aboutsummaryrefslogtreecommitdiffstats
path: root/arch/parisc/kernel/firmware.c
blob: 553f8fe03224f31a03d278b95fd5e9eefe13ebd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
/*
 * arch/parisc/kernel/firmware.c  - safe PDC access routines
 *
 *	PDC == Processor Dependent Code
 *
 * See http://www.parisc-linux.org/documentation/index.html
 * for documentation describing the entry points and calling
 * conventions defined below.
 *
 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
 * Copyright 2004 Thibaut VARENE <varenet@parisc-linux.org>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 */

/*	I think it would be in everyone's best interest to follow this
 *	guidelines when writing PDC wrappers:
 *
 *	 - the name of the pdc wrapper should match one of the macros
 *	   used for the first two arguments
 *	 - don't use caps for random parts of the name
 *	 - use the static PDC result buffers and "copyout" to structs
 *	   supplied by the caller to encapsulate alignment restrictions
 *	 - hold pdc_lock while in PDC or using static result buffers
 *	 - use __pa() to convert virtual (kernel) pointers to physical
 *	   ones.
 *	 - the name of the struct used for pdc return values should equal
 *	   one of the macros used for the first two arguments to the
 *	   corresponding PDC call
 *	 - keep the order of arguments
 *	 - don't be smart (setting trailing NUL bytes for strings, return
 *	   something useful even if the call failed) unless you are sure
 *	   it's not going to affect functionality or performance
 *
 *	Example:
 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
 *	{
 *		int retval;
 *
 *		spin_lock_irq(&pdc_lock);
 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
 *		convert_to_wide(pdc_result);
 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
 *		spin_unlock_irq(&pdc_lock);
 *
 *		return retval;
 *	}
 *					prumpf	991016	
 */

#include <stdarg.h>

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/spinlock.h>

#include <asm/page.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/system.h>
#include <asm/processor.h>	/* for boot_cpu_data */

static DEFINE_SPINLOCK(pdc_lock);
static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));

#ifdef __LP64__
#define WIDE_FIRMWARE 0x1
#define NARROW_FIRMWARE 0x2

/* Firmware needs to be initially set to narrow to determine the 
 * actual firmware width. */
int parisc_narrow_firmware = 1;
#endif

/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
 * and MEM_PDC calls are always the same width as the OS.
 * Some PAT boxes may have 64-bit IODC I/O.
 *
 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
 * This allowed wide kernels to run on Cxxx boxes.
 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
 */

#ifdef __LP64__
long real64_call(unsigned long function, ...);
#endif
long real32_call(unsigned long function, ...);

#ifdef __LP64__
#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
#else
#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
#endif


/**
 * f_extend - Convert PDC addresses to kernel addresses.
 * @address: Address returned from PDC.
 *
 * This function is used to convert PDC addresses into kernel addresses
 * when the PDC address size and kernel address size are different.
 */
static unsigned long f_extend(unsigned long address)
{
#ifdef __LP64__
	if(unlikely(parisc_narrow_firmware)) {
		if((address & 0xff000000) == 0xf0000000)
			return 0xf0f0f0f000000000UL | (u32)address;

		if((address & 0xf0000000) == 0xf0000000)
			return 0xffffffff00000000UL | (u32)address;
	}
#endif
	return address;
}

/**
 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 * @address: The return buffer from PDC.
 *
 * This function is used to convert the return buffer addresses retrieved from PDC
 * into kernel addresses when the PDC address size and kernel address size are
 * different.
 */
static void convert_to_wide(unsigned long *addr)
{
#ifdef __LP64__
	int i;
	unsigned int *p = (unsigned int *)addr;

	if(unlikely(parisc_narrow_firmware)) {
		for(i = 31; i >= 0; --i)
			addr[i] = p[i];
	}
#endif
}

/**
 * set_firmware_width - Determine if the firmware is wide or narrow.
 * 
 * This function must be called before any pdc_* function that uses the convert_to_wide
 * function.
 */
void __init set_firmware_width(void)
{
#ifdef __LP64__
	int retval;

        spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
	convert_to_wide(pdc_result);
	if(pdc_result[0] != NARROW_FIRMWARE)
		parisc_narrow_firmware = 0;
        spin_unlock_irq(&pdc_lock);
#endif
}

/**
 * pdc_emergency_unlock - Unlock the linux pdc lock
 *
 * This call unlocks the linux pdc lock in case we need some PDC functions
 * (like pdc_add_valid) during kernel stack dump.
 */
void pdc_emergency_unlock(void)
{
 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
        if (spin_is_locked(&pdc_lock))
		spin_unlock(&pdc_lock);
}


/**
 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 * @address: Address to be verified.
 *
 * This PDC call attempts to read from the specified address and verifies
 * if the address is valid.
 * 
 * The return value is PDC_OK (0) in case accessing this address is valid.
 */
int pdc_add_valid(unsigned long address)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
        spin_unlock_irq(&pdc_lock);

        return retval;
}
EXPORT_SYMBOL(pdc_add_valid);

/**
 * pdc_chassis_info - Return chassis information.
 * @result: The return buffer.
 * @chassis_info: The memory buffer address.
 * @len: The size of the memory buffer address.
 *
 * An HVERSION dependent call for returning the chassis information.
 */
int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
        memcpy(&pdc_result2, led_info, len);
        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
                              __pa(pdc_result), __pa(pdc_result2), len);
        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
        memcpy(led_info, pdc_result2, len);
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 * @retval: -1 on error, 0 on success. Other value are PDC errors
 * 
 * Must be correctly formatted or expect system crash
 */
#ifdef __LP64__
int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
{
	int retval = 0;
        
	if (!is_pdc_pat())
		return -1;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
	spin_unlock_irq(&pdc_lock);

	return retval;
}
#endif

/**
 * pdc_chassis_disp - Updates display
 * @retval: -1 on error, 0 on success
 *
 * Works on old PDC only (E class, others?)
 */
int pdc_chassis_disp(unsigned long disp)
{
	int retval = 0;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 * @pdc_coproc_info: Return buffer address.
 *
 * This PDC call returns the presence and status of all the coprocessors
 * attached to the processor.
 */
int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
        convert_to_wide(pdc_result);
        pdc_coproc_info->ccr_functional = pdc_result[0];
        pdc_coproc_info->ccr_present = pdc_result[1];
        pdc_coproc_info->revision = pdc_result[17];
        pdc_coproc_info->model = pdc_result[18];
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_iodc_read - Read data from the modules IODC.
 * @actcnt: The actual number of bytes.
 * @hpa: The HPA of the module for the iodc read.
 * @index: The iodc entry point.
 * @iodc_data: A buffer memory for the iodc options.
 * @iodc_data_size: Size of the memory buffer.
 *
 * This PDC call reads from the IODC of the module specified by the hpa
 * argument.
 */
int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
		  void *iodc_data, unsigned int iodc_data_size)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
			      index, __pa(pdc_result2), iodc_data_size);
	convert_to_wide(pdc_result);
	*actcnt = pdc_result[0];
	memcpy(iodc_data, pdc_result2, iodc_data_size);
	spin_unlock_irq(&pdc_lock);

	return retval;
}
EXPORT_SYMBOL(pdc_iodc_read);

/**
 * pdc_system_map_find_mods - Locate unarchitected modules.
 * @pdc_mod_info: Return buffer address.
 * @mod_path: pointer to dev path structure.
 * @mod_index: fixed address module index.
 *
 * To locate and identify modules which reside at fixed I/O addresses, which
 * do not self-identify via architected bus walks.
 */
int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
			     struct pdc_module_path *mod_path, long mod_index)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
			      __pa(pdc_result2), mod_index);
	convert_to_wide(pdc_result);
	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
	spin_unlock_irq(&pdc_lock);

	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
	return retval;
}

/**
 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 * @pdc_addr_info: Return buffer address.
 * @mod_index: Fixed address module index.
 * @addr_index: Address range index.
 * 
 * Retrieve additional information about subsequent address ranges for modules
 * with multiple address ranges.  
 */
int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
			      long mod_index, long addr_index)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
			      mod_index, addr_index);
	convert_to_wide(pdc_result);
	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
	spin_unlock_irq(&pdc_lock);

	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
	return retval;
}

/**
 * pdc_model_info - Return model information about the processor.
 * @model: The return buffer.
 *
 * Returns the version numbers, identifiers, and capabilities from the processor module.
 */
int pdc_model_info(struct pdc_model *model) 
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
	convert_to_wide(pdc_result);
	memcpy(model, pdc_result, sizeof(*model));
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_model_sysmodel - Get the system model name.
 * @name: A char array of at least 81 characters.
 *
 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L)
 */
int pdc_model_sysmodel(char *name)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
                              OS_ID_HPUX, __pa(name));
        convert_to_wide(pdc_result);

        if (retval == PDC_OK) {
                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
        } else {
                name[0] = 0;
        }
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_model_versions - Identify the version number of each processor.
 * @cpu_id: The return buffer.
 * @id: The id of the processor to check.
 *
 * Returns the version number for each processor component.
 *
 * This comment was here before, but I do not know what it means :( -RB
 * id: 0 = cpu revision, 1 = boot-rom-version
 */
int pdc_model_versions(unsigned long *versions, int id)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
        convert_to_wide(pdc_result);
        *versions = pdc_result[0];
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_model_cpuid - Returns the CPU_ID.
 * @cpu_id: The return buffer.
 *
 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 * the processor module.
 */
int pdc_model_cpuid(unsigned long *cpu_id)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
        convert_to_wide(pdc_result);
        *cpu_id = pdc_result[0];
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_model_capabilities - Returns the platform capabilities.
 * @capabilities: The return buffer.
 *
 * Returns information about platform support for 32- and/or 64-bit
 * OSes, IO-PDIR coherency, and virtual aliasing.
 */
int pdc_model_capabilities(unsigned long *capabilities)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
        convert_to_wide(pdc_result);
        *capabilities = pdc_result[0];
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/**
 * pdc_cache_info - Return cache and TLB information.
 * @cache_info: The return buffer.
 *
 * Returns information about the processor's cache and TLB.
 */
int pdc_cache_info(struct pdc_cache_info *cache_info)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
        convert_to_wide(pdc_result);
        memcpy(cache_info, pdc_result, sizeof(*cache_info));
        spin_unlock_irq(&pdc_lock);

        return retval;
}

#ifndef CONFIG_PA20
/**
 * pdc_btlb_info - Return block TLB information.
 * @btlb: The return buffer.
 *
 * Returns information about the hardware Block TLB.
 */
int pdc_btlb_info(struct pdc_btlb_info *btlb) 
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
        memcpy(btlb, pdc_result, sizeof(*btlb));
        spin_unlock_irq(&pdc_lock);

        if(retval < 0) {
                btlb->max_size = 0;
        }
        return retval;
}

/**
 * pdc_mem_map_hpa - Find fixed module information.  
 * @address: The return buffer
 * @mod_path: pointer to dev path structure.
 *
 * This call was developed for S700 workstations to allow the kernel to find
 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 * call.
 *
 * This call is supported by all existing S700 workstations (up to  Gecko).
 */
int pdc_mem_map_hpa(struct pdc_memory_map *address,
		struct pdc_module_path *mod_path)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
				__pa(pdc_result2));
        memcpy(address, pdc_result, sizeof(*address));
        spin_unlock_irq(&pdc_lock);

        return retval;
}
#endif	/* !CONFIG_PA20 */

/**
 * pdc_lan_station_id - Get the LAN address.
 * @lan_addr: The return buffer.
 * @hpa: The network device HPA.
 *
 * Get the LAN station address when it is not directly available from the LAN hardware.
 */
int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
			__pa(pdc_result), hpa);
	if (retval < 0) {
		/* FIXME: else read MAC from NVRAM */
		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
	} else {
		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
	}
	spin_unlock_irq(&pdc_lock);

	return retval;
}
EXPORT_SYMBOL(pdc_lan_station_id);

/**
 * pdc_stable_read - Read data from Stable Storage.
 * @staddr: Stable Storage address to access.
 * @memaddr: The memory address where Stable Storage data shall be copied.
 * @count: number of bytes to transfert. count is multiple of 4.
 *
 * This PDC call reads from the Stable Storage address supplied in staddr
 * and copies count bytes to the memory address memaddr.
 * The call will fail if staddr+count > PDC_STABLE size.
 */
int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
{
       int retval;

       spin_lock_irq(&pdc_lock);
       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
               __pa(pdc_result), count);
       convert_to_wide(pdc_result);
       memcpy(memaddr, pdc_result, count);
       spin_unlock_irq(&pdc_lock);

       return retval;
}
EXPORT_SYMBOL(pdc_stable_read);

/**
 * pdc_stable_write - Write data to Stable Storage.
 * @staddr: Stable Storage address to access.
 * @memaddr: The memory address where Stable Storage data shall be read from.
 * @count: number of bytes to transfert. count is multiple of 4.
 *
 * This PDC call reads count bytes from the supplied memaddr address,
 * and copies count bytes to the Stable Storage address staddr.
 * The call will fail if staddr+count > PDC_STABLE size.
 */
int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
{
       int retval;

       spin_lock_irq(&pdc_lock);
       memcpy(pdc_result, memaddr, count);
       convert_to_wide(pdc_result);
       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
               __pa(pdc_result), count);
       spin_unlock_irq(&pdc_lock);

       return retval;
}
EXPORT_SYMBOL(pdc_stable_write);

/**
 * pdc_stable_get_size - Get Stable Storage size in bytes.
 * @size: pointer where the size will be stored.
 *
 * This PDC call returns the number of bytes in the processor's Stable
 * Storage, which is the number of contiguous bytes implemented in Stable
 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 * which is a multiple of four.
 */
int pdc_stable_get_size(unsigned long *size)
{
       int retval;

       spin_lock_irq(&pdc_lock);
       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
       *size = pdc_result[0];
       spin_unlock_irq(&pdc_lock);

       return retval;
}
EXPORT_SYMBOL(pdc_stable_get_size);

/**
 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 *
 * This PDC call is meant to be used to check the integrity of the current
 * contents of Stable Storage.
 */
int pdc_stable_verify_contents(void)
{
       int retval;

       spin_lock_irq(&pdc_lock);
       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
       spin_unlock_irq(&pdc_lock);

       return retval;
}
EXPORT_SYMBOL(pdc_stable_verify_contents);

/**
 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 * the validity indicator.
 *
 * This PDC call will erase all contents of Stable Storage. Use with care!
 */
int pdc_stable_initialize(void)
{
       int retval;

       spin_lock_irq(&pdc_lock);
       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
       spin_unlock_irq(&pdc_lock);

       return retval;
}
EXPORT_SYMBOL(pdc_stable_initialize);

/**
 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 * @hwpath: fully bc.mod style path to the device.
 * @initiator: the array to return the result into
 *
 * Get the SCSI operational parameters from PDC.
 * Needed since HPUX never used BIOS or symbios card NVRAM.
 * Most ncr/sym cards won't have an entry and just use whatever
 * capabilities of the card are (eg Ultra, LVD). But there are
 * several cases where it's useful:
 *    o set SCSI id for Multi-initiator clusters,
 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 *    o bus width exported is less than what the interface chip supports.
 */
int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
{
	int retval;

	spin_lock_irq(&pdc_lock);

/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)

	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
			      __pa(pdc_result), __pa(hwpath));
	if (retval < PDC_OK)
		goto out;

	if (pdc_result[0] < 16) {
		initiator->host_id = pdc_result[0];
	} else {
		initiator->host_id = -1;
	}

	/*
	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
	 */
	switch (pdc_result[1]) {
		case  1: initiator->factor = 50; break;
		case  2: initiator->factor = 25; break;
		case  5: initiator->factor = 12; break;
		case 25: initiator->factor = 10; break;
		case 20: initiator->factor = 12; break;
		case 40: initiator->factor = 10; break;
		default: initiator->factor = -1; break;
	}

	if (IS_SPROCKETS()) {
		initiator->width = pdc_result[4];
		initiator->mode = pdc_result[5];
	} else {
		initiator->width = -1;
		initiator->mode = -1;
	}

 out:
	spin_unlock_irq(&pdc_lock);
	return (retval >= PDC_OK);
}
EXPORT_SYMBOL(pdc_get_initiator);


/**
 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 * @num_entries: The return value.
 * @hpa: The HPA for the device.
 *
 * This PDC function returns the number of entries in the specified cell's
 * interrupt table.
 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 */ 
int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
			      __pa(pdc_result), hpa);
	convert_to_wide(pdc_result);
	*num_entries = pdc_result[0];
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/** 
 * pdc_pci_irt - Get the PCI interrupt routing table.
 * @num_entries: The number of entries in the table.
 * @hpa: The Hard Physical Address of the device.
 * @tbl: 
 *
 * Get the PCI interrupt routing table for the device at the given HPA.
 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 */
int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
{
	int retval;

	BUG_ON((unsigned long)tbl & 0x7);

	spin_lock_irq(&pdc_lock);
	pdc_result[0] = num_entries;
	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
			      __pa(pdc_result), hpa, __pa(tbl));
	spin_unlock_irq(&pdc_lock);

	return retval;
}


#if 0	/* UNTEST CODE - left here in case someone needs it */

/** 
 * pdc_pci_config_read - read PCI config space.
 * @hpa		token from PDC to indicate which PCI device
 * @pci_addr	configuration space address to read from
 *
 * Read PCI Configuration space *before* linux PCI subsystem is running.
 */
unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
{
	int retval;
	spin_lock_irq(&pdc_lock);
	pdc_result[0] = 0;
	pdc_result[1] = 0;
	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
	spin_unlock_irq(&pdc_lock);
	return retval ? ~0 : (unsigned int) pdc_result[0];
}


/** 
 * pdc_pci_config_write - read PCI config space.
 * @hpa		token from PDC to indicate which PCI device
 * @pci_addr	configuration space address to write
 * @val		value we want in the 32-bit register
 *
 * Write PCI Configuration space *before* linux PCI subsystem is running.
 */
void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
{
	int retval;
	spin_lock_irq(&pdc_lock);
	pdc_result[0] = 0;
	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
			      __pa(pdc_result), hpa,
			      cfg_addr&~3UL, 4UL, (unsigned long) val);
	spin_unlock_irq(&pdc_lock);
	return retval;
}
#endif /* UNTESTED CODE */

/**
 * pdc_tod_read - Read the Time-Of-Day clock.
 * @tod: The return buffer:
 *
 * Read the Time-Of-Day clock
 */
int pdc_tod_read(struct pdc_tod *tod)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
        convert_to_wide(pdc_result);
        memcpy(tod, pdc_result, sizeof(*tod));
        spin_unlock_irq(&pdc_lock);

        return retval;
}
EXPORT_SYMBOL(pdc_tod_read);

/**
 * pdc_tod_set - Set the Time-Of-Day clock.
 * @sec: The number of seconds since epoch.
 * @usec: The number of micro seconds.
 *
 * Set the Time-Of-Day clock.
 */ 
int pdc_tod_set(unsigned long sec, unsigned long usec)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
        spin_unlock_irq(&pdc_lock);

        return retval;
}
EXPORT_SYMBOL(pdc_tod_set);

#ifdef __LP64__
int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
		struct pdc_memory_table *tbl, unsigned long entries)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
	convert_to_wide(pdc_result);
	memcpy(r_addr, pdc_result, sizeof(*r_addr));
	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
	spin_unlock_irq(&pdc_lock);

	return retval;
}
#endif /* __LP64__ */

/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 * it later. :)
 */
int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/*
 * pdc_do_reset - Reset the system.
 *
 * Reset the system.
 */
int pdc_do_reset(void)
{
        int retval;

        spin_lock_irq(&pdc_lock);
        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
        spin_unlock_irq(&pdc_lock);

        return retval;
}

/*
 * pdc_soft_power_info - Enable soft power switch.
 * @power_reg: address of soft power register
 *
 * Return the absolute address of the soft power switch register
 */
int __init pdc_soft_power_info(unsigned long *power_reg)
{
	int retval;

	*power_reg = (unsigned long) (-1);
	
	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
	if (retval == PDC_OK) {
                convert_to_wide(pdc_result);
                *power_reg = f_extend(pdc_result[0]);
	}
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/*
 * pdc_soft_power_button - Control the soft power button behaviour
 * @sw_control: 0 for hardware control, 1 for software control 
 *
 *
 * This PDC function places the soft power button under software or
 * hardware control.
 * Under software control the OS may control to when to allow to shut 
 * down the system. Under hardware control pressing the power button 
 * powers off the system immediately.
 */
int pdc_soft_power_button(int sw_control)
{
	int retval;
	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
	spin_unlock_irq(&pdc_lock);
	return retval;
}

/*
 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
 * Primarily a problem on T600 (which parisc-linux doesn't support) but
 * who knows what other platform firmware might do with this OS "hook".
 */
void pdc_io_reset(void)
{
	spin_lock_irq(&pdc_lock);  
	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
	spin_unlock_irq(&pdc_lock);
}

/*
 * pdc_io_reset_devices - Hack to Stop USB controller
 *
 * If PDC used the usb controller, the usb controller
 * is still running and will crash the machines during iommu 
 * setup, because of still running DMA. This PDC call
 * stops the USB controller.
 * Normally called after calling pdc_io_reset().
 */
void pdc_io_reset_devices(void)
{
	spin_lock_irq(&pdc_lock);  
	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
	spin_unlock_irq(&pdc_lock);
}


/**
 * pdc_iodc_putc - Console character print using IODC.
 * @c: the character to output.
 *
 * Note that only these special chars are architected for console IODC io:
 * BEL, BS, CR, and LF. Others are passed through.
 * Since the HP console requires CR+LF to perform a 'newline', we translate
 * "\n" to "\r\n".
 */
void pdc_iodc_putc(unsigned char c)
{
        /* XXX Should we spinlock posx usage */
        static int posx;        /* for simple TAB-Simulation... */
        static int __attribute__((aligned(8)))   iodc_retbuf[32];
        static char __attribute__((aligned(64))) iodc_dbuf[4096];
        unsigned int n;
	unsigned int flags;

        switch (c) {
        case '\n':
                iodc_dbuf[0] = '\r';
                iodc_dbuf[1] = '\n';
                n = 2;
                posx = 0;
                break;
        case '\t':
                pdc_iodc_putc(' ');
                while (posx & 7)        /* expand TAB */
                        pdc_iodc_putc(' ');
                return;         /* return since IODC can't handle this */
        case '\b':
                posx-=2;                /* BS */
        default:
                iodc_dbuf[0] = c;
                n = 1;
                posx++;
                break;
        }

        spin_lock_irqsave(&pdc_lock, flags);
        real32_call(PAGE0->mem_cons.iodc_io,
                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
        spin_unlock_irqrestore(&pdc_lock, flags);
}

/**
 * pdc_iodc_outc - Console character print using IODC (without conversions).
 * @c: the character to output.
 *
 * Write the character directly to the IODC console.
 */
void pdc_iodc_outc(unsigned char c)
{
	unsigned int n, flags;

	/* fill buffer with one caracter and print it */
        static int __attribute__((aligned(8)))   iodc_retbuf[32];
        static char __attribute__((aligned(64))) iodc_dbuf[4096];

	n = 1;
	iodc_dbuf[0] = c;

	spin_lock_irqsave(&pdc_lock, flags);
	real32_call(PAGE0->mem_cons.iodc_io,
		    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
		    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
	spin_unlock_irqrestore(&pdc_lock, flags);
}

/**
 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
 *
 * Read a character (non-blocking) from the PDC console, returns -1 if
 * key is not present.
 */
int pdc_iodc_getc(void)
{
	unsigned int flags;
        static int __attribute__((aligned(8)))   iodc_retbuf[32];
        static char __attribute__((aligned(64))) iodc_dbuf[4096];
	int ch;
	int status;

	/* Bail if no console input device. */
	if (!PAGE0->mem_kbd.iodc_io)
		return 0;
	
	/* wait for a keyboard (rs232)-input */
	spin_lock_irqsave(&pdc_lock, flags);
	real32_call(PAGE0->mem_kbd.iodc_io,
		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);

	ch = *iodc_dbuf;
	status = *iodc_retbuf;
	spin_unlock_irqrestore(&pdc_lock, flags);

	if (status == 0)
	    return -1;
	
	return ch;
}

int pdc_sti_call(unsigned long func, unsigned long flags,
                 unsigned long inptr, unsigned long outputr,
                 unsigned long glob_cfg)
{
        int retval;

        spin_lock_irq(&pdc_lock);  
        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
        spin_unlock_irq(&pdc_lock);

        return retval;
}
EXPORT_SYMBOL(pdc_sti_call);

#ifdef __LP64__
/**
 * pdc_pat_cell_get_number - Returns the cell number.
 * @cell_info: The return buffer.
 *
 * This PDC call returns the cell number of the cell from which the call
 * is made.
 */
int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
	memcpy(cell_info, pdc_result, sizeof(*cell_info));
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_cell_module - Retrieve the cell's module information.
 * @actcnt: The number of bytes written to mem_addr.
 * @ploc: The physical location.
 * @mod: The module index.
 * @view_type: The view of the address type.
 * @mem_addr: The return buffer.
 *
 * This PDC call returns information about each module attached to the cell
 * at the specified location.
 */
int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
			unsigned long view_type, void *mem_addr)
{
	int retval;
	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
			      ploc, mod, view_type, __pa(&result));
	if(!retval) {
		*actcnt = pdc_result[0];
		memcpy(mem_addr, &result, *actcnt);
	}
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_cpu_get_number - Retrieve the cpu number.
 * @cpu_info: The return buffer.
 * @hpa: The Hard Physical Address of the CPU.
 *
 * Retrieve the cpu number for the cpu at the specified HPA.
 */
int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
			      __pa(&pdc_result), hpa);
	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
 * @num_entries: The return value.
 * @cell_num: The target cell.
 *
 * This PDC function returns the number of entries in the specified cell's
 * interrupt table.
 */
int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
			      __pa(pdc_result), cell_num);
	*num_entries = pdc_result[0];
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
 * @r_addr: The return buffer.
 * @cell_num: The target cell.
 *
 * This PDC function returns the actual interrupt table for the specified cell.
 */
int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
			      __pa(r_addr), cell_num);
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
 * @actlen: The return buffer.
 * @mem_addr: Pointer to the memory buffer.
 * @count: The number of bytes to read from the buffer.
 * @offset: The offset with respect to the beginning of the buffer.
 *
 */
int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
			    unsigned long count, unsigned long offset)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
			      __pa(pdc_result2), count, offset);
	*actual_len = pdc_result[0];
	memcpy(mem_addr, pdc_result2, *actual_len);
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
 * @pci_addr: PCI configuration space address for which the read request is being made.
 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
 * @mem_addr: Pointer to return memory buffer.
 *
 */
int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
{
	int retval;
	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
					__pa(pdc_result), pci_addr, pci_size);
	switch(pci_size) {
		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
	}
	spin_unlock_irq(&pdc_lock);

	return retval;
}

/**
 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
 * @pci_addr: PCI configuration space address for which the write  request is being made.
 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
 *         written to PCI Config space.
 *
 */
int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
{
	int retval;

	spin_lock_irq(&pdc_lock);
	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
				pci_addr, pci_size, val);
	spin_unlock_irq(&pdc_lock);

	return retval;
}
#endif /* __LP64__ */


/***************** 32-bit real-mode calls ***********/
/* The struct below is used
 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
 * real32_call_asm() then uses this stack in narrow real mode
 */

struct narrow_stack {
	/* use int, not long which is 64 bits */
	unsigned int arg13;
	unsigned int arg12;
	unsigned int arg11;
	unsigned int arg10;
	unsigned int arg9;
	unsigned int arg8;
	unsigned int arg7;
	unsigned int arg6;
	unsigned int arg5;
	unsigned int arg4;
	unsigned int arg3;
	unsigned int arg2;
	unsigned int arg1;
	unsigned int arg0;
	unsigned int frame_marker[8];
	unsigned int sp;
	/* in reality, there's nearly 8k of stack after this */
};

long real32_call(unsigned long fn, ...)
{
	va_list args;
	extern struct narrow_stack real_stack;
	extern unsigned long real32_call_asm(unsigned int *,
					     unsigned int *, 
					     unsigned int);
	
	va_start(args, fn);
	real_stack.arg0 = va_arg(args, unsigned int);
	real_stack.arg1 = va_arg(args, unsigned int);
	real_stack.arg2 = va_arg(args, unsigned int);
	real_stack.arg3 = va_arg(args, unsigned int);
	real_stack.arg4 = va_arg(args, unsigned int);
	real_stack.arg5 = va_arg(args, unsigned int);
	real_stack.arg6 = va_arg(args, unsigned int);
	real_stack.arg7 = va_arg(args, unsigned int);
	real_stack.arg8 = va_arg(args, unsigned int);
	real_stack.arg9 = va_arg(args, unsigned int);
	real_stack.arg10 = va_arg(args, unsigned int);
	real_stack.arg11 = va_arg(args, unsigned int);
	real_stack.arg12 = va_arg(args, unsigned int);
	real_stack.arg13 = va_arg(args, unsigned int);
	va_end(args);
	
	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
}

#ifdef __LP64__
/***************** 64-bit real-mode calls ***********/

struct wide_stack {
	unsigned long arg0;
	unsigned long arg1;
	unsigned long arg2;
	unsigned long arg3;
	unsigned long arg4;
	unsigned long arg5;
	unsigned long arg6;
	unsigned long arg7;
	unsigned long arg8;
	unsigned long arg9;
	unsigned long arg10;
	unsigned long arg11;
	unsigned long arg12;
	unsigned long arg13;
	unsigned long frame_marker[2];	/* rp, previous sp */
	unsigned long sp;
	/* in reality, there's nearly 8k of stack after this */
};

long real64_call(unsigned long fn, ...)
{
	va_list args;
	extern struct wide_stack real64_stack;
	extern unsigned long real64_call_asm(unsigned long *,
					     unsigned long *, 
					     unsigned long);
    
	va_start(args, fn);
	real64_stack.arg0 = va_arg(args, unsigned long);
	real64_stack.arg1 = va_arg(args, unsigned long);
	real64_stack.arg2 = va_arg(args, unsigned long);
	real64_stack.arg3 = va_arg(args, unsigned long);
	real64_stack.arg4 = va_arg(args, unsigned long);
	real64_stack.arg5 = va_arg(args, unsigned long);
	real64_stack.arg6 = va_arg(args, unsigned long);
	real64_stack.arg7 = va_arg(args, unsigned long);
	real64_stack.arg8 = va_arg(args, unsigned long);
	real64_stack.arg9 = va_arg(args, unsigned long);
	real64_stack.arg10 = va_arg(args, unsigned long);
	real64_stack.arg11 = va_arg(args, unsigned long);
	real64_stack.arg12 = va_arg(args, unsigned long);
	real64_stack.arg13 = va_arg(args, unsigned long);
	va_end(args);
	
	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
}

#endif /* __LP64__ */