aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
Commit message (Collapse)AuthorAgeFilesLines
* futex: Make lookup_pi_state more robustHEADreplicant-4.2-0004replicant-4.2-0003replicant-4.2Thomas Gleixner2014-07-171-17/+106
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current implementation of lookup_pi_state has ambigous handling of the TID value 0 in the user space futex. We can get into the kernel even if the TID value is 0, because either there is a stale waiters bit or the owner died bit is set or we are called from the requeue_pi path or from user space just for fun. The current code avoids an explicit sanity check for pid = 0 in case that kernel internal state (waiters) are found for the user space address. This can lead to state leakage and worse under some circumstances. Handle the cases explicit: Waiter | pi_state | pi->owner | uTID | uODIED | ? [1] NULL | --- | --- | 0 | 0/1 | Valid [2] NULL | --- | --- | >0 | 0/1 | Valid [3] Found | NULL | -- | Any | 0/1 | Invalid [4] Found | Found | NULL | 0 | 1 | Valid [5] Found | Found | NULL | >0 | 1 | Invalid [6] Found | Found | task | 0 | 1 | Valid [7] Found | Found | NULL | Any | 0 | Invalid [8] Found | Found | task | ==taskTID | 0/1 | Valid [9] Found | Found | task | 0 | 0 | Invalid [10] Found | Found | task | !=taskTID | 0/1 | Invalid [1] Indicates that the kernel can acquire the futex atomically. We came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. [2] Valid, if TID does not belong to a kernel thread. If no matching thread is found then it indicates that the owner TID has died. [3] Invalid. The waiter is queued on a non PI futex [4] Valid state after exit_robust_list(), which sets the user space value to FUTEX_WAITERS | FUTEX_OWNER_DIED. [5] The user space value got manipulated between exit_robust_list() and exit_pi_state_list() [6] Valid state after exit_pi_state_list() which sets the new owner in the pi_state but cannot access the user space value. [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. [8] Owner and user space value match [9] There is no transient state which sets the user space TID to 0 except exit_robust_list(), but this is indicated by the FUTEX_OWNER_DIED bit. See [4] [10] There is no transient state which leaves owner and user space TID out of sync. Backport to 3.13 conflicts: kernel/futex.c Change-Id: Ic410036b38ccb7289b3d58eff56ad64d3a9dcada Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Johansen <john.johansen@canonical.com> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Cc: Darren Hart <dvhart@linux.intel.com> Cc: stable@vger.kernel.org
* futex: Always cleanup owner tid in unlock_piThomas Gleixner2014-07-171-22/+18
| | | | | | | | | | | | | | | | If the owner died bit is set at futex_unlock_pi, we currently do not cleanup the user space futex. So the owner TID of the current owner (the unlocker) persists. That's observable inconsistant state, especially when the ownership of the pi state got transferred. Clean it up unconditionally. Change-Id: I4eeb2e139b720f1dd46e43407a96b3d9a19aacd1 Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Cc: Darren Hart <dvhart@linux.intel.com> Cc: stable@vger.kernel.org
* futex: Validate atomic acquisition in futex_lock_pi_atomic()Thomas Gleixner2014-07-171-3/+11
| | | | | | | | | | | | | | | | | | | | | We need to protect the atomic acquisition in the kernel against rogue user space which sets the user space futex to 0, so the kernel side acquisition succeeds while there is existing state in the kernel associated to the real owner. Verify whether the futex has waiters associated with kernel state. If it has, return -EINVAL. The state is corrupted already, so no point in cleaning it up. Subsequent calls will fail as well. Not our problem. [ tglx: Use futex_top_waiter() and explain why we do not need to try restoring the already corrupted user space state. ] Change-Id: Ic8714ed2e9dee323a011eed42f7c0159c65dfbf3 Signed-off-by: Darren Hart <dvhart@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 ↵Thomas Gleixner2014-07-171-0/+25
| | | | | | | | | | | | | | | | | | | | | | | | | in futex_requeue(..., requeue_pi=1) If uaddr == uaddr2, then we have broken the rule of only requeueing from a non-pi futex to a pi futex with this call. If we attempt this, then dangling pointers may be left for rt_waiter resulting in an exploitable condition. This change brings futex_requeue() into line with futex_wait_requeue_pi() which performs the same check as per commit 6f7b0a2a5 (futex: Forbid uaddr == uaddr2 in futex_wait_requeue_pi()) [ tglx: Compare the resulting keys as well, as uaddrs might be different depending on the mapping ] Fixes CVE-2014-3153. Change-Id: I473bf486ad451de0bfd049a110b69795a6fda451 Reported-by: Pinkie Pie Signed-off-by: Will Drewry <wad@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* futex: Add another early deadlock detection checkThomas Gleixner2014-07-171-13/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Jones trinity syscall fuzzer exposed an issue in the deadlock detection code of rtmutex: http://lkml.kernel.org/r/20140429151655.GA14277@redhat.com That underlying issue has been fixed with a patch to the rtmutex code, but the futex code must not call into rtmutex in that case because - it can detect that issue early - it avoids a different and more complex fixup for backing out If the user space variable got manipulated to 0x80000000 which means no lock holder, but the waiters bit set and an active pi_state in the kernel is found we can figure out the recursive locking issue by looking at the pi_state owner. If that is the current task, then we can safely return -EDEADLK. The check should have been added in commit 59fa62451 (futex: Handle futex_pi OWNER_DIED take over correctly) already, but I did not see the above issue caused by user space manipulation back then. Change-Id: I5242efcdc3c08159c652fe645e1f85b27687e6ca Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <darren@dvhart.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Clark Williams <williams@redhat.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Carlos ODonell <carlos@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: http://lkml.kernel.org/r/20140512201701.097349971@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
* futex: Prevent attaching to kernel threadsThomas Gleixner2014-07-171-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We happily allow userspace to declare a random kernel thread to be the owner of a user space PI futex. Found while analysing the fallout of Dave Jones syscall fuzzer. We also should validate the thread group for private futexes and find some fast way to validate whether the "alleged" owner has RW access on the file which backs the SHM, but that's a separate issue. Change-Id: I03941dc5737bcb9d3ddd2ec88f7c263c27a1247d Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <darren@dvhart.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Clark Williams <williams@redhat.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Carlos ODonell <carlos@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: http://lkml.kernel.org/r/20140512201701.194824402@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
* timekeeping: fix a merge errorelektroschmock2012-11-171-1/+1
| | | | Change-Id: I4edf332cb30c07f2828af5375b6957e7b23c9cae
* Merge kernel.org linux-3.0.y into HEADKalimochoAz2012-10-314-11/+18
|\
| * cgroup: notify_on_release may not be triggered in some casesDaisuke Nishimura2012-10-281-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 1f5320d5972aa50d3e8d2b227b636b370e608359 upstream. notify_on_release must be triggered when the last process in a cgroup is move to another. But if the first(and only) process in a cgroup is moved to another, notify_on_release is not triggered. # mkdir /cgroup/cpu/SRC # mkdir /cgroup/cpu/DST # # echo 1 >/cgroup/cpu/SRC/notify_on_release # echo 1 >/cgroup/cpu/DST/notify_on_release # # sleep 300 & [1] 8629 # # echo 8629 >/cgroup/cpu/SRC/tasks # echo 8629 >/cgroup/cpu/DST/tasks -> notify_on_release for /SRC must be triggered at this point, but it isn't. This is because put_css_set() is called before setting CGRP_RELEASABLE in cgroup_task_migrate(), and is a regression introduce by the commit:74a1166d(cgroups: make procs file writable), which was merged into v3.0. Acked-by: Li Zefan <lizefan@huawei.com> Cc: Ben Blum <bblum@andrew.cmu.edu> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * use clamp_t in UNAME26 fixKees Cook2012-10-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 31fd84b95eb211d5db460a1dda85e004800a7b52 upstream. The min/max call needed to have explicit types on some architectures (e.g. mn10300). Use clamp_t instead to avoid the warning: kernel/sys.c: In function 'override_release': kernel/sys.c:1287:10: warning: comparison of distinct pointer types lacks a cast [enabled by default] Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * kernel/sys.c: fix stack memory content leak via UNAME26Kees Cook2012-10-281-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 2702b1526c7278c4d65d78de209a465d4de2885e upstream. Calling uname() with the UNAME26 personality set allows a leak of kernel stack contents. This fixes it by defensively calculating the length of copy_to_user() call, making the len argument unsigned, and initializing the stack buffer to zero (now technically unneeded, but hey, overkill). CVE-2012-0957 Reported-by: PaX Team <pageexec@freemail.hu> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: PaX Team <pageexec@freemail.hu> Cc: Brad Spengler <spender@grsecurity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * timers: Fix endless looping between cascade() and internal_add_timer()Hildner, Christian2012-10-211-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 26cff4e2aa4d666dc6a120ea34336b5057e3e187 upstream. Adding two (or more) timers with large values for "expires" (they have to reside within tv5 in the same list) leads to endless looping between cascade() and internal_add_timer() in case CONFIG_BASE_SMALL is one and jiffies are crossing the value 1 << 18. The bug was introduced between 2.6.11 and 2.6.12 (and survived for quite some time). This patch ensures that when cascade() is called timers within tv5 are not added endlessly to their own list again, instead they are added to the next lower tv level tv4 (as expected). Signed-off-by: Christian Hildner <christian.hildner@siemens.com> Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com> Link: http://lkml.kernel.org/r/98673C87CB31274881CFFE0B65ECC87B0F5FC1963E@DEFTHW99EA4MSX.ww902.siemens.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * module: taint kernel when lve module is loadedMatthew Garrett2012-10-211-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit c99af3752bb52ba3aece5315279a57a477edfaf1 upstream. Cloudlinux have a product called lve that includes a kernel module. This was previously GPLed but is now under a proprietary license, but the module continues to declare MODULE_LICENSE("GPL") and makes use of some EXPORT_SYMBOL_GPL symbols. Forcibly taint it in order to avoid this. Signed-off-by: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Alex Lyashkov <umka@cloudlinux.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | Merge commit '776a41b' into HEADKalimochoAz2012-10-142-4/+39
|\ \ | |/
| * CPU hotplug, cpusets, suspend: Don't modify cpusets during suspend/resumeSrivatsa S. Bhat2012-10-132-4/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d35be8bab9b0ce44bed4b9453f86ebf64062721e upstream. In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed masks as and when necessary to ensure that the tasks belonging to the cpusets have some place (online CPUs) to run on. And regular CPU hotplug is destructive in the sense that the kernel doesn't remember the original cpuset configurations set by the user, across hotplug operations. However, suspend/resume (which uses CPU hotplug) is a special case in which the kernel has the responsibility to restore the system (during resume), to exactly the same state it was in before suspend. In order to achieve that, do the following: 1. Don't modify cpusets during suspend/resume. At all. In particular, don't move the tasks from one cpuset to another, and don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets during the CPU hotplug operations that are carried out in the suspend/resume path. 2. However, cpusets and sched domains are related. We just want to avoid altering cpusets alone. So, to keep the sched domains updated, build a single sched domain (containing all active cpus) during each of the CPU hotplug operations carried out in s/r path, effectively ignoring the cpusets' cpus_allowed masks. (Since userspace is frozen while doing all this, it will go unnoticed.) 3. During the last CPU online operation during resume, build the sched domains by looking up the (unaltered) cpusets' cpus_allowed masks. That will bring back the system to the same original state as it was in before suspend. Ultimately, this will not only solve the cpuset problem related to suspend resume (ie., restores the cpusets to exactly what it was before suspend, by not touching it at all) but also speeds up suspend/resume because we avoid running cpuset update code for every CPU being offlined/onlined. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | Merge commit '85ce022' into HEADKalimochoAz2012-10-141-1/+3
|\ \ | |/
| * rcu: Fix day-one dyntick-idle stall-warning bugPaul E. McKenney2012-10-131-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a10d206ef1a83121ab7430cb196e0376a7145b22 upstream. Each grace period is supposed to have at least one callback waiting for that grace period to complete. However, if CONFIG_NO_HZ=n, an extra callback-free grace period is no big problem -- it will chew up a tiny bit of CPU time, but it will complete normally. In contrast, CONFIG_NO_HZ=y kernels have the potential for all the CPUs to go to sleep indefinitely, in turn indefinitely delaying completion of the callback-free grace period. Given that nothing is waiting on this grace period, this is also not a problem. That is, unless RCU CPU stall warnings are also enabled, as they are in recent kernels. In this case, if a CPU wakes up after at least one minute of inactivity, an RCU CPU stall warning will result. The reason that no one noticed until quite recently is that most systems have enough OS noise that they will never remain absolutely idle for a full minute. But there are some embedded systems with cut-down userspace configurations that consistently get into this situation. All this begs the question of exactly how a callback-free grace period gets started in the first place. This can happen due to the fact that CPUs do not necessarily agree on which grace period is in progress. If a CPU still believes that the grace period that just completed is still ongoing, it will believe that it has callbacks that need to wait for another grace period, never mind the fact that the grace period that they were waiting for just completed. This CPU can therefore erroneously decide to start a new grace period. Note that this can happen in TREE_RCU and TREE_PREEMPT_RCU even on a single-CPU system: Deadlock considerations mean that the CPU that detected the end of the grace period is not necessarily officially informed of this fact for some time. Once this CPU notices that the earlier grace period completed, it will invoke its callbacks. It then won't have any callbacks left. If no other CPU has any callbacks, we now have a callback-free grace period. This commit therefore makes CPUs check more carefully before starting a new grace period. This new check relies on an array of tail pointers into each CPU's list of callbacks. If the CPU is up to date on which grace periods have completed, it checks to see if any callbacks follow the RCU_DONE_TAIL segment, otherwise it checks to see if any callbacks follow the RCU_WAIT_TAIL segment. The reason that this works is that the RCU_WAIT_TAIL segment will be promoted to the RCU_DONE_TAIL segment as soon as the CPU is officially notified that the old grace period has ended. This change is to cpu_needs_another_gp(), which is called in a number of places. The only one that really matters is in rcu_start_gp(), where the root rcu_node structure's ->lock is held, which prevents any other CPU from starting or completing a grace period, so that the comparison that determines whether the CPU is missing the completion of a grace period is stable. Reported-by: Becky Bruce <bgillbruce@gmail.com> Reported-by: Subodh Nijsure <snijsure@grid-net.com> Reported-by: Paul Walmsley <paul@pwsan.com> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Paul Walmsley <paul@pwsan.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | Merge commit '2e54c4f' into HEADKalimochoAz2012-10-142-0/+3
|\ \ | |/
| * workqueue: add missing smp_wmb() in process_one_work()Tejun Heo2012-10-131-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 959d1af8cffc8fd38ed53e8be1cf4ab8782f9c00 upstream. WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * kernel/sys.c: call disable_nonboot_cpus() in kernel_restart()Shawn Guo2012-10-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f96972f2dc6365421cf2366ebd61ee4cf060c8d5 upstream. As kernel_power_off() calls disable_nonboot_cpus(), we may also want to have kernel_restart() call disable_nonboot_cpus(). Doing so can help machines that require boot cpu be the last alive cpu during reboot to survive with kernel restart. This fixes one reboot issue seen on imx6q (Cortex-A9 Quad). The machine requires that the restart routine be run on the primary cpu rather than secondary ones. Otherwise, the secondary core running the restart routine will fail to come to online after reboot. Signed-off-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | Merge commit 'b9a7985' into HEADKalimochoAz2012-10-146-69/+118
|\ \ | |/ | | | | | | Conflicts: kernel/time/timekeeping.c
| * sched: Fix ancient race in do_exit()Yasunori Goto2012-10-021-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b5740f4b2cb3503b436925eb2242bc3d75cd3dfe upstream. try_to_wake_up() has a problem which may change status from TASK_DEAD to TASK_RUNNING in race condition with SMI or guest environment of virtual machine. As a result, exited task is scheduled() again and panic occurs. Here is the sequence how it occurs: ----------------------------------+----------------------------- | CPU A | CPU B ----------------------------------+----------------------------- TASK A calls exit().... do_exit() exit_mm() down_read(mm->mmap_sem); rwsem_down_failed_common() set TASK_UNINTERRUPTIBLE set waiter.task <= task A list_add to sem->wait_list : raw_spin_unlock_irq() (I/O interruption occured) __rwsem_do_wake(mmap_sem) list_del(&waiter->list); waiter->task = NULL wake_up_process(task A) try_to_wake_up() (task is still TASK_UNINTERRUPTIBLE) p->on_rq is still 1.) ttwu_do_wakeup() (*A) : (I/O interruption handler finished) if (!waiter.task) schedule() is not called due to waiter.task is NULL. tsk->state = TASK_RUNNING : check_preempt_curr(); : task->state = TASK_DEAD (*B) <--- set TASK_RUNNING (*C) schedule() (exit task is running again) BUG_ON() is called! -------------------------------------------------------- The execution time between (*A) and (*B) is usually very short, because the interruption is disabled, and setting TASK_RUNNING at (*C) must be executed before setting TASK_DEAD. HOWEVER, if SMI is interrupted between (*A) and (*B), (*C) is able to execute AFTER setting TASK_DEAD! Then, exited task is scheduled again, and BUG_ON() is called.... If the system works on guest system of virtual machine, the time between (*A) and (*B) may be also long due to scheduling of hypervisor, and same phenomenon can occur. By this patch, do_exit() waits for releasing task->pi_lock which is used in try_to_wake_up(). It guarantees the task becomes TASK_DEAD after waking up. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20120117174031.3118.E1E9C6FF@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * time: Move ktime_t overflow checking into timespec_valid_strictJohn Stultz2012-10-021-4/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit cee58483cf56e0ba355fdd97ff5e8925329aa936 upstream Andreas Bombe reported that the added ktime_t overflow checking added to timespec_valid in commit 4e8b14526ca7 ("time: Improve sanity checking of timekeeping inputs") was causing problems with X.org because it caused timeouts larger then KTIME_T to be invalid. Previously, these large timeouts would be clamped to KTIME_MAX and would never expire, which is valid. This patch splits the ktime_t overflow checking into a new timespec_valid_strict function, and converts the timekeeping codes internal checking to use this more strict function. Reported-and-tested-by: Andreas Bombe <aeb@debian.org> Cc: Zhouping Liu <zliu@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * time: Avoid making adjustments if we haven't accumulated anythingJohn Stultz2012-10-021-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit bf2ac312195155511a0f79325515cbb61929898a upstream If update_wall_time() is called and the current offset isn't large enough to accumulate, avoid re-calling timekeeping_adjust which may change the clock freq and can cause 1ns inconsistencies with CLOCK_REALTIME_COARSE/CLOCK_MONOTONIC_COARSE. Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/1345595449-34965-5-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * time: Improve sanity checking of timekeeping inputsJohn Stultz2012-10-021-2/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4e8b14526ca7fb046a81c94002c1c43b6fdf0e9b upstream Unexpected behavior could occur if the time is set to a value large enough to overflow a 64bit ktime_t (which is something larger then the year 2262). Also unexpected behavior could occur if large negative offsets are injected via adjtimex. So this patch improves the sanity check timekeeping inputs by improving the timespec_valid() check, and then makes better use of timespec_valid() to make sure we don't set the time to an invalid negative value or one that overflows ktime_t. Note: This does not protect from setting the time close to overflowing ktime_t and then letting natural accumulation cause the overflow. Reported-by: CAI Qian <caiqian@redhat.com> Reported-by: Sasha Levin <levinsasha928@gmail.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Zhouping Liu <zliu@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * sched: Fix race in task_group()Peter Zijlstra2012-10-021-14/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8323f26ce3425460769605a6aece7a174edaa7d1 upstream. Stefan reported a crash on a kernel before a3e5d1091c1 ("sched: Don't call task_group() too many times in set_task_rq()"), he found the reason to be that the multiple task_group() invocations in set_task_rq() returned different values. Looking at all that I found a lack of serialization and plain wrong comments. The below tries to fix it using an extra pointer which is updated under the appropriate scheduler locks. Its not pretty, but I can't really see another way given how all the cgroup stuff works. Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * Fix a dead loop in async_synchronize_full()Li Zhong2012-10-021-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [Fixed upstream by commits 2955b47d2c1983998a8c5915cb96884e67f7cb53 and a4683487f90bfe3049686fc5c566bdc1ad03ace6 from Dan Williams, but they are much more intrusive than this tiny fix, according to Andrew - gregkh] This patch tries to fix a dead loop in async_synchronize_full(), which could be seen when preemption is disabled on a single cpu machine. void async_synchronize_full(void) { do { async_synchronize_cookie(next_cookie); } while (!list_empty(&async_running) || ! list_empty(&async_pending)); } async_synchronize_cookie() calls async_synchronize_cookie_domain() with &async_running as the default domain to synchronize. However, there might be some works in the async_pending list from other domains. On a single cpu system, without preemption, there is no chance for the other works to finish, so async_synchronize_full() enters a dead loop. It seems async_synchronize_full() wants to synchronize all entries in all running lists(domains), so maybe we could just check the entry_count to know whether all works are finished. Currently, async_synchronize_cookie_domain() expects a non-NULL running list ( if NULL, there would be NULL pointer dereference ), so maybe a NULL pointer could be used as an indication for the functions to synchronize all works in all domains. Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Christian Kujau <lists@nerdbynature.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dan Williams <dan.j.williams@gmail.com> Cc: Christian Kujau <lists@nerdbynature.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomicLai Jiangshan2012-10-021-3/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 96e65306b81351b656835c15931d1d237b252f27 upstream. The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * perf_event: Switch to internal refcount, fix race with close()Al Viro2012-10-021-29/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a6fa941d94b411bbd2b6421ffbde6db3c93e65ab upstream. Don't mess with file refcounts (or keep a reference to file, for that matter) in perf_event. Use explicit refcount of its own instead. Deal with the race between the final reference to event going away and new children getting created for it by use of atomic_long_inc_not_zero() in inherit_event(); just have the latter free what it had allocated and return NULL, that works out just fine (children of siblings of something doomed are created as singletons, same as if the child of leader had been created and immediately killed). Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120820135925.GG23464@ZenIV.linux.org.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * workqueue: reimplement work_on_cpu() using system_wqTejun Heo2012-10-021-17/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ed48ece27cd3d5ee0354c32bbaec0f3e1d4715c3 upstream. The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Len Brown <lenb@kernel.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | Merge remote-tracking branch 'android/android-3.0' into HEADKalimochoAz2012-10-141-1/+1
|\ \
| * | timekeeping: fix 32-bit overflow in get_monotonic_boottimeColin Cross2012-09-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | get_monotonic_boottime adds three nanonsecond values stored in longs, followed by an s64. If the long values are all close to 1e9 the first three additions can overflow and become negative when added to the s64. Cast the first value to s64 so that all additions are 64 bit. Change-Id: Ic996d8b6fbef0b72f2d027b0d8ef5259b5c1a540 Signed-off-by: Colin Cross <ccross@android.com>
| * | Merge commit 'v3.0.31' into android-3.0Todd Poynor2012-05-081-27/+26
| |\ \
| * \ \ Merge commit 'v3.0.30' into android-3.0Todd Poynor2012-04-303-48/+28
| |\ \ \
| * \ \ \ Merge linux-stable 3.0.28 into android-3.0Todd Poynor2012-04-1944-166/+437
| |\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | Change-Id: Iee820738e53627f5d0447a87ceff34443aa72786 Signed-off-by: Todd Poynor <toddpoynor@google.com>
* | \ \ \ \ Merge remote-tracking branch 'korg/linux-3.0.y' into HEADKalimochoAz2012-09-161-6/+5
|\ \ \ \ \ \ | | |_|_|_|/ | |/| | | |
| * | | | | audit: fix refcounting in audit-treeMiklos Szeredi2012-09-141-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a2140fc0cb0325bb6384e788edd27b9a568714e2 upstream. Refcounting of fsnotify_mark in audit tree is broken. E.g: refcount create_chunk alloc_chunk 1 fsnotify_add_mark 2 untag_chunk fsnotify_get_mark 3 fsnotify_destroy_mark audit_tree_freeing_mark 2 fsnotify_put_mark 1 fsnotify_put_mark 0 via destroy_list fsnotify_mark_destroy -1 This was reported by various people as triggering Oops when stopping auditd. We could just remove the put_mark from audit_tree_freeing_mark() but that would break freeing via inode destruction. So this patch simply omits a put_mark after calling destroy_mark or adds a get_mark before. The additional get_mark is necessary where there's no other put_mark after fsnotify_destroy_mark() since it assumes that the caller is holding a reference (or the inode is keeping the mark pinned, not the case here AFAICS). Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Reported-by: Valentin Avram <aval13@gmail.com> Reported-by: Peter Moody <pmoody@google.com> Acked-by: Eric Paris <eparis@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | audit: don't free_chunk() after fsnotify_add_mark()Miklos Szeredi2012-09-141-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 0fe33aae0e94b4097dd433c9399e16e17d638cd8 upstream. Don't do free_chunk() after fsnotify_add_mark(). That one does a delayed unref via the destroy list and this results in use-after-free. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Eric Paris <eparis@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | | | | | Merge branch 'linux-3.0.y' into HEADKalimochoAz2012-08-309-65/+97
|\ \ \ \ \ \ | |/ / / / / | | | | | | | | | | | | | | | | | | Conflicts: drivers/net/tun.c
| * | | | | random: remove rand_initialize_irq()Theodore Ts'o2012-08-151-17/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit c5857ccf293968348e5eb4ebedc68074de3dcda6 upstream. With the new interrupt sampling system, we are no longer using the timer_rand_state structure in the irq descriptor, so we can stop initializing it now. [ Merged in fixes from Sedat to find some last missing references to rand_initialize_irq() ] Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | random: make 'add_interrupt_randomness()' do something saneTheodore Ts'o2012-08-151-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 775f4b297b780601e61787b766f306ed3e1d23eb upstream. We've been moving away from add_interrupt_randomness() for various reasons: it's too expensive to do on every interrupt, and flooding the CPU with interrupts could theoretically cause bogus floods of entropy from a somewhat externally controllable source. This solves both problems by limiting the actual randomness addition to just once a second or after 64 interrupts, whicever comes first. During that time, the interrupt cycle data is buffered up in a per-cpu pool. Also, we make sure the the nonblocking pool used by urandom is initialized before we start feeding the normal input pool. This assures that /dev/urandom is returning unpredictable data as soon as possible. (Based on an original patch by Linus, but significantly modified by tytso.) Tested-by: Eric Wustrow <ewust@umich.edu> Reported-by: Eric Wustrow <ewust@umich.edu> Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu> Reported-by: Zakir Durumeric <zakir@umich.edu> Reported-by: J. Alex Halderman <jhalderm@umich.edu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | futex: Forbid uaddr == uaddr2 in futex_wait_requeue_pi()Darren Hart2012-08-091-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6f7b0a2a5c0fb03be7c25bd1745baa50582348ef upstream. If uaddr == uaddr2, then we have broken the rule of only requeueing from a non-pi futex to a pi futex with this call. If we attempt this, as the trinity test suite manages to do, we miss early wakeups as q.key is equal to key2 (because they are the same uaddr). We will then attempt to dereference the pi_mutex (which would exist had the futex_q been properly requeued to a pi futex) and trigger a NULL pointer dereference. Signed-off-by: Darren Hart <dvhart@linux.intel.com> Cc: Dave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/ad82bfe7f7d130247fbe2b5b4275654807774227.1342809673.git.dvhart@linux.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | futex: Fix bug in WARN_ON for NULL q.pi_stateDarren Hart2012-08-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f27071cb7fe3e1d37a9dbe6c0dfc5395cd40fa43 upstream. The WARN_ON in futex_wait_requeue_pi() for a NULL q.pi_state was testing the address (&q.pi_state) of the pointer instead of the value (q.pi_state) of the pointer. Correct it accordingly. Signed-off-by: Darren Hart <dvhart@linux.intel.com> Cc: Dave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/1c85d97f6e5f79ec389a4ead3e367363c74bd09a.1342809673.git.dvhart@linux.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | futex: Test for pi_mutex on fault in futex_wait_requeue_pi()Darren Hart2012-08-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b6070a8d9853eda010a549fa9a09eb8d7269b929 upstream. If fixup_pi_state_owner() faults, pi_mutex may be NULL. Test for pi_mutex != NULL before testing the owner against current and possibly unlocking it. Signed-off-by: Darren Hart <dvhart@linux.intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Link: http://lkml.kernel.org/r/dc59890338fc413606f04e5c5b131530734dae3d.1342809673.git.dvhart@linux.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | workqueue: perform cpu down operations from low priority cpu_notifier()Tejun Heo2012-08-091-1/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6575820221f7a4dd6eadecf7bf83cdd154335eda upstream. Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | ftrace: Disable function tracing during suspend/resume and hibernation, againSrivatsa S. Bhat2012-08-092-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 443772d408a25af62498793f6f805ce3c559309a upstream. If function tracing is enabled for some of the low-level suspend/resume functions, it leads to triple fault during resume from suspend, ultimately ending up in a reboot instead of a resume (or a total refusal to come out of suspended state, on some machines). This issue was explained in more detail in commit f42ac38c59e0a03d (ftrace: disable tracing for suspend to ram). However, the changes made by that commit got reverted by commit cbe2f5a6e84eebb (tracing: allow tracing of suspend/resume & hibernation code again). So, unfortunately since things are not yet robust enough to allow tracing of low-level suspend/resume functions, suspend/resume is still broken when ftrace is enabled. So fix this by disabling function tracing during suspend/resume & hibernation. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | cpuset: mm: reduce large amounts of memory barrier related damage v3Mel Gorman2012-08-012-35/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit cc9a6c8776615f9c194ccf0b63a0aa5628235545 upstream. Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely expensive and severely impacted page allocator performance. This is part of a series of patches that reduce page allocator overhead. Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemaskDavid Rientjes2012-08-011-5/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b246272ecc5ac68c743b15c9e41a2275f7ce70e2 upstream. Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely expensive and severely impacted page allocator performance. This is part of a series of patches that reduce page allocator overhead. Kernels where MAX_NUMNODES > BITS_PER_LONG may temporarily see an empty nodemask in a tsk's mempolicy if its previous nodemask is remapped onto a new set of allowed cpuset nodes where the two nodemasks, as a result of the remap, are now disjoint. c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") adds get_mems_allowed() to prevent the set of allowed nodes from changing for a thread. This causes any update to a set of allowed nodes to stall until put_mems_allowed() is called. This stall is unncessary, however, if at least one node remains unchanged in the update to the set of allowed nodes. This was addressed by 89e8a244b97e ("cpusets: avoid looping when storing to mems_allowed if one node remains set"), but it's still possible that an empty nodemask may be read from a mempolicy because the old nodemask may be remapped to the new nodemask during rebind. To prevent this, only avoid the stall if there is no mempolicy for the thread being changed. This is a temporary solution until all reads from mempolicy nodemasks can be guaranteed to not be empty without the get_mems_allowed() synchronization. Also moves the check for nodemask intersection inside task_lock() so that tsk->mems_allowed cannot change. This ensures that nothing can set this tsk's mems_allowed out from under us and also protects tsk->mempolicy. Reported-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Paul Menage <paul@paulmenage.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | cpusets: avoid looping when storing to mems_allowed if one node remains setDavid Rientjes2012-08-011-3/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 89e8a244b97e48f1f30e898b6f32acca477f2a13 upstream. Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely expensive and severely impacted page allocator performance. This is part of a series of patches that reduce page allocator overhead. {get,put}_mems_allowed() exist so that general kernel code may locklessly access a task's set of allowable nodes without having the chance that a concurrent write will cause the nodemask to be empty on configurations where MAX_NUMNODES > BITS_PER_LONG. This could incur a significant delay, however, especially in low memory conditions because the page allocator is blocking and reclaim requires get_mems_allowed() itself. It is not atypical to see writes to cpuset.mems take over 2 seconds to complete, for example. In low memory conditions, this is problematic because it's one of the most imporant times to change cpuset.mems in the first place! The only way a task's set of allowable nodes may change is through cpusets by writing to cpuset.mems and when attaching a task to a generic code is not reading the nodemask with get_mems_allowed() at the same time, and then clearing all the old nodes. This prevents the possibility that a reader will see an empty nodemask at the same time the writer is storing a new nodemask. If at least one node remains unchanged, though, it's possible to simply set all new nodes and then clear all the old nodes. Changing a task's nodemask is protected by cgroup_mutex so it's guaranteed that two threads are not changing the same task's nodemask at the same time, so the nodemask is guaranteed to be stored before another thread changes it and determines whether a node remains set or not. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Paul Menage <paul@paulmenage.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | | | ntp: Fix STA_INS/DEL clearing bugJohn Stultz2012-08-011-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6b1859dba01c7d512b72d77e3fd7da8354235189 upstream. In commit 6b43ae8a619d17c4935c3320d2ef9e92bdeed05d, I introduced a bug that kept the STA_INS or STA_DEL bit from being cleared from time_status via adjtimex() without forcing STA_PLL first. Usually once the STA_INS is set, it isn't cleared until the leap second is applied, so its unlikely this affected anyone. However during testing I noticed it took some effort to cancel a leap second once STA_INS was set. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Link: http://lkml.kernel.org/r/1342156917-25092-2-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>