diff options
author | Jeff Garzik <jeff@garzik.org> | 2006-07-05 14:32:39 -0400 |
---|---|---|
committer | Jeff Garzik <jeff@garzik.org> | 2006-07-05 14:32:39 -0400 |
commit | c0bc8721b8d0380ec69fa97578c91201201b05a9 (patch) | |
tree | b027c9aa8e0d601ebe6c86bddc181c4d4ecc7cda /drivers/net/e1000/e1000_hw.c | |
parent | bce305f4fe779f29d99d414685243f5da0803254 (diff) | |
parent | e4ac9773be2ea01b707da0496ab1527ec6cdda4e (diff) | |
download | kernel_samsung_crespo-c0bc8721b8d0380ec69fa97578c91201201b05a9.zip kernel_samsung_crespo-c0bc8721b8d0380ec69fa97578c91201201b05a9.tar.gz kernel_samsung_crespo-c0bc8721b8d0380ec69fa97578c91201201b05a9.tar.bz2 |
Merge branch 'upstream' of git://lost.foo-projects.org/~ahkok/git/netdev-2.6 into upstream
Conflicts:
drivers/net/e1000/e1000_main.c
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1772 |
1 files changed, 1657 insertions, 115 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 3959039..583518a 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c @@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, #define E1000_WRITE_REG_IO(a, reg, val) \ e1000_write_reg_io((a), E1000_##reg, val) -static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw); +static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, + uint16_t duplex); static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); /* IGP cable length table */ @@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw) hw->phy_type = e1000_phy_igp; break; } + case IGP03E1000_E_PHY_ID: + hw->phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + hw->phy_type = e1000_phy_ife; + break; case GG82563_E_PHY_ID: if (hw->mac_type == e1000_80003es2lan) { hw->phy_type = e1000_phy_gg82563; @@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw) break; case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: hw->mac_type = e1000_82541; break; case E1000_DEV_ID_82541ER: @@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw) hw->mac_type = e1000_82541_rev_2; break; case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: hw->mac_type = e1000_82547; break; case E1000_DEV_ID_82547GI: @@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw) case E1000_DEV_ID_82572EI_COPPER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_82572EI: hw->mac_type = e1000_82572; break; case E1000_DEV_ID_82573E: @@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw) case E1000_DEV_ID_82573L: hw->mac_type = e1000_82573; break; + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->mac_type = e1000_80003es2lan; break; + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IGP_M: + hw->mac_type = e1000_ich8lan; + break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } switch(hw->mac_type) { + case e1000_ich8lan: + hw->swfwhw_semaphore_present = TRUE; + hw->asf_firmware_present = TRUE; + break; case e1000_80003es2lan: hw->swfw_sync_present = TRUE; /* fall through */ @@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw) case e1000_82542_rev2_1: hw->media_type = e1000_media_type_fiber; break; + case e1000_ich8lan: case e1000_82573: /* The STATUS_TBIMODE bit is reserved or reused for the this * device. @@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw) } while(timeout); } + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac_type == e1000_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); + } + /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- @@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw) /* Reset is performed on a shadow of the control register */ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); break; + case e1000_ich8lan: + if (!hw->phy_reset_disable && + e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { + /* e1000_ich8lan PHY HW reset requires MAC CORE reset + * at the same time to make sure the interface between + * MAC and the external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + } + + e1000_get_software_flag(hw); + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + msec_delay(5); + break; default: E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; @@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw) /* fall through */ case e1000_82571: case e1000_82572: + case e1000_ich8lan: case e1000_80003es2lan: ret_val = e1000_get_auto_rd_done(hw); if(ret_val) @@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw) e1000_pci_set_mwi(hw); } + if (hw->mac_type == e1000_ich8lan) { + uint32_t kab = E1000_READ_REG(hw, KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, KABGTXD, kab); + } + return E1000_SUCCESS; } @@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw) /* Disabling VLAN filtering. */ DEBUGOUT("Initializing the IEEE VLAN\n"); - if (hw->mac_type < e1000_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - e1000_clear_vfta(hw); + /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ + if (hw->mac_type != e1000_ich8lan) { + if (hw->mac_type < e1000_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + e1000_clear_vfta(hw); + } /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ if(hw->mac_type == e1000_82542_rev2_0) { @@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw) /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); mta_size = E1000_MC_TBL_SIZE; - for(i = 0; i < mta_size; i++) + if (hw->mac_type == e1000_ich8lan) + mta_size = E1000_MC_TBL_SIZE_ICH8LAN; + for(i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occuring when accessing our register space */ + E1000_WRITE_FLUSH(hw); + } /* Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it @@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw) break; } + /* More time needed for PHY to initialize */ + if (hw->mac_type == e1000_ich8lan) + msec_delay(15); + /* Call a subroutine to configure the link and setup flow control. */ ret_val = e1000_setup_link(hw); @@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw) case e1000_82571: case e1000_82572: case e1000_82573: + case e1000_ich8lan: case e1000_80003es2lan: ctrl |= E1000_TXDCTL_COUNT_DESC; break; @@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw) /* Fall through */ case e1000_82571: case e1000_82572: + case e1000_ich8lan: ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; if(hw->mac_type >= e1000_82571) @@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw) */ e1000_clear_hw_cntrs(hw); + /* ICH8 No-snoop bits are opposite polarity. + * Set to snoop by default after reset. */ + if (hw->mac_type == e1000_ich8lan) + e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); @@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw) */ if (hw->fc == e1000_fc_default) { switch (hw->mac_type) { + case e1000_ich8lan: case e1000_82573: hw->fc = e1000_fc_full; break; @@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw) */ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ + if (hw->mac_type != e1000_ich8lan) { + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + } E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); @@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) /* Wait 10ms for MAC to configure PHY from eeprom settings */ msec_delay(15); - + if (hw->mac_type != e1000_ich8lan) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } /* disable lplu d3 during driver init */ ret_val = e1000_set_d3_lplu_state(hw, FALSE); @@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) if (ret_val) return ret_val; - /* Enable Pass False Carrier on the PHY */ - phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, phy_data); @@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if(hw->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) - return ret_val; - - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) return ret_val; - phy_data |= M88E1000_EPSCR_TX_CLK_25; - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if(ret_val) - return ret_val; + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } } /* SW Reset the PHY so all changes take effect */ @@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) if(hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + /* IFE phy only supports 10/100 */ + if (hw->phy_type == e1000_phy_ife) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); if(ret_val) { @@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw) DEBUGFUNC("e1000_setup_copper_link"); + switch (hw->mac_type) { + case e1000_80003es2lan: + case e1000_ich8lan: + /* Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. */ + ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); + if (ret_val) + return ret_val; + default: + break; + } + /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = e1000_copper_link_preconfig(hw); if(ret_val) @@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw) switch (hw->mac_type) { case e1000_80003es2lan: - ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, - ®_data); - if (ret_val) - return ret_val; + /* Kumeran registers are written-only */ + reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); @@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) } if (hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) { ret_val = e1000_copper_link_igp_setup(hw); if(ret_val) @@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t -e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) +e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) { int32_t ret_val = E1000_SUCCESS; uint32_t tipg; @@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; E1000_WRITE_REG(hw, TIPG, tipg); + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + return ret_val; } @@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; E1000_WRITE_REG(hw, TIPG, tipg); + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + return ret_val; } @@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) if(ret_val) return ret_val; - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if(ret_val) - return ret_val; + if (hw->phy_type != e1000_phy_ife) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } else + mii_1000t_ctrl_reg=0; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for @@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + if (hw->phy_type == e1000_phy_ife) { + DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); + } } /* Check for a software override of the flow control settings, and @@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if(ret_val) - return ret_val; + if (hw->phy_type != e1000_phy_ife) { + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } return E1000_SUCCESS; } @@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) /* Need to reset the PHY or these changes will be ignored */ mii_ctrl_reg |= MII_CR_RESET; + /* Disable MDI-X support for 10/100 */ + } else if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PMC_AUTO_MDIX; + phy_data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); + if (ret_val) + return ret_val; } else { /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed or duplex are forced. @@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw) */ if(hw->tbi_compatibility_en) { uint16_t speed, duplex; - e1000_get_speed_and_duplex(hw, &speed, &duplex); - if(speed != SPEED_1000) { + ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { /* If link speed is not set to gigabit speed, we do not need * to enable TBI compatibility. */ @@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, if (*speed == SPEED_1000) ret_val = e1000_configure_kmrn_for_1000(hw); else - ret_val = e1000_configure_kmrn_for_10_100(hw); + ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); + if (ret_val) + return ret_val; + } + + if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { + ret_val = e1000_kumeran_lock_loss_workaround(hw); if (ret_val) return ret_val; } @@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) DEBUGFUNC("e1000_swfw_sync_acquire"); + if (hw->swfwhw_semaphore_present) + return e1000_get_software_flag(hw); + if (!hw->swfw_sync_present) return e1000_get_hw_eeprom_semaphore(hw); @@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) DEBUGFUNC("e1000_swfw_sync_release"); + if (hw->swfwhw_semaphore_present) { + e1000_release_software_flag(hw); + return; + } + if (!hw->swfw_sync_present) { e1000_put_hw_eeprom_semaphore(hw); return; @@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, if (e1000_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if((hw->phy_type == e1000_phy_igp || + if ((hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, @@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, if (e1000_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if((hw->phy_type == e1000_phy_igp || + if ((hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, @@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) E1000_WRITE_FLUSH(hw); if (hw->mac_type >= e1000_82571) - msec_delay(10); + msec_delay_irq(10); e1000_swfw_sync_release(hw, swfw); } else { /* Read the Extended Device Control Register, assert the PHY_RESET_DIR @@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw) ret_val = e1000_get_phy_cfg_done(hw); e1000_release_software_semaphore(hw); + if ((hw->mac_type == e1000_ich8lan) && + (hw->phy_type == e1000_phy_igp_3)) { + ret_val = e1000_init_lcd_from_nvm(hw); + if (ret_val) + return ret_val; + } return ret_val; } @@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw) case e1000_82541_rev_2: case e1000_82571: case e1000_82572: + case e1000_ich8lan: ret_val = e1000_phy_hw_reset(hw); if(ret_val) return ret_val; + break; default: ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); @@ -3597,11 +3779,120 @@ e1000_phy_reset(struct e1000_hw *hw) } /****************************************************************************** +* Work-around for 82566 power-down: on D3 entry- +* 1) disable gigabit link +* 2) write VR power-down enable +* 3) read it back +* if successful continue, else issue LCD reset and repeat +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +void +e1000_phy_powerdown_workaround(struct e1000_hw *hw) +{ + int32_t reg; + uint16_t phy_data; + int32_t retry = 0; + + DEBUGFUNC("e1000_phy_powerdown_workaround"); + + if (hw->phy_type != e1000_phy_igp_3) + return; + + do { + /* Disable link */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* Write VR power-down enable */ + e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | + IGP3_VR_CTRL_MODE_SHUT); + + /* Read it back and test */ + e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); + + return; + +} + +/****************************************************************************** +* Work-around for 82566 Kumeran PCS lock loss: +* On link status change (i.e. PCI reset, speed change) and link is up and +* speed is gigabit- +* 0) if workaround is optionally disabled do nothing +* 1) wait 1ms for Kumeran link to come up +* 2) check Kumeran Diagnostic register PCS lock loss bit +* 3) if not set the link is locked (all is good), otherwise... +* 4) reset the PHY +* 5) repeat up to 10 times +* Note: this is only called for IGP3 copper when speed is 1gb. +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +int32_t +e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) +{ + int32_t ret_val; + int32_t reg; + int32_t cnt; + uint16_t phy_data; + + if (hw->kmrn_lock_loss_workaround_disabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouls up link + * stability */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + + if (phy_data & MII_SR_LINK_STATUS) { + for (cnt = 0; cnt < 10; cnt++) { + /* read once to clear */ + ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + e1000_phy_hw_reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* unable to acquire PCS lock */ + return E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code ******************************************************************************/ -static int32_t +int32_t e1000_detect_gig_phy(struct e1000_hw *hw) { int32_t phy_init_status, ret_val; @@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw) /* The 82571 firmware may still be configuring the PHY. In this * case, we cannot access the PHY until the configuration is done. So * we explicitly set the PHY values. */ - if(hw->mac_type == e1000_82571 || - hw->mac_type == e1000_82572) { + if (hw->mac_type == e1000_82571 || + hw->mac_type == e1000_82572) { hw->phy_id = IGP01E1000_I_PHY_ID; hw->phy_type = e1000_phy_igp_2; return E1000_SUCCESS; @@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw) /* Read the PHY ID Registers to identify which PHY is onboard. */ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if(ret_val) + if (ret_val) return ret_val; hw->phy_id = (uint32_t) (phy_id_high << 16); @@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw) case e1000_80003es2lan: if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; break; + case e1000_ich8lan: + if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; + break; default: DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; @@ -3784,6 +4081,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, } /****************************************************************************** +* Get PHY information from various PHY registers for ife PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +e1000_phy_ife_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, polarity; + + DEBUGFUNC("e1000_phy_ife_get_info"); + + phy_info->downshift = (e1000_downshift)hw->speed_downgraded; + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; + + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + phy_info->polarity_correction = + (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> + IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; + + if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced. */ + polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> + IFE_PSC_FORCE_POLARITY_SHIFT; + } + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> + IFE_PMC_MDIX_MODE_SHIFT; + + return E1000_SUCCESS; +} + +/****************************************************************************** * Get PHY information from various PHY registers fot m88 PHY only. * * hw - Struct containing variables accessed by shared code @@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw, return -E1000_ERR_CONFIG; } - if(hw->phy_type == e1000_phy_igp || + if (hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) return e1000_phy_igp_get_info(hw, phy_info); + else if (hw->phy_type == e1000_phy_ife) + return e1000_phy_ife_get_info(hw, phy_info); else return e1000_phy_m88_get_info(hw, phy_info); } @@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw) eeprom->use_eerd = TRUE; eeprom->use_eewr = FALSE; break; + case e1000_ich8lan: + { + int32_t i = 0; + uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); + + eeprom->type = e1000_eeprom_ich8; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + eeprom->word_size = E1000_SHADOW_RAM_WORDS; + + /* Zero the shadow RAM structure. But don't load it from NVM + * so as to save time for driver init */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + + hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * + ICH8_FLASH_SECTOR_SIZE; + + hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; + hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); + hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; + hw->flash_bank_size /= 2 * sizeof(uint16_t); + + break; + } default: break; } @@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw, return ret_val; } - if(eeprom->type == e1000_eeprom_spi) { + if (eeprom->type == e1000_eeprom_ich8) + return e1000_read_eeprom_ich8(hw, offset, words, data); + + if (eeprom->type == e1000_eeprom_spi) { uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; @@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); - if(hw->mac_type == e1000_82573) { + if (hw->mac_type == e1000_ich8lan) + return FALSE; + + if (hw->mac_type == e1000_82573) { eecd = E1000_READ_REG(hw, EECD); /* Isolate bits 15 & 16 */ @@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) } } - for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + if (hw->mac_type == e1000_ich8lan) { + /* Drivers must allocate the shadow ram structure for the + * EEPROM checksum to be updated. Otherwise, this bit as well + * as the checksum must both be set correctly for this + * validation to pass. + */ + e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); + if ((eeprom_data & 0x40) == 0) { + eeprom_data |= 0x40; + e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); + e1000_update_eeprom_checksum(hw); + } + } + + for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw) { + uint32_t ctrl_ext; uint16_t checksum = 0; uint16_t i, eeprom_data; @@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) return -E1000_ERR_EEPROM; } else if (hw->eeprom.type == e1000_eeprom_flash) { e1000_commit_shadow_ram(hw); + } else if (hw->eeprom.type == e1000_eeprom_ich8) { + e1000_commit_shadow_ram(hw); + /* Reload the EEPROM, or else modifications will not appear + * until after next adapter reset. */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + msec_delay(10); } return E1000_SUCCESS; } @@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw, if(eeprom->use_eewr == TRUE) return e1000_write_eeprom_eewr(hw, offset, words, data); + if (eeprom->type == e1000_eeprom_ich8) + return e1000_write_eeprom_ich8(hw, offset, words, data); + /* Prepare the EEPROM for writing */ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; @@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) uint32_t flop = 0; uint32_t i = 0; int32_t error = E1000_SUCCESS; - - /* The flop register will be used to determine if flash type is STM */ - flop = E1000_READ_REG(hw, FLOP); + uint32_t old_bank_offset = 0; + uint32_t new_bank_offset = 0; + uint32_t sector_retries = 0; + uint8_t low_byte = 0; + uint8_t high_byte = 0; + uint8_t temp_byte = 0; + boolean_t sector_write_failed = FALSE; if (hw->mac_type == e1000_82573) { + /* The flop register will be used to determine if flash type is STM */ + flop = E1000_READ_REG(hw, FLOP); for (i=0; i < attempts; i++) { eecd = E1000_READ_REG(hw, EECD); if ((eecd & E1000_EECD_FLUPD) == 0) { @@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) } } + if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written */ + if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { + new_bank_offset = hw->flash_bank_size * 2; + old_bank_offset = 0; + e1000_erase_ich8_4k_segment(hw, 1); + } else { + old_bank_offset = hw->flash_bank_size * 2; + new_bank_offset = 0; + e1000_erase_ich8_4k_segment(hw, 0); + } + + do { + sector_write_failed = FALSE; + /* Loop for every byte in the shadow RAM, + * which is in units of words. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM */ + if (hw->eeprom_shadow_ram[i].modified == TRUE) { + low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; + e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, + &temp_byte); + udelay(100); + error = e1000_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, + low_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + high_byte = + (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); + e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, + &temp_byte); + udelay(100); + } else { + e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, + &low_byte); + udelay(100); + error = e1000_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, + &high_byte); + } + + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress */ + if (i == E1000_ICH8_NVM_SIG_WORD) + high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; + + error = e1000_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset + 1, high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + if (sector_write_failed == FALSE) { + /* Clear the now not used entry in the cache */ + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. */ + if (sector_write_failed == FALSE) { + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b */ + e1000_read_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + &high_byte); + high_byte &= 0xBF; + error = e1000_verify_write_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase */ + error = e1000_verify_write_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, + 0); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + } + } while (++sector_retries < 10 && sector_write_failed == TRUE); + } + return error; } @@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw) * the other port. */ if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) rar_num -= 1; + if (hw->mac_type == e1000_ich8lan) + rar_num = E1000_RAR_ENTRIES_ICH8LAN; + /* Zero out the other 15 receive addresses. */ DEBUGOUT("Clearing RAR[1-15]\n"); for(i = 1; i < rar_num; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); } } -#if 0 /****************************************************************************** * Updates the MAC's list of multicast addresses. * @@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, /* Clear RAR[1-15] */ DEBUGOUT(" Clearing RAR[1-15]\n"); num_rar_entry = E1000_RAR_ENTRIES; + if (hw->mac_type == e1000_ich8lan) + num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; /* Reserve a spot for the Locally Administered Address to work around * an 82571 issue in which a reset on one port will reload the MAC on * the other port. */ @@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, for(i = rar_used_count; i < num_rar_entry; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); } /* Clear the MTA */ DEBUGOUT(" Clearing MTA\n"); num_mta_entry = E1000_NUM_MTA_REGISTERS; + if (hw->mac_type == e1000_ich8lan) + num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; for(i = 0; i < num_mta_entry; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + E1000_WRITE_FLUSH(hw); } /* Add the new addresses */ @@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, } DEBUGOUT("MC Update Complete\n"); } -#endif /* 0 */ /****************************************************************************** * Hashes an address to determine its location in the multicast table @@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw, * LSB MSB */ case 0: - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + if (hw->mac_type == e1000_ich8lan) { + /* [47:38] i.e. 0x158 for above example address */ + hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); + } else { + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } break; case 1: - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + if (hw->mac_type == e1000_ich8lan) { + /* [46:37] i.e. 0x2B1 for above example address */ + hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); + } else { + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + } break; case 2: - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + if (hw->mac_type == e1000_ich8lan) { + /*[45:36] i.e. 0x163 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } else { + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } break; case 3: - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + if (hw->mac_type == e1000_ich8lan) { + /* [43:34] i.e. 0x18D for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } else { + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + } break; } hash_value &= 0xFFF; + if (hw->mac_type == e1000_ich8lan) + hash_value &= 0x3FF; return hash_value; } @@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw, * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 5) & 0x7F; + if (hw->mac_type == e1000_ich8lan) + hash_reg &= 0x1F; hash_bit = hash_value & 0x1F; mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); @@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw, if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); } } @@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw, } E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(hw); } /****************************************************************************** @@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw, { uint32_t temp; - if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { + if (hw->mac_type == e1000_ich8lan) + return; + + if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); } } @@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw) uint32_t vfta_offset = 0; uint32_t vfta_bit_in_reg = 0; + if (hw->mac_type == e1000_ich8lan) + return; + if (hw->mac_type == e1000_82573) { if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying a single VLAN @@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw) * manageability unit */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); } } @@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw) DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } - if((eeprom_data== ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; - for(i = 0; i < 4; i++) { + + if ((hw->mac_type == e1000_82573) && + (eeprom_data == ID_LED_RESERVED_82573)) + eeprom_data = ID_LED_DEFAULT_82573; + else if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + if (hw->mac_type == e1000_ich8lan) + eeprom_data = ID_LED_DEFAULT_ICH8LAN; + else + eeprom_data = ID_LED_DEFAULT; + } + for (i = 0; i < 4; i++) { temp = (eeprom_data >> (i << 2)) & led_mask; switch(temp) { case ID_LED_ON1_DEF2: @@ -5519,6 +6091,44 @@ e1000_setup_led(struct e1000_hw *hw) } /****************************************************************************** + * Used on 82571 and later Si that has LED blink bits. + * Callers must use their own timer and should have already called + * e1000_id_led_init() + * Call e1000_cleanup led() to stop blinking + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_blink_led_start(struct e1000_hw *hw) +{ + int16_t i; + uint32_t ledctl_blink = 0; + + DEBUGFUNC("e1000_id_led_blink_on"); + + if (hw->mac_type < e1000_82571) { + /* Nothing to do */ + return E1000_SUCCESS; + } + if (hw->media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ + ledctl_blink = hw->ledctl_mode2; + for (i=0; i < 4; i++) + if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); + } + + E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + +/****************************************************************************** * Restores the saved state of the SW controlable LED. * * hw - Struct containing variables accessed by shared code @@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw) return ret_val; /* Fall Through */ default: + if (hw->phy_type == e1000_phy_ife) { + e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); + break; + } /* Restore LEDCTL settings */ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); break; @@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw) /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if(hw->media_type == e1000_media_type_copper) { + } else if (hw->phy_type == e1000_phy_ife) { + e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + } else if (hw->media_type == e1000_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); return E1000_SUCCESS; } @@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw) /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if(hw->media_type == e1000_media_type_copper) { + } else if (hw->phy_type == e1000_phy_ife) { + e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + } else if (hw->media_type == e1000_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); return E1000_SUCCESS; } @@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) temp = E1000_READ_REG(hw, XOFFRXC); temp = E1000_READ_REG(hw, XOFFTXC); temp = E1000_READ_REG(hw, FCRUC); + + if (hw->mac_type != e1000_ich8lan) { temp = E1000_READ_REG(hw, PRC64); temp = E1000_READ_REG(hw, PRC127); temp = E1000_READ_REG(hw, PRC255); temp = E1000_READ_REG(hw, PRC511); temp = E1000_READ_REG(hw, PRC1023); temp = E1000_READ_REG(hw, PRC1522); + } + temp = E1000_READ_REG(hw, GPRC); temp = E1000_READ_REG(hw, BPRC); temp = E1000_READ_REG(hw, MPRC); @@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) temp = E1000_READ_REG(hw, TOTH); temp = E1000_READ_REG(hw, TPR); temp = E1000_READ_REG(hw, TPT); + + if (hw->mac_type != e1000_ich8lan) { temp = E1000_READ_REG(hw, PTC64); temp = E1000_READ_REG(hw, PTC127); temp = E1000_READ_REG(hw, PTC255); temp = E1000_READ_REG(hw, PTC511); temp = E1000_READ_REG(hw, PTC1023); temp = E1000_READ_REG(hw, PTC1522); + } + temp = E1000_READ_REG(hw, MPTC); temp = E1000_READ_REG(hw, BPTC); @@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) temp = E1000_READ_REG(hw, IAC); temp = E1000_READ_REG(hw, ICRXOC); + + if (hw->mac_type == e1000_ich8lan) return; + temp = E1000_READ_REG(hw, ICRXPTC); temp = E1000_READ_REG(hw, ICRXATC); temp = E1000_READ_REG(hw, ICTXPTC); @@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw) hw->bus_width = e1000_bus_width_pciex_1; break; case e1000_82571: + case e1000_ich8lan: case e1000_80003es2lan: hw->bus_type = e1000_bus_type_pci_express; hw->bus_speed = e1000_bus_speed_2500; @@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw) break; } } - -#if 0 /****************************************************************************** * Reads a value from one of the devices registers using port I/O (as opposed * memory mapped I/O). Only 82544 and newer devices support port I/O. @@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw, e1000_io_write(hw, io_addr, offset); return e1000_io_read(hw, io_data); } -#endif /* 0 */ /****************************************************************************** * Writes a value to one of the devices registers using port I/O (as opposed to @@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw, { int32_t ret_val; uint16_t agc_value = 0; - uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - uint16_t max_agc = 0; uint16_t i, phy_data; uint16_t cable_length; @@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw, break; } } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ + uint16_t cur_agc_value; + uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, @@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw, if(ret_val) return ret_val; - cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - /* Array bound check. */ - if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc == 0)) + /* Value bound check. */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) return -E1000_ERR_PHY; - agc_value += cur_agc; + agc_value += cur_agc_value; /* Update minimal AGC value. */ - if(min_agc > cur_agc) - min_agc = cur_agc; + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; } /* Remove the minimal AGC result for length < 50m */ - if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { - agc_value -= min_agc; + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { + agc_value -= min_agc_value; /* Get the average length of the remaining 3 channels */ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); @@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw, IGP01E1000_AGC_RANGE) : 0; *max_length = e1000_igp_cable_length_table[agc_value] + IGP01E1000_AGC_RANGE; - } else if (hw->phy_type == e1000_phy_igp_2) { + } else if (hw->phy_type == e1000_phy_igp_2 || + hw->phy_type == e1000_phy_igp_3) { + uint16_t cur_agc_index, max_agc_index = 0; + uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, @@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw, /* Getting bits 15:9, which represent the combination of course and * fine gain values. The result is a number that can be put into * the lookup table to obtain the approximate cable length. */ - cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) - min_agc = cur_agc; - if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) - max_agc = cur_agc; + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; - agc_value += e1000_igp_2_cable_length_table[cur_agc]; + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; } - agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ @@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw, return ret_val; *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> M88E1000_PSSR_REV_POLARITY_SHIFT; - } else if(hw->phy_type == e1000_phy_igp || + } else if (hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) { /* Read the Status register to check the speed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, @@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw, * 100 Mbps this bit is always 0) */ *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; } + } else if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, + &phy_data); + if (ret_val) + return ret_val; + *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> + IFE_PESC_POLARITY_REVERSED_SHIFT; } return E1000_SUCCESS; } @@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw) DEBUGFUNC("e1000_check_downshift"); - if(hw->phy_type == e1000_phy_igp || + if (hw->phy_type == e1000_phy_igp || + hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data); @@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw) hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> M88E1000_PSSR_DOWNSHIFT_SHIFT; + } else if (hw->phy_type == e1000_phy_ife) { + /* e1000_phy_ife supports 10/100 speed only */ + hw->speed_downgraded = FALSE; } return E1000_SUCCESS; @@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, if(speed == SPEED_1000) { - e1000_get_cable_length(hw, &min_length, &max_length); + ret_val = e1000_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; if((hw->dsp_config_state == e1000_dsp_config_enabled) && min_length >= e1000_igp_cable_length_50) { @@ -6525,20 +7179,27 @@ static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active) { + uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("e1000_set_d3_lplu_state"); - if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) + if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 + && hw->phy_type != e1000_phy_igp_3) return E1000_SUCCESS; /* During driver activity LPLU should not be used or it will attain link * from the lowest speeds starting from 10Mbps. The capability is used for * Dx transitions and states */ - if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { + if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if(ret_val) + if (ret_val) return ret_val; + } else if (hw->mac_type == e1000_ich8lan) { + /* MAC writes into PHY register based on the state transition + * and start auto-negotiation. SW driver can overwrite the settings + * in CSR PHY power control E1000_PHY_CTRL register. */ + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); if(ret_val) @@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, if(ret_val) return ret_val; } else { + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data &= ~IGP02E1000_PM_D3_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during @@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { if(hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { + hw->mac_type == e1000_82547_rev_2) { phy_data |= IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); if(ret_val) return ret_val; } else { + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data |= IGP02E1000_PM_D3_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } } /* When LPLU is enabled we should disable SmartSpeed */ @@ -6638,6 +7309,7 @@ static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active) { + uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("e1000_set_d0_lplu_state"); @@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, if(hw->mac_type <= e1000_82547_rev_2) return E1000_SUCCESS; + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); if(ret_val) return ret_val; + } if (!active) { + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data &= ~IGP02E1000_PM_D0_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during * Dx states where the power conservation is most important. During @@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, } else { + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data |= IGP02E1000_PM_D0_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); @@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, length >>= 2; /* The device driver writes the relevant command block into the ram area. */ - for (i = 0; i < length; i++) + for (i = 0; i < length; i++) { E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } return E1000_SUCCESS; } @@ -6961,15 +7649,18 @@ e1000_mng_write_commit( * returns - TRUE when the mode is IAMT or FALSE. ****************************************************************************/ boolean_t -e1000_check_mng_mode( - struct e1000_hw *hw) +e1000_check_mng_mode(struct e1000_hw *hw) { uint32_t fwsm; fwsm = E1000_READ_REG(hw, FWSM); - if((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + if (hw->mac_type == e1000_ich8lan) { + if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + } else if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) return TRUE; return FALSE; @@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) E1000_WRITE_REG(hw, CTRL, ctrl); } -#if 0 /*************************************************************************** * * Enables PCI-Express master access. @@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw) ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; E1000_WRITE_REG(hw, CTRL, ctrl); } -#endif /* 0 */ /******************************************************************************* * @@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw) case e1000_82572: case e1000_82573: case e1000_80003es2lan: - while(timeout) { - if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; + case e1000_ich8lan: + while (timeout) { + if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) + break; else msec_delay(1); timeout--; } @@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw) switch (hw->mac_type) { default: - msec_delay(10); + msec_delay_irq(10); break; case e1000_80003es2lan: /* Separate *_CFG_DONE_* bit for each port */ @@ -7523,6 +8214,13 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw) { uint32_t manc = 0; + uint32_t fwsm = 0; + + if (hw->mac_type == e1000_ich8lan) { + fwsm = E1000_READ_REG(hw, FWSM); + return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS + : E1000_BLK_PHY_RESET; + } if (hw->mac_type > e1000_82547_rev_2) manc = E1000_READ_REG(hw, MANC); @@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) if((fwsm & E1000_FWSM_MODE_MASK) != 0) return TRUE; break; + case e1000_ich8lan: + return TRUE; default: break; } @@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) } +/****************************************************************************** + * Configure PCI-Ex no-snoop + * + * hw - Struct containing variables accessed by shared code. + * no_snoop - Bitmap of no-snoop events. + * + * returns: E1000_SUCCESS + * + *****************************************************************************/ +int32_t +e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) +{ + uint32_t gcr_reg = 0; + + DEBUGFUNC("e1000_set_pci_ex_no_snoop"); + + if (hw->bus_type == e1000_bus_type_unknown) + e1000_get_bus_info(hw); + + if (hw->bus_type != e1000_bus_type_pci_express) + return E1000_SUCCESS; + + if (no_snoop) { + gcr_reg = E1000_READ_REG(hw, GCR); + gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); + gcr_reg |= no_snoop; + E1000_WRITE_REG(hw, GCR, gcr_reg); + } + if (hw->mac_type == e1000_ich8lan) { + uint32_t ctrl_ext; + + E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); + + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Get software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_get_software_flag(struct e1000_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t extcnf_ctrl; + + DEBUGFUNC("e1000_get_software_flag"); + + if (hw->mac_type == e1000_ich8lan) { + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW locks the resource too long.\n"); + return -E1000_ERR_CONFIG; + } + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Release software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +void +e1000_release_software_flag(struct e1000_hw *hw) +{ + uint32_t extcnf_ctrl; + + DEBUGFUNC("e1000_release_software_flag"); + + if (hw->mac_type == e1000_ich8lan) { + extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + } + + return; +} + +/*************************************************************************** + * + * Disable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_ife_disable_dynamic_power_down"); + + if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/*************************************************************************** + * + * Enable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_ife_enable_dynamic_power_down"); + + if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/****************************************************************************** + * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access + * register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +int32_t +e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + int32_t error = E1000_SUCCESS; + uint32_t flash_bank = 0; + uint32_t act_offset = 0; + uint32_t bank_offset = 0; + uint16_t word = 0; + uint16_t i = 0; + + /* We need to know which is the valid flash bank. In the event + * that we didn't allocate eeprom_shadow_ram, we may not be + * managing flash_bank. So it cannot be trusted and needs + * to be updated with each read. + */ + /* Value of bit 22 corresponds to the flash bank we're on. */ + flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; + + /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ + bank_offset = flash_bank * (hw->flash_bank_size * 2); + + error = e1000_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + for (i = 0; i < words; i++) { + if (hw->eeprom_shadow_ram != NULL && + hw->eeprom_shadow_ram[offset+i].modified == TRUE) { + data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; + } else { + /* The NVM part needs a byte offset, hence * 2 */ + act_offset = bank_offset + ((offset + i) * 2); + error = e1000_read_ich8_word(hw, act_offset, &word); + if (error != E1000_SUCCESS) + break; + data[i] = word; + } + } + + e1000_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access + * register. Actually, writes are written to the shadow ram cache in the hw + * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to + * the NVM, which occurs when the NVM checksum is updated. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to write + * words - number of words to write + * data - words to write to the EEPROM + *****************************************************************************/ +int32_t +e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + + error = e1000_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + /* A driver can write to the NVM only if it has eeprom_shadow_ram + * allocated. Subsequent reads to the modified words are read from + * this cached structure as well. Writes will only go into this + * cached structure unless it's followed by a call to + * e1000_update_eeprom_checksum() where it will commit the changes + * and clear the "modified" field. + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < words; i++) { + if ((offset + i) < E1000_SHADOW_RAM_WORDS) { + hw->eeprom_shadow_ram[offset+i].modified = TRUE; + hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; + } else { + error = -E1000_ERR_EEPROM; + break; + } + } + } else { + /* Drivers have the option to not allocate eeprom_shadow_ram as long + * as they don't perform any NVM writes. An attempt in doing so + * will result in this error. + */ + error = -E1000_ERR_EEPROM; + } + + e1000_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +e1000_ich8_cycle_init(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + int32_t i = 0; + + DEBUGFUNC("e1000_ich8_cycle_init"); + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* May be check the Flash Des Valid bit in Hw status */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); + return error; + } + + /* Clear FCERR in Hw status by writing 1 */ + /* Clear DAEL in Hw status by writing a 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress bit to check + * against, in order to start a new cycle or FDONE bit should be changed + * in the hardware so that it is 1 after harware reset, which can then be + * used as an indication whether a cycle is in progress or has been + * completed .. we should also have some software semaphore mechanism to + * guard FDONE or the cycle in progress bit so that two threads access to + * those bits can be sequentiallized or a way so that 2 threads dont + * start the cycle at the same time */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* There is no cycle running at present, so we can start a cycle */ + /* Begin by setting Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + error = E1000_SUCCESS; + } else { + /* otherwise poll for sometime so the current cycle has a chance + * to end before giving up. */ + for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + error = E1000_SUCCESS; + break; + } + udelay(1); + } + if (error == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + return error; +} + +/****************************************************************************** + * This function starts a flash cycle and waits for its completion + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + uint32_t i = 0; + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + udelay(1); + i++; + } while (i < timeout); + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { + error = E1000_SUCCESS; + } + return error; +} + +/****************************************************************************** + * Reads a byte or word from the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte or word to read. + * size - Size of data to read, 1=byte 2=word + * data - Pointer to the word to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, + uint32_t size, uint16_t* data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("e1000_read_ich8_data"); + + if (size < 1 || size > 2 || data == 0x0 || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + udelay(1); + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + /* TODO: TBD maybe check the index against the size of flash */ + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it and try the whole + * sequence a few more times, else read in (shift in) the Flash Data0, + * the order is least significant byte first msb to lsb */ + if (error == E1000_SUCCESS) { + flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); + if (size == 1) { + *data = (uint8_t)(flash_data & 0x000000FF); + } else if (size == 2) { + *data = (uint16_t)(flash_data & 0x0000FFFF); + } + break; + } else { + /* If we've gotten here, then things are probably completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Writes One /two bytes to the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte/word to read. + * size - Size of data to read, 1=byte 2=word + * data - The byte(s) to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, + uint16_t data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("e1000_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + udelay(1); + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + if (size == 1) + flash_data = (uint32_t)data & 0x00FF; + else + flash_data = (uint32_t)data; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it and try the whole + * sequence a few more times else done */ + error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + if (error == E1000_SUCCESS) { + break; + } else { + /* If we're here, then things are most likely completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Reads a single byte from the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to read. + * data - Pointer to a byte to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = 0; + + status = e1000_read_ich8_data(hw, index, 1, &word); + if (status == E1000_SUCCESS) { + *data = (uint8_t)word; + } + + return status; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * Performs verification by reading back the value and then going through + * a retry algorithm before giving up. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to write. + * byte - The byte to write to the NVM. + *****************************************************************************/ +int32_t +e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) +{ + int32_t error = E1000_SUCCESS; + int32_t program_retries; + uint8_t temp_byte; + + e1000_write_ich8_byte(hw, index, byte); + udelay(100); + + for (program_retries = 0; program_retries < 100; program_retries++) { + e1000_read_ich8_byte(hw, index, &temp_byte); + if (temp_byte == byte) + break; + udelay(10); + e1000_write_ich8_byte(hw, index, byte); + udelay(100); + } + if (program_retries == 100) + error = E1000_ERR_EEPROM; + + return error; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to read. + * data - The byte to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = (uint16_t)data; + + status = e1000_write_ich8_data(hw, index, 1, word); + + return status; +} + +/****************************************************************************** + * Reads a word from the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The starting byte index of the word to read. + * data - Pointer to a word to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) +{ + int32_t status = E1000_SUCCESS; + status = e1000_read_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Writes a word to the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The starting byte index of the word to read. + * data - The word to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data) +{ + int32_t status = E1000_SUCCESS; + status = e1000_write_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. + * segment N is 4096 * N + flash_reg_addr. + * + * hw - pointer to e1000_hw structure + * segment - 0 for first segment, 1 for second segment, etc. + *****************************************************************************/ +int32_t +e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + int32_t count = 0; + int32_t error = E1000_ERR_EEPROM; + int32_t iteration, seg_size; + int32_t sector_size; + int32_t j = 0; + int32_t error_flag = 0; + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ + /* 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector can be + * calculated as = segment * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = segment * 4096 + * 10: Error condition + * 11: The Hw sector size is much bigger than the size asked to + * erase...error condition */ + if (hsfsts.hsf_status.berasesz == 0x0) { + /* Hw sector size 256 */ + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; + iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; + } else if (hsfsts.hsf_status.berasesz == 0x1) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; + iteration = 1; + } else if (hsfsts.hsf_status.berasesz == 0x3) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; + iteration = 1; + } else { + return error; + } + + for (j = 0; j < iteration ; j++) { + do { + count++; + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) { + error_flag = 1; + break; + } + + /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash + * Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of an index within the block into Flash + * Linear address field in Flash Address. This probably needs to + * be calculated here based off the on-chip segment size and the + * software segment size assumed (4K) */ + /* TBD */ + flash_linear_address = segment * sector_size + j * seg_size; + flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; + flash_linear_address += hw->flash_base_addr; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = e1000_ich8_flash_cycle(hw, 1000000); + /* Check if FCERR is set to 1. If 1, clear it and try the whole + * sequence a few more times else Done */ + if (error == E1000_SUCCESS) { + break; + } else { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* repeat for some time before giving up */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + error_flag = 1; + break; + } + } + } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); + if (error_flag == 1) + break; + } + if (error_flag != 1) + error = E1000_SUCCESS; + return error; +} + +/****************************************************************************** + * + * Reverse duplex setting without breaking the link. + * + * hw: Struct containing variables accessed by shared code + * + *****************************************************************************/ +int32_t +e1000_duplex_reversal(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + if (hw->phy_type != e1000_phy_igp_3) + return E1000_SUCCESS; + + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data ^= MII_CR_FULL_DUPLEX; + + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; + ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); + + return ret_val; +} + +int32_t +e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, + uint32_t cnf_base_addr, uint32_t cnf_size) +{ + uint32_t ret_val = E1000_SUCCESS; + uint16_t word_addr, reg_data, reg_addr; + uint16_t i; + + /* cnf_base_addr is in DWORD */ + word_addr = (uint16_t)(cnf_base_addr << 1); + + /* cnf_size is returned in size of dwords */ + for (i = 0; i < cnf_size; i++) { + ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); + if (ret_val) + return ret_val; + + ret_val = e1000_get_software_flag(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); + + e1000_release_software_flag(hw); + } + + return ret_val; +} + + +int32_t +e1000_init_lcd_from_nvm(struct e1000_hw *hw) +{ + uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; + + if (hw->phy_type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Check if SW needs configure the PHY */ + reg_data = E1000_READ_REG(hw, FEXTNVM); + if (!(reg_data & FEXTNVM_SW_CONFIG)) + return E1000_SUCCESS; + + /* Wait for basic configuration completes before proceeding*/ + loop = 0; + do { + reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; + udelay(100); + loop++; + } while ((!reg_data) && (loop < 50)); + + /* Clear the Init Done bit for the next init event */ + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, STATUS, reg_data); + + /* Make sure HW does not configure LCD from PHY extended configuration + before SW configuration */ + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { + reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); + cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; + cnf_size >>= 16; + if (cnf_size) { + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; + /* cnf_base_addr is in DWORD */ + cnf_base_addr >>= 16; + + /* Configure LCD from extended configuration region. */ + ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, + cnf_size); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + + |