + // from A2's input + // shifter to its + // input fifo. +#define LF_A2 0x00000080 // Load next dword + // from A2's output + // fifo into its + // output dword + // buffer. +#define XSD2 0x00000008 // Shift data out on SD2. +#define RSD3 0x00001800 // Shift data in on SD3. +#define RSD2 0x00001000 // Shift data in on SD2. +#define LOW_A2 0x00000002 // Drive last SD low + // for 7 clks, then + // tri-state. +#define EOS 0x00000001 // End of superframe. + +////////////////////// + +// I2C configuration constants. +#define I2C_CLKSEL 0x0400 // I2C bit rate = + // PCIclk/480 = 68.75 + // KHz. +#define I2C_BITRATE 68.75 // I2C bus data bit + // rate (determined by + // I2C_CLKSEL) in KHz. +#define I2C_WRTIME 15.0 // Worst case time,in + // msec, for EEPROM + // internal write op. + +// I2C manifest constants. + +// Max retries to wait for EEPROM write. +#define I2C_RETRIES ( I2C_WRTIME * I2C_BITRATE / 9.0 ) +#define I2C_ERR 0x0002 // I2C control/status + // flag ERROR. +#define I2C_BUSY 0x0001 // I2C control/status + // flag BUSY. +#define I2C_ABORT 0x0080 // I2C status flag ABORT. +#define I2C_ATTRSTART 0x3 // I2C attribute START. +#define I2C_ATTRCONT 0x2 // I2C attribute CONT. +#define I2C_ATTRSTOP 0x1 // I2C attribute STOP. +#define I2C_ATTRNOP 0x0 // I2C attribute NOP. + +// I2C read command | EEPROM address. +#define I2CR ( devpriv->I2CAdrs | 1 ) + +// I2C write command | EEPROM address. +#define I2CW ( devpriv->I2CAdrs ) + +// Code macros used for constructing I2C command bytes. +#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) ) +#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) ) +#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) ) + +//////////////////////////////////////////////////////// +//oldest +#define P_DEBICFGq 0x007C // DEBI configuration. +#define P_DEBICMDq 0x0080 // DEBI command. +#define P_DEBIPAGEq 0x0084 // DEBI page. +#define P_DEBIADq 0x0088 // DEBI target address. + +#define DEBI_CFG_TOQ 0x03C00000 // timeout (15 PCI cycles) +#define DEBI_CFG_FASTQ 0x10000000 // fast mode enable +#define DEBI_CFG_16Q 0x00080000 // 16-bit access enable +#define DEBI_CFG_INCQ 0x00040000 // enable address increment +#define DEBI_CFG_TIMEROFFQ 0x00010000 // disable timer +#define DEBI_CMD_RDQ 0x00050000 // read immediate 2 bytes +#define DEBI_CMD_WRQ 0x00040000 // write immediate 2 bytes +#define DEBI_PAGE_DISABLEQ 0x00000000 // paging disable + +/////////////////////////////////////////// +// DEBI command constants. +#define DEBI_CMD_SIZE16 ( 2 << 17 ) // Transfer size is + // always 2 bytes. +#define DEBI_CMD_READ 0x00010000 // Read operation. +#define DEBI_CMD_WRITE 0x00000000 // Write operation. + +// Read immediate 2 bytes. +#define DEBI_CMD_RDWORD ( DEBI_CMD_READ | DEBI_CMD_SIZE16 ) + +// Write immediate 2 bytes. +#define DEBI_CMD_WRWORD ( DEBI_CMD_WRITE | DEBI_CMD_SIZE16 ) + +// DEBI configuration constants. +#define DEBI_CFG_XIRQ_EN 0x80000000 // enab external + // interrupt on GPIO3. +#define DEBI_CFG_XRESUME 0x40000000 // Resume block + // transfer when XIRQ + // deasserted. +#define DEBI_CFG_FAST 0x10000000 // Fast mode enable. + +// 4-bit field that specifies DEBI timeout value in PCI clock cycles: +#define DEBI_CFG_TOUT_BIT 22 // Finish DEBI cycle after + // this many clocks. + +// 2-bit field that specifies Endian byte lane steering: +#define DEBI_CFG_SWAP_NONE 0x00000000 // Straight - don't + // swap any bytes + // (Intel). +#define DEBI_CFG_SWAP_2 0x00100000 // 2-byte swap (Motorola). +#define DEBI_CFG_SWAP_4 0x00200000 // 4-byte swap. +#define DEBI_CFG_16 0x00080000 // Slave is able to + // serve 16-bit + // cycles. + +#define DEBI_CFG_SLAVE16 0x00080000 // Slave is able to + // serve 16-bit + // cycles. +#define DEBI_CFG_INC 0x00040000 // enab address + // increment for block + // transfers. +#define DEBI_CFG_INTEL 0x00020000 // Intel style local bus. +#define DEBI_CFG_TIMEROFF 0x00010000 // Disable timer. + +#if PLATFORM == INTEL + +#define DEBI_TOUT 7 // Wait 7 PCI clocks + // (212 ns) before + // polling RDY. + +// Intel byte lane steering (pass through all byte lanes). +#define DEBI_SWAP DEBI_CFG_SWAP_NONE + +#elif PLATFORM == MOTOROLA + +#define DEBI_TOUT 15 // Wait 15 PCI clocks (454 ns) + // maximum before timing out. +#define DEBI_SWAP DEBI_CFG_SWAP_2 // Motorola byte lane steering. + +#endif + +// DEBI page table constants. +#define DEBI_PAGE_DISABLE 0x00000000 // Paging disable. + +///////////////////EXTRA FROM OTHER SANSORAY * .h//////// + +// LoadSrc values: +#define LOADSRC_INDX 0 // Preload core in response to + // Index. +#define LOADSRC_OVER 1 // Preload core in response to + // Overflow. +#define LOADSRCB_OVERA 2 // Preload B core in response + // to A Overflow. +#define LOADSRC_NONE 3 // Never preload core. + +// IntSrc values: +#define INTSRC_NONE 0 // Interrupts disabled. +#define INTSRC_OVER 1 // Interrupt on Overflow. +#define INTSRC_INDX 2 // Interrupt on Index. +#define INTSRC_BOTH 3 // Interrupt on Index or Overflow. + +// LatchSrc values: +#define LATCHSRC_AB_READ 0 // Latch on read. +#define LATCHSRC_A_INDXA 1 // Latch A on A Index. +#define LATCHSRC_B_INDXB 2 // Latch B on B Index. +#define LATCHSRC_B_OVERA 3 // Latch B on A Overflow. + +// IndxSrc values: +#define INDXSRC_HARD 0 // Hardware or software index. +#define INDXSRC_SOFT 1 // Software index only. + +// IndxPol values: +#define INDXPOL_POS 0 // Index input is active high. +#define INDXPOL_NEG 1 // Index input is active low. + +// ClkSrc values: +#define CLKSRC_COUNTER 0 // Counter mode. +#define CLKSRC_TIMER 2 // Timer mode. +#define CLKSRC_EXTENDER 3 // Extender mode. + +// ClkPol values: +#define CLKPOL_POS 0 // Counter/Extender clock is + // active high. +#define CLKPOL_NEG 1 // Counter/Extender clock is + // active low. +#define CNTDIR_UP 0 // Timer counts up. +#define CNTDIR_DOWN 1 // Timer counts down. + +// ClkEnab values: +#define CLKENAB_ALWAYS 0 // Clock always enabled. +#define CLKENAB_INDEX 1 // Clock is enabled by index. + +// ClkMult values: +#define CLKMULT_4X 0 // 4x clock multiplier. +#define CLKMULT_2X 1 // 2x clock multiplier. +#define CLKMULT_1X 2 // 1x clock multiplier. + +// Bit Field positions in COUNTER_SETUP structure: +#define BF_LOADSRC 9 // Preload trigger. +#define BF_INDXSRC 7 // Index source. +#define BF_INDXPOL 6 // Index polarity. +#define BF_CLKSRC 4 // Clock source. +#define BF_CLKPOL 3 // Clock polarity/count direction. +#define BF_CLKMULT 1 // Clock multiplier. +#define BF_CLKENAB 0 // Clock enable. + +// Enumerated counter operating modes specified by ClkSrc bit field in +// a COUNTER_SETUP. + +#define CLKSRC_COUNTER 0 // Counter: ENC_C clock, ENC_D + // direction. +#define CLKSRC_TIMER 2 // Timer: SYS_C clock, + // direction specified by + // ClkPol. +#define CLKSRC_EXTENDER 3 // Extender: OVR_A clock, + // ENC_D direction. + +// Enumerated counter clock multipliers. + +#define MULT_X0 0x0003 // Supports no multipliers; + // fixed physical multiplier = + // 3. +#define MULT_X1 0x0002 // Supports multiplier x1; + // fixed physical multiplier = + // 2. +#define MULT_X2 0x0001 // Supports multipliers x1, + // x2; physical multipliers = + // 1 or 2. +#define MULT_X4 0x0000 // Supports multipliers x1, + // x2, x4; physical + // multipliers = 0, 1 or 2. + +// Sanity-check limits for parameters. + +#define NUM_COUNTERS 6 // Maximum valid counter + // logical channel number. +#define NUM_INTSOURCES 4 +#define NUM_LATCHSOURCES 4 +#define NUM_CLKMULTS 4 +#define NUM_CLKSOURCES 4 +#define NUM_CLKPOLS 2 +#define NUM_INDEXPOLS 2 +#define NUM_INDEXSOURCES 2 +#define NUM_LOADTRIGS 4 + +// Bit field positions in CRA and CRB counter control registers. + +// Bit field positions in CRA: +#define CRABIT_INDXSRC_B 14 // B index source. +#define CRABIT_CLKSRC_B 12 // B clock source. +#define CRABIT_INDXPOL_A 11 // A index polarity. +#define CRABIT_LOADSRC_A 9 // A preload trigger. +#define CRABIT_CLKMULT_A 7 // A clock multiplier. +#define CRABIT_INTSRC_A 5 // A interrupt source. +#define CRABIT_CLKPOL_A 4 // A clock polarity. +#define CRABIT_INDXSRC_A 2 // A index source. +#define CRABIT_CLKSRC_A 0 // A clock source. + +// Bit field positions in CRB: +#define CRBBIT_INTRESETCMD 15 // Interrupt reset command. +#define CRBBIT_INTRESET_B 14 // B interrupt reset enable. +#define CRBBIT_INTRESET_A 13 // A interrupt reset enable. +#define CRBBIT_CLKENAB_A 12 // A clock enable. +#define CRBBIT_INTSRC_B 10 // B interrupt source. +#define CRBBIT_LATCHSRC 8 // A/B latch source. +#define CRBBIT_LOADSRC_B 6 // B preload trigger. +#define CRBBIT_CLKMULT_B 3 // B clock multiplier. +#define CRBBIT_CLKENAB_B 2 // B clock enable. +#define CRBBIT_INDXPOL_B 1 // B index polarity. +#define CRBBIT_CLKPOL_B 0 // B clock polarity. + +// Bit field masks for CRA and CRB. + +#define CRAMSK_INDXSRC_B ( (uint16_t)( 3 << CRABIT_INDXSRC_B) ) +#define CRAMSK_CLKSRC_B ( (uint16_t)( 3 << CRABIT_CLKSRC_B) ) +#define CRAMSK_INDXPOL_A ( (uint16_t)( 1 << CRABIT_INDXPOL_A) ) +#define CRAMSK_LOADSRC_A ( (uint16_t)( 3 << CRABIT_LOADSRC_A) ) +#define CRAMSK_CLKMULT_A ( (uint16_t)( 3 << CRABIT_CLKMULT_A) ) +#define CRAMSK_INTSRC_A ( (uint16_t)( 3 << CRABIT_INTSRC_A) ) +#define CRAMSK_CLKPOL_A ( (uint16_t)( 3 << CRABIT_CLKPOL_A) ) +#define CRAMSK_INDXSRC_A ( (uint16_t)( 3 << CRABIT_INDXSRC_A) ) +#define CRAMSK_CLKSRC_A ( (uint16_t)( 3 << CRABIT_CLKSRC_A) ) + +#define CRBMSK_INTRESETCMD ( (uint16_t)( 1 << CRBBIT_INTRESETCMD) ) +#define CRBMSK_INTRESET_B ( (uint16_t)( 1 << CRBBIT_INTRESET_B) ) +#define CRBMSK_INTRESET_A ( (uint16_t)( 1 << CRBBIT_INTRESET_A) ) +#define CRBMSK_CLKENAB_A ( (uint16_t)( 1 << CRBBIT_CLKENAB_A) ) +#define CRBMSK_INTSRC_B ( (uint16_t)( 3 << CRBBIT_INTSRC_B) ) +#define CRBMSK_LATCHSRC ( (uint16_t)( 3 << CRBBIT_LATCHSRC) ) +#define CRBMSK_LOADSRC_B ( (uint16_t)( 3 << CRBBIT_LOADSRC_B) ) +#define CRBMSK_CLKMULT_B ( (uint16_t)( 3 << CRBBIT_CLKMULT_B) ) +#define CRBMSK_CLKENAB_B ( (uint16_t)( 1 << CRBBIT_CLKENAB_B) ) +#define CRBMSK_INDXPOL_B ( (uint16_t)( 1 << CRBBIT_INDXPOL_B) ) +#define CRBMSK_CLKPOL_B ( (uint16_t)( 1 << CRBBIT_CLKPOL_B) ) + +#define CRBMSK_INTCTRL ( CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A | CRBMSK_INTRESET_B ) // Interrupt reset control bits. + +// Bit field positions for standardized SETUP structure. + +#define STDBIT_INTSRC 13 +#define STDBIT_LATCHSRC 11 +#define STDBIT_LOADSRC 9 +#define STDBIT_INDXSRC 7 +#define STDBIT_INDXPOL 6 +#define STDBIT_CLKSRC 4 +#define STDBIT_CLKPOL 3 +#define STDBIT_CLKMULT 1 +#define STDBIT_CLKENAB 0 + +// Bit field masks for standardized SETUP structure. + +#define STDMSK_INTSRC ( (uint16_t)( 3 << STDBIT_INTSRC ) ) +#define STDMSK_LATCHSRC ( (uint16_t)( 3 << STDBIT_LATCHSRC ) ) +#define STDMSK_LOADSRC ( (uint16_t)( 3 << STDBIT_LOADSRC ) ) +#define STDMSK_INDXSRC ( (uint16_t)( 1 << STDBIT_INDXSRC ) ) +#define STDMSK_INDXPOL ( (uint16_t)( 1 << STDBIT_INDXPOL ) ) +#define STDMSK_CLKSRC ( (uint16_t)( 3 << STDBIT_CLKSRC ) ) +#define STDMSK_CLKPOL ( (uint16_t)( 1 << STDBIT_CLKPOL ) ) +#define STDMSK_CLKMULT ( (uint16_t)( 3 << STDBIT_CLKMULT ) ) +#define STDMSK_CLKENAB ( (uint16_t)( 1 << STDBIT_CLKENAB ) ) + +////////////////////////////////////////////////////////// + +/* typedef struct indexCounter */ +/* { */ +/* unsigned int ao; */ +/* unsigned int ai; */ +/* unsigned int digout; */ +/* unsigned int digin; */ +/* unsigned int enc; */ +/* }CallCounter; */ + +typedef struct bufferDMA { + dma_addr_t PhysicalBase; + void *LogicalBase; + uint32_t DMAHandle; +} DMABUF; |