diff options
author | John Fastabend <john.r.fastabend@intel.com> | 2011-01-17 08:06:04 +0000 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2011-01-19 23:31:10 -0800 |
commit | 4f57c087de9b46182545676d2c594120a20f2e58 (patch) | |
tree | bb2ed64efcafbf4d8fe2f625b432b554d05fdc47 /net/core | |
parent | e7ed828f10bd89a28f821ae7f20e691704d61923 (diff) | |
download | kernel_samsung_aries-4f57c087de9b46182545676d2c594120a20f2e58.zip kernel_samsung_aries-4f57c087de9b46182545676d2c594120a20f2e58.tar.gz kernel_samsung_aries-4f57c087de9b46182545676d2c594120a20f2e58.tar.bz2 |
net: implement mechanism for HW based QOS
This patch provides a mechanism for lower layer devices to
steer traffic using skb->priority to tx queues. This allows
for hardware based QOS schemes to use the default qdisc without
incurring the penalties related to global state and the qdisc
lock. While reliably receiving skbs on the correct tx ring
to avoid head of line blocking resulting from shuffling in
the LLD. Finally, all the goodness from txq caching and xps/rps
can still be leveraged.
Many drivers and hardware exist with the ability to implement
QOS schemes in the hardware but currently these drivers tend
to rely on firmware to reroute specific traffic, a driver
specific select_queue or the queue_mapping action in the
qdisc.
By using select_queue for this drivers need to be updated for
each and every traffic type and we lose the goodness of much
of the upstream work. Firmware solutions are inherently
inflexible. And finally if admins are expected to build a
qdisc and filter rules to steer traffic this requires knowledge
of how the hardware is currently configured. The number of tx
queues and the queue offsets may change depending on resources.
Also this approach incurs all the overhead of a qdisc with filters.
With the mechanism in this patch users can set skb priority using
expected methods ie setsockopt() or the stack can set the priority
directly. Then the skb will be steered to the correct tx queues
aligned with hardware QOS traffic classes. In the normal case with
single traffic class and all queues in this class everything
works as is until the LLD enables multiple tcs.
To steer the skb we mask out the lower 4 bits of the priority
and allow the hardware to configure upto 15 distinct classes
of traffic. This is expected to be sufficient for most applications
at any rate it is more then the 8021Q spec designates and is
equal to the number of prio bands currently implemented in
the default qdisc.
This in conjunction with a userspace application such as
lldpad can be used to implement 8021Q transmission selection
algorithms one of these algorithms being the extended transmission
selection algorithm currently being used for DCB.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/core')
-rw-r--r-- | net/core/dev.c | 55 |
1 files changed, 54 insertions, 1 deletions
diff --git a/net/core/dev.c b/net/core/dev.c index 2b85d4a..8b1d886 100644 --- a/net/core/dev.c +++ b/net/core/dev.c @@ -1593,6 +1593,48 @@ static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) rcu_read_unlock(); } +/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change + * @dev: Network device + * @txq: number of queues available + * + * If real_num_tx_queues is changed the tc mappings may no longer be + * valid. To resolve this verify the tc mapping remains valid and if + * not NULL the mapping. With no priorities mapping to this + * offset/count pair it will no longer be used. In the worst case TC0 + * is invalid nothing can be done so disable priority mappings. If is + * expected that drivers will fix this mapping if they can before + * calling netif_set_real_num_tx_queues. + */ +void netif_setup_tc(struct net_device *dev, unsigned int txq) +{ + int i; + struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; + + /* If TC0 is invalidated disable TC mapping */ + if (tc->offset + tc->count > txq) { + pr_warning("Number of in use tx queues changed " + "invalidating tc mappings. Priority " + "traffic classification disabled!\n"); + dev->num_tc = 0; + return; + } + + /* Invalidated prio to tc mappings set to TC0 */ + for (i = 1; i < TC_BITMASK + 1; i++) { + int q = netdev_get_prio_tc_map(dev, i); + + tc = &dev->tc_to_txq[q]; + if (tc->offset + tc->count > txq) { + pr_warning("Number of in use tx queues " + "changed. Priority %i to tc " + "mapping %i is no longer valid " + "setting map to 0\n", + i, q); + netdev_set_prio_tc_map(dev, i, 0); + } + } +} + /* * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. @@ -1612,6 +1654,9 @@ int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) if (rc) return rc; + if (dev->num_tc) + netif_setup_tc(dev, txq); + if (txq < dev->real_num_tx_queues) qdisc_reset_all_tx_gt(dev, txq); } @@ -2161,6 +2206,8 @@ u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, unsigned int num_tx_queues) { u32 hash; + u16 qoffset = 0; + u16 qcount = num_tx_queues; if (skb_rx_queue_recorded(skb)) { hash = skb_get_rx_queue(skb); @@ -2169,13 +2216,19 @@ u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, return hash; } + if (dev->num_tc) { + u8 tc = netdev_get_prio_tc_map(dev, skb->priority); + qoffset = dev->tc_to_txq[tc].offset; + qcount = dev->tc_to_txq[tc].count; + } + if (skb->sk && skb->sk->sk_hash) hash = skb->sk->sk_hash; else hash = (__force u16) skb->protocol ^ skb->rxhash; hash = jhash_1word(hash, hashrnd); - return (u16) (((u64) hash * num_tx_queues) >> 32); + return (u16) (((u64) hash * qcount) >> 32) + qoffset; } EXPORT_SYMBOL(__skb_tx_hash); |