aboutsummaryrefslogtreecommitdiffstats
path: root/sound
diff options
context:
space:
mode:
authorDan Williams <dan.j.williams@intel.com>2007-01-02 13:52:30 -0700
committerDan Williams <dan.j.williams@intel.com>2007-07-13 08:06:15 -0700
commit91c00924846a0034020451c280c76baa4299f9dc (patch)
tree7124ed6706937b793a10c37a861c5fc0f2e5b348 /sound
parent45b4233caac05da0118b608a9fc2a40a9fc580cd (diff)
downloadkernel_samsung_crespo-91c00924846a0034020451c280c76baa4299f9dc.zip
kernel_samsung_crespo-91c00924846a0034020451c280c76baa4299f9dc.tar.gz
kernel_samsung_crespo-91c00924846a0034020451c280c76baa4299f9dc.tar.bz2
md: raid5_run_ops - run stripe operations outside sh->lock
When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
Diffstat (limited to 'sound')
0 files changed, 0 insertions, 0 deletions