aboutsummaryrefslogtreecommitdiffstats
path: root/sound/soc/fsl/fsl_ssi.c
blob: 72823a2b33d62f95694e8e880e4de1a4f1031f82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
 * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
 * under the terms of the GNU General Public License version 2.  This
 * program is licensed "as is" without any warranty of any kind, whether
 * express or implied.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include <asm/immap_86xx.h>

#include "fsl_ssi.h"

/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

/**
 * fsl_ssi_private: per-SSI private data
 *
 * @name: short name for this device ("SSI0", "SSI1", etc)
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
 * @dev: struct device pointer
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
 */
struct fsl_ssi_private {
	char name[8];
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
	struct device *dev;
	unsigned int playback;
	unsigned int capture;
	int asynchronous;
	struct snd_soc_dai cpu_dai;
	struct device_attribute dev_attr;

	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
	sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
		out_be32(&ssi->sisr, sisr2);

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		int ret;

		ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
				  ssi_private->name, ssi_private);
		if (ret < 0) {
			dev_err(substream->pcm->card->dev,
				"could not claim irq %u\n", ssi_private->irq);
			return ret;
		}

		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
		clrsetbits_be32(&ssi->scr,
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
			| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));

		out_be32(&ssi->stcr,
			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
			 CCSR_SSI_STCR_TSCKP);

		out_be32(&ssi->srcr,
			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
			 CCSR_SSI_SRCR_RSCKP);

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

		/* 4. Enable the interrupts and DMA requests */
		out_be32(&ssi->sier,
			 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
			 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
			 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
			 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
			 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
		 * don't use FIFO 1.  Since the SSI only supports stereo, the
		 * watermark should never be an odd number.
		 */
		out_be32(&ssi->sfcsr,
			 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
	}

	if (!ssi_private->first_stream)
		ssi_private->first_stream = substream;
	else {
		/* This is the second stream open, so we need to impose sample
		 * rate and maybe sample size constraints.  Note that this can
		 * cause a race condition if the second stream is opened before
		 * the first stream is fully initialized.
		 *
		 * We provide some protection by checking to make sure the first
		 * stream is initialized, but it's not perfect.  ALSA sometimes
		 * re-initializes the driver with a different sample rate or
		 * size.  If the second stream is opened before the first stream
		 * has received its final parameters, then the second stream may
		 * be constrained to the wrong sample rate or size.
		 *
		 * FIXME: This code does not handle opening and closing streams
		 * repeatedly.  If you open two streams and then close the first
		 * one, you may not be able to open another stream until you
		 * close the second one as well.
		 */
		struct snd_pcm_runtime *first_runtime =
			ssi_private->first_stream->runtime;

		if (!first_runtime->rate || !first_runtime->sample_bits) {
			dev_err(substream->pcm->card->dev,
				"set sample rate and size in %s stream first\n",
				substream->stream == SNDRV_PCM_STREAM_PLAYBACK
				? "capture" : "playback");
			return -EAGAIN;
		}

		snd_pcm_hw_constraint_minmax(substream->runtime,
			SNDRV_PCM_HW_PARAM_RATE,
			first_runtime->rate, first_runtime->rate);

		/* If we're in synchronous mode, then we need to constrain
		 * the sample size as well.  We don't support independent sample
		 * rates in asynchronous mode.
		 */
		if (!ssi_private->asynchronous)
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);

		ssi_private->second_stream = substream;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback++;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture++;

	return 0;
}

/**
 * fsl_ssi_hw_params - program the sample size
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
{
	struct fsl_ssi_private *ssi_private = cpu_dai->private_data;

	if (substream == ssi_private->first_stream) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		unsigned int sample_size =
			snd_pcm_format_width(params_format(hw_params));
		u32 wl = CCSR_SSI_SxCCR_WL(sample_size);

		/* The SSI should always be disabled at this points (SSIEN=0) */

		/* In synchronous mode, the SSI uses STCCR for capture */
		if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
		    !ssi_private->asynchronous)
			clrsetbits_be32(&ssi->stccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
		else
			clrsetbits_be32(&ssi->srccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
	}

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
		else
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
		else
			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback--;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture--;

	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

	/*
	 * If this is the last active substream, disable the SSI and release
	 * the IRQ.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		free_irq(ssi_private->irq, ssi_private);
	}
}

/**
 * fsl_ssi_set_sysclk: set the clock frequency and direction
 *
 * This function is called by the machine driver to tell us what the clock
 * frequency and direction are.
 *
 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
 * and we don't care about the frequency.  Return an error if the direction
 * is not SND_SOC_CLOCK_IN.
 *
 * @clk_id: reserved, should be zero
 * @freq: the frequency of the given clock ID, currently ignored
 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
 */
static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
			      int clk_id, unsigned int freq, int dir)
{

	return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
}

/**
 * fsl_ssi_set_fmt: set the serial format.
 *
 * This function is called by the machine driver to tell us what serial
 * format to use.
 *
 * Currently, we only support I2S mode.  Return an error if the format is
 * not SND_SOC_DAIFMT_I2S.
 *
 * @format: one of SND_SOC_DAIFMT_xxx
 */
static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
{
	return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
}

/**
 * fsl_ssi_dai_template: template CPU DAI for the SSI
 */
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
	.set_sysclk	= fsl_ssi_set_sysclk,
	.set_fmt	= fsl_ssi_set_fmt,
};

static struct snd_soc_dai fsl_ssi_dai_template = {
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.ops = &fsl_ssi_dai_ops,
};

/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
 * Display the statistics for the current SSI device.
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
	container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length;

	length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
	length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
	length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
	length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
	length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
	length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
	length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
	length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
	length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
	length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
	length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
	length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
	length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
	length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
	length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
	length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
	length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
	length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
	length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
	length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
	length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);

	return length;
}

/**
 * fsl_ssi_create_dai: create a snd_soc_dai structure
 *
 * This function is called by the machine driver to create a snd_soc_dai
 * structure.  The function creates an ssi_private object, which contains
 * the snd_soc_dai.  It also creates the sysfs statistics device.
 */
struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
{
	struct snd_soc_dai *fsl_ssi_dai;
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
	struct device_attribute *dev_attr;

	ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
	if (!ssi_private) {
		dev_err(ssi_info->dev, "could not allocate DAI object\n");
		return NULL;
	}
	memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
	       sizeof(struct snd_soc_dai));

	fsl_ssi_dai = &ssi_private->cpu_dai;
	dev_attr = &ssi_private->dev_attr;

	sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
	ssi_private->ssi = ssi_info->ssi;
	ssi_private->ssi_phys = ssi_info->ssi_phys;
	ssi_private->irq = ssi_info->irq;
	ssi_private->dev = ssi_info->dev;
	ssi_private->asynchronous = ssi_info->asynchronous;

	ssi_private->dev->driver_data = fsl_ssi_dai;

	/* Initialize the the device_attribute structure */
	dev_attr->attr.name = "ssi-stats";
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

	ret = device_create_file(ssi_private->dev, dev_attr);
	if (ret) {
		dev_err(ssi_info->dev, "could not create sysfs %s file\n",
			ssi_private->dev_attr.attr.name);
		kfree(fsl_ssi_dai);
		return NULL;
	}

	fsl_ssi_dai->private_data = ssi_private;
	fsl_ssi_dai->name = ssi_private->name;
	fsl_ssi_dai->id = ssi_info->id;
	fsl_ssi_dai->dev = ssi_info->dev;

	ret = snd_soc_register_dai(fsl_ssi_dai);
	if (ret != 0) {
		dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
		kfree(fsl_ssi_dai);
		return NULL;
	}

	return fsl_ssi_dai;
}
EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);

/**
 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
 *
 * This function undoes the operations of fsl_ssi_create_dai()
 */
void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
{
	struct fsl_ssi_private *ssi_private =
	container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);

	device_remove_file(ssi_private->dev, &ssi_private->dev_attr);

	snd_soc_unregister_dai(&ssi_private->cpu_dai);

	kfree(ssi_private);
}
EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);

static int __init fsl_ssi_init(void)
{
	printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");

	return 0;
}
module_init(fsl_ssi_init);

MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
MODULE_LICENSE("GPL");