aboutsummaryrefslogtreecommitdiffstats
path: root/block/bfq-iosched.c
blob: ca7f280059fa568858b1384f3e7a32357a7c6a31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
/*
 * BFQ, or Budget Fair Queueing, disk scheduler.
 *
 * Based on ideas and code from CFQ:
 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
 *
 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
 *		      Paolo Valente <paolo.valente@unimore.it>
 *
 * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
 *
 * BFQ is a proportional share disk scheduling algorithm based on the
 * slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
 * measured in number of sectors, to tasks instead of time slices.
 * The disk is not granted to the active task for a given time slice,
 * but until it has exahusted its assigned budget.  This change from
 * the time to the service domain allows BFQ to distribute the disk
 * bandwidth among tasks as desired, without any distortion due to
 * ZBR, workload fluctuations or other factors. BFQ uses an ad hoc
 * internal scheduler, called B-WF2Q+, to schedule tasks according to
 * their budgets.  Thanks to this accurate scheduler, BFQ can afford
 * to assign high budgets to disk-bound non-seeky tasks (to boost the
 * throughput), and yet guarantee low latencies to interactive and
 * soft real-time applications.
 *
 * BFQ has been introduced in [1], where the interested reader can
 * find an accurate description of the algorithm, the bandwidth
 * distribution and latency guarantees it provides, plus formal proofs
 * of all the properties.  With respect to the algorithm presented in
 * the paper, this implementation adds several little heuristics, and
 * a hierarchical extension, based on H-WF2Q+.
 *
 * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
 * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
 * complexity derives from the one introduced with EEVDF in [3].
 *
 * [1] P. Valente and F. Checconi, ``High Throughput Disk Scheduling
 *     with Deterministic Guarantees on Bandwidth Distribution,'',
 *     IEEE Transactions on Computer, May 2010.
 *
 *     http://algo.ing.unimo.it/people/paolo/disk_sched/bfq-techreport.pdf
 *
 * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
 *     Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
 *     Oct 1997.
 *
 *     http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
 *
 * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
 *     First: A Flexible and Accurate Mechanism for Proportional Share
 *     Resource Allocation,'' technical report.
 *
 *     http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/cgroup.h>
#include <linux/elevator.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/ioprio.h>
#include "bfq.h"

/* Max number of dispatches in one round of service. */
static const int bfq_quantum = 4;

/* Expiration time of sync (0) and async (1) requests, in jiffies. */
static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };

/* Maximum backwards seek, in KiB. */
static const int bfq_back_max = 16 * 1024;

/* Penalty of a backwards seek, in number of sectors. */
static const int bfq_back_penalty = 2;

/* Idling period duration, in jiffies. */
static int bfq_slice_idle = HZ / 125;

/* Default maximum budget values, in sectors and number of requests. */
static const int bfq_default_max_budget = 16 * 1024;
static const int bfq_max_budget_async_rq = 4;

/*
 * Async to sync throughput distribution is controlled as follows:
 * when an async request is served, the entity is charged the number
 * of sectors of the request, multipled by the factor below
 */
static const int bfq_async_charge_factor = 10;

/* Default timeout values, in jiffies, approximating CFQ defaults. */
static const int bfq_timeout_sync = HZ / 8;
static int bfq_timeout_async = HZ / 25;

struct kmem_cache *bfq_pool;
struct kmem_cache *bfq_ioc_pool;

static DEFINE_PER_CPU(unsigned long, bfq_ioc_count);
static struct completion *bfq_ioc_gone;
static DEFINE_SPINLOCK(bfq_ioc_gone_lock);

static DEFINE_SPINLOCK(cic_index_lock);
static DEFINE_IDA(cic_index_ida);

/* Below this threshold (in ms), we consider thinktime immediate. */
#define BFQ_MIN_TT		2

/* hw_tag detection: parallel requests threshold and min samples needed. */
#define BFQ_HW_QUEUE_THRESHOLD	4
#define BFQ_HW_QUEUE_SAMPLES	32

#define BFQQ_SEEK_THR	 (sector_t)(8 * 1024)
#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)

/* Min samples used for peak rate estimation (for autotuning). */
#define BFQ_PEAK_RATE_SAMPLES	32

/* Shift used for peak rate fixed precision calculations. */
#define BFQ_RATE_SHIFT		16

/*
 * The duration of the weight raising for interactive applications is
 * computed automatically (as default behaviour), using the following
 * formula: duration = (R / r) * T, where r is the peak rate of the
 * disk, and R and T are two reference parameters. In particular, R is
 * the peak rate of a reference disk, and T is about the maximum time
 * for starting popular large applications on that disk, under BFQ and
 * while reading two files in parallel. Finally, BFQ uses two
 * different pairs (R, T) depending on whether the disk is rotational
 * or non-rotational.
 */
#define T_rot			(msecs_to_jiffies(5500))
#define T_nonrot		(msecs_to_jiffies(2000))
/* Next two quantities are in sectors/usec, left-shifted by BFQ_RATE_SHIFT */
#define R_rot			17415
#define R_nonrot		34791

#define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })

#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private[0])
#define RQ_BFQQ(rq)		((rq)->elevator_private[1])

#include "bfq-ioc.c"
#include "bfq-sched.c"
#include "bfq-cgroup.c"

#define bfq_class_idle(bfqq)	((bfqq)->entity.ioprio_class ==\
				 IOPRIO_CLASS_IDLE)
#define bfq_class_rt(bfqq)	((bfqq)->entity.ioprio_class ==\
				 IOPRIO_CLASS_RT)

#define bfq_sample_valid(samples)	((samples) > 80)

/*
 * We regard a request as SYNC, if either it's a read or has the SYNC bit
 * set (in which case it could also be a direct WRITE).
 */
static inline int bfq_bio_sync(struct bio *bio)
{
	if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
		return 1;

	return 0;
}

/*
 * Scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing.
 */
static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
{
	if (bfqd->queued != 0) {
		bfq_log(bfqd, "schedule dispatch");
		kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
	}
}

/*
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 * We choose the request that is closesr to the head right now.  Distance
 * behind the head is penalized and only allowed to a certain extent.
 */
static struct request *bfq_choose_req(struct bfq_data *bfqd,
				      struct request *rq1,
				      struct request *rq2,
				      sector_t last)
{
	sector_t s1, s2, d1 = 0, d2 = 0;
	unsigned long back_max;
#define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */

	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;

	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
		return rq1;
	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
		return rq2;

	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);

	/*
	 * By definition, 1KiB is 2 sectors.
	 */
	back_max = bfqd->bfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * bfqd->bfq_back_penalty;
	else
		wrap |= BFQ_RQ1_WRAP;

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * bfqd->bfq_back_penalty;
	else
		wrap |= BFQ_RQ2_WRAP;

	/* Found required data */

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
		if (d1 < d2)
			return rq1;
		else if (d2 < d1)
			return rq2;
		else {
			if (s1 >= s2)
				return rq1;
			else
				return rq2;
		}

	case BFQ_RQ2_WRAP:
		return rq1;
	case BFQ_RQ1_WRAP:
		return rq2;
	case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
			return rq1;
		else
			return rq2;
	}
}

static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
{
	struct rb_node **p, *parent;
	struct bfq_queue *bfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		bfqq = rb_entry(parent, struct bfq_queue, pos_node);

		/*
		 * Sort strictly based on sector. Smallest to the left,
		 * largest to the right.
		 */
		if (sector > blk_rq_pos(bfqq->next_rq))
			n = &(*p)->rb_right;
		else if (sector < blk_rq_pos(bfqq->next_rq))
			n = &(*p)->rb_left;
		else
			break;
		p = n;
		bfqq = NULL;
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;

	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
		(long long unsigned)sector,
		bfqq != NULL ? bfqq->pid : 0);

	return bfqq;
}

static void bfq_rq_pos_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
	struct rb_node **p, *parent;
	struct bfq_queue *__bfqq;

	if (bfqq->pos_root != NULL) {
		rb_erase(&bfqq->pos_node, bfqq->pos_root);
		bfqq->pos_root = NULL;
	}

	if (bfq_class_idle(bfqq))
		return;
	if (!bfqq->next_rq)
		return;

	bfqq->pos_root = &bfqd->rq_pos_tree;
	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
			blk_rq_pos(bfqq->next_rq), &parent, &p);
	if (__bfqq == NULL) {
		rb_link_node(&bfqq->pos_node, parent, p);
		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
	} else
		bfqq->pos_root = NULL;
}

static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
					struct bfq_queue *bfqq,
					struct request *last)
{
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
	struct request *next = NULL, *prev = NULL;

	BUG_ON(RB_EMPTY_NODE(&last->rb_node));

	if (rbprev != NULL)
		prev = rb_entry_rq(rbprev);

	if (rbnext != NULL)
		next = rb_entry_rq(rbnext);
	else {
		rbnext = rb_first(&bfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
			next = rb_entry_rq(rbnext);
	}

	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
}

static void bfq_del_rq_rb(struct request *rq)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);
	struct bfq_data *bfqd = bfqq->bfqd;
	const int sync = rq_is_sync(rq);

	BUG_ON(bfqq->queued[sync] == 0);
	bfqq->queued[sync]--;
	bfqd->queued--;

	elv_rb_del(&bfqq->sort_list, rq);

	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->active_queue)
			bfq_del_bfqq_busy(bfqd, bfqq, 1);
		/*
		 * Remove queue from request-position tree as it is empty.
		 */
		if (bfqq->pos_root != NULL) {
			rb_erase(&bfqq->pos_node, bfqq->pos_root);
			bfqq->pos_root = NULL;
		}
	}
}

/* see the definition of bfq_async_charge_factor for details */
static inline unsigned long bfq_serv_to_charge(struct request *rq,
					       struct bfq_queue *bfqq)
{
	return blk_rq_sectors(rq) *
		(1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->raising_coeff == 1) *
		bfq_async_charge_factor));
}

/**
 * bfq_updated_next_req - update the queue after a new next_rq selection.
 * @bfqd: the device data the queue belongs to.
 * @bfqq: the queue to update.
 *
 * If the first request of a queue changes we make sure that the queue
 * has enough budget to serve at least its first request (if the
 * request has grown).  We do this because if the queue has not enough
 * budget for its first request, it has to go through two dispatch
 * rounds to actually get it dispatched.
 */
static void bfq_updated_next_req(struct bfq_data *bfqd,
				 struct bfq_queue *bfqq)
{
	struct bfq_entity *entity = &bfqq->entity;
	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
	struct request *next_rq = bfqq->next_rq;
	unsigned long new_budget;

	if (next_rq == NULL)
		return;

	if (bfqq == bfqd->active_queue)
		/*
		 * In order not to break guarantees, budgets cannot be
		 * changed after an entity has been selected.
		 */
		return;

	BUG_ON(entity->tree != &st->active);
	BUG_ON(entity == entity->sched_data->active_entity);

	new_budget = max_t(unsigned long, bfqq->max_budget,
			   bfq_serv_to_charge(next_rq, bfqq));
	entity->budget = new_budget;
	bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", new_budget);
	bfq_activate_bfqq(bfqd, bfqq);
}

static inline unsigned int bfq_wrais_duration(struct bfq_data *bfqd)
{
	u64 dur;

	if (bfqd->bfq_raising_max_time > 0)
		return bfqd->bfq_raising_max_time;

	dur = bfqd->RT_prod;
	do_div(dur, bfqd->peak_rate);

	return dur;
}

static void bfq_add_rq_rb(struct request *rq)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);
	struct bfq_entity *entity = &bfqq->entity;
	struct bfq_data *bfqd = bfqq->bfqd;
	struct request *__alias, *next_rq, *prev;
	unsigned long old_raising_coeff = bfqq->raising_coeff;
	int idle_for_long_time = bfqq->budget_timeout +
		bfqd->bfq_raising_min_idle_time < jiffies;

	bfq_log_bfqq(bfqd, bfqq, "add_rq_rb %d", rq_is_sync(rq));
	bfqq->queued[rq_is_sync(rq)]++;
	bfqd->queued++;

	/*
	 * Looks a little odd, but the first insert might return an alias,
	 * if that happens, put the alias on the dispatch list.
	 */
	while ((__alias = elv_rb_add(&bfqq->sort_list, rq)) != NULL)
		bfq_dispatch_insert(bfqd->queue, __alias);

	/*
	 * Check if this request is a better next-serve candidate.
	 */
	prev = bfqq->next_rq;
	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
	BUG_ON(next_rq == NULL);
	bfqq->next_rq = next_rq;

	/*
	 * Adjust priority tree position, if next_rq changes.
	 */
	if (prev != bfqq->next_rq)
		bfq_rq_pos_tree_add(bfqd, bfqq);

	if (!bfq_bfqq_busy(bfqq)) {
		int soft_rt = bfqd->bfq_raising_max_softrt_rate > 0 &&
			bfqq->soft_rt_next_start < jiffies;
		entity->budget = max_t(unsigned long, bfqq->max_budget,
				       bfq_serv_to_charge(next_rq, bfqq));

		if (! bfqd->low_latency)
			goto add_bfqq_busy;

		/*
		 * If the queue is not being boosted and has been idle
		 * for enough time, start a weight-raising period
		 */
		if(old_raising_coeff == 1 && (idle_for_long_time || soft_rt)) {
			bfqq->raising_coeff = bfqd->bfq_raising_coeff;
			if (idle_for_long_time)
				bfqq->raising_cur_max_time =
					bfq_wrais_duration(bfqd);
			else
				bfqq->raising_cur_max_time =
					bfqd->bfq_raising_rt_max_time;
			bfq_log_bfqq(bfqd, bfqq,
				     "wrais starting at %llu msec,"
				     "rais_max_time %u",
				     bfqq->last_rais_start_finish,
				     jiffies_to_msecs(bfqq->
					raising_cur_max_time));
		} else if (old_raising_coeff > 1) {
			if (idle_for_long_time)
				bfqq->raising_cur_max_time =
					bfq_wrais_duration(bfqd);
			else if (bfqq->raising_cur_max_time ==
				 bfqd->bfq_raising_rt_max_time &&
				 !soft_rt) {
				bfqq->raising_coeff = 1;
				bfq_log_bfqq(bfqd, bfqq,
					     "wrais ending at %llu msec,"
					     "rais_max_time %u",
					     bfqq->last_rais_start_finish,
					     jiffies_to_msecs(bfqq->
						raising_cur_max_time));
				}
		}
		if (old_raising_coeff != bfqq->raising_coeff)
			entity->ioprio_changed = 1;
add_bfqq_busy:
		bfq_add_bfqq_busy(bfqd, bfqq);
        } else {
                if(bfqd->low_latency && old_raising_coeff == 1 &&
			!rq_is_sync(rq) &&
			bfqq->last_rais_start_finish +
                        bfqd->bfq_raising_min_inter_arr_async < jiffies) {
                        bfqq->raising_coeff = bfqd->bfq_raising_coeff;
			bfqq->raising_cur_max_time = bfq_wrais_duration(bfqd);

			entity->ioprio_changed = 1;
			bfq_log_bfqq(bfqd, bfqq,
				     "non-idle wrais starting at %llu msec,"
				     "rais_max_time %u",
				     bfqq->last_rais_start_finish,
				     jiffies_to_msecs(bfqq->
					raising_cur_max_time));
                }
                bfq_updated_next_req(bfqd, bfqq);
	}

	if(bfqd->low_latency &&
		(old_raising_coeff == 1 || bfqq->raising_coeff == 1 ||
		 idle_for_long_time))
		bfqq->last_rais_start_finish = jiffies;
}

static void bfq_reposition_rq_rb(struct bfq_queue *bfqq, struct request *rq)
{
	elv_rb_del(&bfqq->sort_list, rq);
	bfqq->queued[rq_is_sync(rq)]--;
	bfqq->bfqd->queued--;
	bfq_add_rq_rb(rq);
}

static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
					  struct bio *bio)
{
	struct task_struct *tsk = current;
	struct cfq_io_context *cic;
	struct bfq_queue *bfqq;

	cic = bfq_cic_lookup(bfqd, tsk->io_context);
	if (cic == NULL)
		return NULL;

	bfqq = cic_to_bfqq(cic, bfq_bio_sync(bio));
	if (bfqq != NULL) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

		return elv_rb_find(&bfqq->sort_list, sector);
	}

	return NULL;
}

static void bfq_activate_request(struct request_queue *q, struct request *rq)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;

	bfqd->rq_in_driver++;
	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
	bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
		(long long unsigned)bfqd->last_position);
}

static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;

	WARN_ON(bfqd->rq_in_driver == 0);
	bfqd->rq_in_driver--;
}

static void bfq_remove_request(struct request *rq)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);
	struct bfq_data *bfqd = bfqq->bfqd;

	if (bfqq->next_rq == rq) {
		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
		bfq_updated_next_req(bfqd, bfqq);
	}

	list_del_init(&rq->queuelist);
	bfq_del_rq_rb(rq);

	if (rq->cmd_flags & REQ_META) {
		WARN_ON(bfqq->meta_pending == 0);
		bfqq->meta_pending--;
	}
}

static int bfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct request *__rq;

	__rq = bfq_find_rq_fmerge(bfqd, bio);
	if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
	}

	return ELEVATOR_NO_MERGE;
}

static void bfq_merged_request(struct request_queue *q, struct request *req,
			       int type)
{
	if (type == ELEVATOR_FRONT_MERGE) {
		struct bfq_queue *bfqq = RQ_BFQQ(req);

		bfq_reposition_rq_rb(bfqq, req);
	}
}

static void bfq_merged_requests(struct request_queue *q, struct request *rq,
				struct request *next)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);

	/*
	 * Reposition in fifo if next is older than rq.
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
		list_move(&rq->queuelist, &next->queuelist);
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}

	if (bfqq->next_rq == next)
		bfqq->next_rq = rq;

	bfq_remove_request(next);
}

static int bfq_allow_merge(struct request_queue *q, struct request *rq,
			   struct bio *bio)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	struct bfq_queue *bfqq;

	/* Disallow merge of a sync bio into an async request. */
	if (bfq_bio_sync(bio) && !rq_is_sync(rq))
		return 0;

	/*
	 * Lookup the bfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
	 */
	cic = bfq_cic_lookup(bfqd, current->io_context);
	if (cic == NULL)
		return 0;

	bfqq = cic_to_bfqq(cic, bfq_bio_sync(bio));
	return bfqq == RQ_BFQQ(rq);
}

static void __bfq_set_active_queue(struct bfq_data *bfqd,
				   struct bfq_queue *bfqq)
{
	if (bfqq != NULL) {
		bfq_mark_bfqq_must_alloc(bfqq);
		bfq_mark_bfqq_budget_new(bfqq);
		bfq_clear_bfqq_fifo_expire(bfqq);

		bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;

		bfq_log_bfqq(bfqd, bfqq, "set_active_queue, cur-budget = %lu",
			     bfqq->entity.budget);
	}

	bfqd->active_queue = bfqq;
}

/*
 * Get and set a new active queue for service.
 */
static struct bfq_queue *bfq_set_active_queue(struct bfq_data *bfqd,
					      struct bfq_queue *bfqq)
{
	if (!bfqq)
		bfqq = bfq_get_next_queue(bfqd);
	else
		bfq_get_next_queue_forced(bfqd, bfqq);

	__bfq_set_active_queue(bfqd, bfqq);
	return bfqq;
}

static inline sector_t bfq_dist_from_last(struct bfq_data *bfqd,
					  struct request *rq)
{
	if (blk_rq_pos(rq) >= bfqd->last_position)
		return blk_rq_pos(rq) - bfqd->last_position;
	else
		return bfqd->last_position - blk_rq_pos(rq);
}

/*
 * Return true if bfqq has no request pending and rq is close enough to
 * bfqd->last_position, or if rq is closer to bfqd->last_position than
 * bfqq->next_rq
 */
static inline int bfq_rq_close(struct bfq_data *bfqd, struct request *rq)
{
	return bfq_dist_from_last(bfqd, rq) <= BFQQ_SEEK_THR;
}

static struct bfq_queue *bfqq_close(struct bfq_data *bfqd)
{
	struct rb_root *root = &bfqd->rq_pos_tree;
	struct rb_node *parent, *node;
	struct bfq_queue *__bfqq;
	sector_t sector = bfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
	if (__bfqq != NULL)
		return __bfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector (rq_pos_tree sorted by next_request
	 * position).
	 */
	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
	if (bfq_rq_close(bfqd, __bfqq->next_rq))
		return __bfqq;

	if (blk_rq_pos(__bfqq->next_rq) < sector)
		node = rb_next(&__bfqq->pos_node);
	else
		node = rb_prev(&__bfqq->pos_node);
	if (node == NULL)
		return NULL;

	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
	if (bfq_rq_close(bfqd, __bfqq->next_rq))
		return __bfqq;

	return NULL;
}

/*
 * bfqd - obvious
 * cur_bfqq - passed in so that we don't decide that the current queue
 *            is closely cooperating with itself.
 *
 * We are assuming that cur_bfqq has dispatched at least one request,
 * and that bfqd->last_position reflects a position on the disk associated
 * with the I/O issued by cur_bfqq.
 */
static struct bfq_queue *bfq_close_cooperator(struct bfq_data *bfqd,
					      struct bfq_queue *cur_bfqq)
{
	struct bfq_queue *bfqq;

	if (bfq_class_idle(cur_bfqq))
		return NULL;
	if (!bfq_bfqq_sync(cur_bfqq))
		return NULL;
	if (BFQQ_SEEKY(cur_bfqq))
		return NULL;

	/* If device has only one backlogged bfq_queue, don't search. */
	if (bfqd->busy_queues == 1)
		return NULL;

	/*
	 * We should notice if some of the queues are cooperating, e.g.
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
	 */
	bfqq = bfqq_close(bfqd);
	if (bfqq == NULL || bfqq == cur_bfqq)
		return NULL;

	/*
	 * Do not merge queues from different bfq_groups.
	*/
	if (bfqq->entity.parent != cur_bfqq->entity.parent)
		return NULL;

	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!bfq_bfqq_sync(bfqq))
		return NULL;
	if (BFQQ_SEEKY(bfqq))
		return NULL;

	/*
	 * Do not merge queues of different priority classes.
	 */
	if (bfq_class_rt(bfqq) != bfq_class_rt(cur_bfqq))
		return NULL;

	return bfqq;
}

/*
 * If enough samples have been computed, return the current max budget
 * stored in bfqd, which is dynamically updated according to the
 * estimated disk peak rate; otherwise return the default max budget
 */
static inline unsigned long bfq_max_budget(struct bfq_data *bfqd)
{
	if (bfqd->budgets_assigned < 194)
		return bfq_default_max_budget;
	else
		return bfqd->bfq_max_budget;
}

/*
 * Return min budget, which is a fraction of the current or default
 * max budget (trying with 1/32)
 */
static inline unsigned long bfq_min_budget(struct bfq_data *bfqd)
{
	if (bfqd->budgets_assigned < 194)
		return bfq_default_max_budget;
	else
		return bfqd->bfq_max_budget / 32;
}

/*
 * Decides whether idling should be done for given device and
 * given active queue.
 */
static inline bool bfq_queue_nonrot_noidle(struct bfq_data *bfqd,
					   struct bfq_queue *active_bfqq)
{
	if (active_bfqq == NULL)
		return false;
	/*
	 * If device is SSD it has no seek penalty, disable idling; but
	 * do so only if:
	 * - device does not support queuing, otherwise we still have
	 *   a problem with sync vs async workloads;
	 * - the queue is not weight-raised, to preserve guarantees.
	 */
	return (blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag &&
		active_bfqq->raising_coeff == 1);
}

static void bfq_arm_slice_timer(struct bfq_data *bfqd)
{
	struct bfq_queue *bfqq = bfqd->active_queue;
	struct cfq_io_context *cic;
	unsigned long sl;

	WARN_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));

	if (bfq_queue_nonrot_noidle(bfqd, bfqq))
		return;

	/* Idling is disabled, either manually or by past process history. */
	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_idle_window(bfqq))
		return;

	/* Tasks have exited, don't wait. */
	cic = bfqd->active_cic;
	if (cic == NULL || atomic_read(&cic->ioc->nr_tasks) == 0)
		return;

	bfq_mark_bfqq_wait_request(bfqq);

	/*
	 * We don't want to idle for seeks, but we do want to allow
	 * fair distribution of slice time for a process doing back-to-back
	 * seeks. So allow a little bit of time for him to submit a new rq.
	 *
	 * To prevent processes with (partly) seeky workloads from
	 * being too ill-treated, grant them a small fraction of the
	 * assigned budget before reducing the waiting time to
	 * BFQ_MIN_TT. This happened to help reduce latency.
	 */
	sl = bfqd->bfq_slice_idle;
	if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq) &&
	    bfqq->entity.service > bfq_max_budget(bfqd) / 8 &&
	    bfqq->raising_coeff == 1)
		sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
	else if (bfqq->raising_coeff > 1)
		sl = sl * 3;
	bfqd->last_idling_start = ktime_get();
	mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
	bfq_log(bfqd, "arm idle: %u/%u ms",
		jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
}

/*
 * Set the maximum time for the active queue to consume its
 * budget. This prevents seeky processes from lowering the disk
 * throughput (always guaranteed with a time slice scheme as in CFQ).
 */
static void bfq_set_budget_timeout(struct bfq_data *bfqd)
{
	struct bfq_queue *bfqq = bfqd->active_queue;
	unsigned int timeout_coeff;
	if (bfqq->raising_cur_max_time == bfqd->bfq_raising_rt_max_time)
		timeout_coeff = 1;
	else
		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;

	bfqd->last_budget_start = ktime_get();

	bfq_clear_bfqq_budget_new(bfqq);
	bfqq->budget_timeout = jiffies +
		bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;

	bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
		jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
		timeout_coeff));
}

/*
 * Move request from internal lists to the request queue dispatch list.
 */
static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct bfq_queue *bfqq = RQ_BFQQ(rq);

	bfq_remove_request(rq);
	bfqq->dispatched++;
	elv_dispatch_sort(q, rq);

	if (bfq_bfqq_sync(bfqq))
		bfqd->sync_flight++;
}

/*
 * Return expired entry, or NULL to just start from scratch in rbtree.
 */
static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
{
	struct request *rq = NULL;

	if (bfq_bfqq_fifo_expire(bfqq))
		return NULL;

	bfq_mark_bfqq_fifo_expire(bfqq);

	if (list_empty(&bfqq->fifo))
		return NULL;

	rq = rq_entry_fifo(bfqq->fifo.next);

	if (time_before(jiffies, rq_fifo_time(rq)))
		return NULL;

	return rq;
}

/*
 * Must be called with the queue_lock held.
 */
static int bfqq_process_refs(struct bfq_queue *bfqq)
{
	int process_refs, io_refs;

	io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
	process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
{
	int process_refs, new_process_refs;
	struct bfq_queue *__bfqq;

	/*
	 * If there are no process references on the new_bfqq, then it is
	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
	 * may have dropped their last reference (not just their last process
	 * reference).
	 */
	if (!bfqq_process_refs(new_bfqq))
		return;

	/* Avoid a circular list and skip interim queue merges. */
	while ((__bfqq = new_bfqq->new_bfqq)) {
		if (__bfqq == bfqq)
			return;
		new_bfqq = __bfqq;
	}

	process_refs = bfqq_process_refs(bfqq);
	new_process_refs = bfqq_process_refs(new_bfqq);
	/*
	 * If the process for the bfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0 || new_process_refs == 0)
		return;

	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	if (new_process_refs >= process_refs) {
		bfqq->new_bfqq = new_bfqq;
		atomic_add(process_refs, &new_bfqq->ref);
	} else {
		new_bfqq->new_bfqq = bfqq;
		atomic_add(new_process_refs, &bfqq->ref);
	}
	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
		new_bfqq->pid);
}

static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq)
{
	struct bfq_entity *entity = &bfqq->entity;
	return entity->budget - entity->service;
}

static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
	BUG_ON(bfqq != bfqd->active_queue);

	__bfq_bfqd_reset_active(bfqd);

	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
		bfq_del_bfqq_busy(bfqd, bfqq, 1);
		/*
		 * overloading budget_timeout field to store when
		 * the queue remains with no backlog, used by
		 * the weight-raising mechanism
		 */
		bfqq->budget_timeout = jiffies ;
	}
	else {
		bfq_activate_bfqq(bfqd, bfqq);
		/*
		 * Resort priority tree of potential close cooperators.
		 */
		bfq_rq_pos_tree_add(bfqd, bfqq);
	}

	/*
	 * If this bfqq is shared between multiple processes, check
	 * to make sure that those processes are still issuing I/Os
	 * within the mean seek distance. If not, it may be time to
	 * break the queues apart again.
	 */
	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
		bfq_mark_bfqq_split_coop(bfqq);
}

/**
 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
 * @bfqd: device data.
 * @bfqq: queue to update.
 * @reason: reason for expiration.
 *
 * Handle the feedback on @bfqq budget.  See the body for detailed
 * comments.
 */
static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
				     struct bfq_queue *bfqq,
				     enum bfqq_expiration reason)
{
	struct request *next_rq;
	unsigned long budget, min_budget;

	budget = bfqq->max_budget;
	min_budget = bfq_min_budget(bfqd);

	BUG_ON(bfqq != bfqd->active_queue);

	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
		budget, bfq_min_budget(bfqd));
	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->active_queue));

	if (bfq_bfqq_sync(bfqq)) {
		switch (reason) {
		/*
		 * Caveat: in all the following cases we trade latency
		 * for throughput.
		 */
		case BFQ_BFQQ_TOO_IDLE:
			/*
			 * This is the only case where we may reduce
			 * the budget: if there is no requets of the
			 * process still waiting for completion, then
			 * we assume (tentatively) that the timer has
			 * expired because the batch of requests of
			 * the process could have been served with a
			 * smaller budget.  Hence, betting that
			 * process will behave in the same way when it
			 * becomes backlogged again, we reduce its
			 * next budget.  As long as we guess right,
			 * this budget cut reduces the latency
			 * experienced by the process.
			 *
			 * However, if there are still outstanding
			 * requests, then the process may have not yet
			 * issued its next request just because it is
			 * still waiting for the completion of some of
			 * the still oustanding ones.  So in this
			 * subcase we do not reduce its budget, on the
			 * contrary we increase it to possibly boost
			 * the throughput, as discussed in the
			 * comments to the BUDGET_TIMEOUT case.
			 */
			if (bfqq->dispatched > 0) /* still oustanding reqs */
				budget = min(budget * 2, bfqd->bfq_max_budget);
			else {
				if (budget > 5 * min_budget)
					budget -= 4 * min_budget;
				else
					budget = min_budget;
			}
			break;
		case BFQ_BFQQ_BUDGET_TIMEOUT:
			/*
			 * We double the budget here because: 1) it
			 * gives the chance to boost the throughput if
			 * this is not a seeky process (which may have
			 * bumped into this timeout because of, e.g.,
			 * ZBR), 2) together with charge_full_budget
			 * it helps give seeky processes higher
			 * timestamps, and hence be served less
			 * frequently.
			 */
			budget = min(budget * 2, bfqd->bfq_max_budget);
			break;
		case BFQ_BFQQ_BUDGET_EXHAUSTED:
			/*
			 * The process still has backlog, and did not
			 * let either the budget timeout or the disk
			 * idling timeout expire. Hence it is not
			 * seeky, has a short thinktime and may be
			 * happy with a higher budget too. So
			 * definitely increase the budget of this good
			 * candidate to boost the disk throughput.
			 */
			budget = min(budget * 4, bfqd->bfq_max_budget);
			break;
		case BFQ_BFQQ_NO_MORE_REQUESTS:
		       /*
			* Leave the budget unchanged.
			*/
		default:
			return;
		}
	} else /* async queue */
	    /* async queues get always the maximum possible budget
	     * (their ability to dispatch is limited by
	     * @bfqd->bfq_max_budget_async_rq).
	     */
		budget = bfqd->bfq_max_budget;

	bfqq->max_budget = budget;

	if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
	    bfqq->max_budget > bfqd->bfq_max_budget)
		bfqq->max_budget = bfqd->bfq_max_budget;

	/*
	 * Make sure that we have enough budget for the next request.
	 * Since the finish time of the bfqq must be kept in sync with
	 * the budget, be sure to call __bfq_bfqq_expire() after the
	 * update.
	 */
	next_rq = bfqq->next_rq;
	if (next_rq != NULL)
		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
					    bfq_serv_to_charge(next_rq, bfqq));
	else
		bfqq->entity.budget = bfqq->max_budget;

	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu",
			next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
			bfqq->entity.budget);
}

static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
{
	unsigned long max_budget;

	/*
	 * The max_budget calculated when autotuning is equal to the
	 * amount of sectors transfered in timeout_sync at the
	 * estimated peak rate.
	 */
	max_budget = (unsigned long)(peak_rate * 1000 *
				     timeout >> BFQ_RATE_SHIFT);

	return max_budget;
}

/*
 * In addition to updating the peak rate, checks whether the process
 * is "slow", and returns 1 if so. This slow flag is used, in addition
 * to the budget timeout, to reduce the amount of service provided to
 * seeky processes, and hence reduce their chances to lower the
 * throughput. See the code for more details.
 */
static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
				int compensate, enum bfqq_expiration reason)
{
	u64 bw, usecs, expected, timeout;
	ktime_t delta;
	int update = 0;

	if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
		return 0;

	if (compensate)
		delta = bfqd->last_idling_start;
	else
		delta = ktime_get();
	delta = ktime_sub(delta, bfqd->last_budget_start);
	usecs = ktime_to_us(delta);

	/* Don't trust short/unrealistic values. */
	if (usecs < 100 || usecs >= LONG_MAX)
		return 0;

	/*
	 * Calculate the bandwidth for the last slice.  We use a 64 bit
	 * value to store the peak rate, in sectors per usec in fixed
	 * point math.  We do so to have enough precision in the estimate
	 * and to avoid overflows.
	 */
	bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
	do_div(bw, (unsigned long)usecs);

	timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);

	/*
	 * Use only long (> 20ms) intervals to filter out spikes for
	 * the peak rate estimation.
	 */
	if (usecs > 20000) {
		if (bw > bfqd->peak_rate ||
		   (!BFQQ_SEEKY(bfqq) &&
		    reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
			bfq_log(bfqd, "measured bw =%llu", bw);
			/*
			 * To smooth oscillations use a low-pass filter with
			 * alpha=7/8, i.e.,
			 * new_rate = (7/8) * old_rate + (1/8) * bw
			 */
			do_div(bw, 8);
			bfqd->peak_rate *= 7;
			do_div(bfqd->peak_rate, 8);
			bfqd->peak_rate += bw;
			update = 1;
			bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
		}

		update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;

		if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
			bfqd->peak_rate_samples++;

		if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
		    update && bfqd->bfq_user_max_budget == 0) {
			bfqd->bfq_max_budget =
				bfq_calc_max_budget(bfqd->peak_rate, timeout);
			bfq_log(bfqd, "new max_budget=%lu",
				bfqd->bfq_max_budget);
		}
	}

	/*
	 * If the process has been served for a too short time
	 * interval to let its possible sequential accesses prevail on
	 * the initial seek time needed to move the disk head on the
	 * first sector it requested, then give the process a chance
	 * and for the moment return false.
	 */
	if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
		return 0;

	/*
	 * A process is considered ``slow'' (i.e., seeky, so that we
	 * cannot treat it fairly in the service domain, as it would
	 * slow down too much the other processes) if, when a slice
	 * ends for whatever reason, it has received service at a
	 * rate that would not be high enough to complete the budget
	 * before the budget timeout expiration.
	 */
	expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;

	/*
	 * Caveat: processes doing IO in the slower disk zones will
	 * tend to be slow(er) even if not seeky. And the estimated
	 * peak rate will actually be an average over the disk
	 * surface. Hence, to not be too harsh with unlucky processes,
	 * we keep a budget/3 margin of safety before declaring a
	 * process slow.
	 */
	return expected > (4 * bfqq->entity.budget) / 3;
}

/**
 * bfq_bfqq_expire - expire a queue.
 * @bfqd: device owning the queue.
 * @bfqq: the queue to expire.
 * @compensate: if true, compensate for the time spent idling.
 * @reason: the reason causing the expiration.
 *
 *
 * If the process associated to the queue is slow (i.e., seeky), or in
 * case of budget timeout, or, finally, if it is async, we
 * artificially charge it an entire budget (independently of the
 * actual service it received). As a consequence, the queue will get
 * higher timestamps than the correct ones upon reactivation, and
 * hence it will be rescheduled as if it had received more service
 * than what it actually received. In the end, this class of processes
 * will receive less service in proportion to how slowly they consume
 * their budgets (and hence how seriously they tend to lower the
 * throughput).
 *
 * In contrast, when a queue expires because it has been idling for
 * too much or because it exhausted its budget, we do not touch the
 * amount of service it has received. Hence when the queue will be
 * reactivated and its timestamps updated, the latter will be in sync
 * with the actual service received by the queue until expiration.
 *
 * Charging a full budget to the first type of queues and the exact
 * service to the others has the effect of using the WF2Q+ policy to
 * schedule the former on a timeslice basis, without violating the
 * service domain guarantees of the latter.
 */
static void bfq_bfqq_expire(struct bfq_data *bfqd,
			    struct bfq_queue *bfqq,
			    int compensate,
			    enum bfqq_expiration reason)
{
	int slow;
	BUG_ON(bfqq != bfqd->active_queue);

	/* Update disk peak rate for autotuning and check whether the
	 * process is slow (see bfq_update_peak_rate).
	 */
	slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);

	/*
	 * As above explained, 'punish' slow (i.e., seeky), timed-out
	 * and async queues, to favor sequential sync workloads.
	 *
	 * Processes doing IO in the slower disk zones will tend to be
	 * slow(er) even if not seeky. Hence, since the estimated peak
	 * rate is actually an average over the disk surface, these
	 * processes may timeout just for bad luck. To avoid punishing
	 * them we do not charge a full budget to a process that
	 * succeeded in consuming at least 2/3 of its budget.
	 */
	if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
		     bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3))
		bfq_bfqq_charge_full_budget(bfqq);

	if (bfqd->low_latency && bfqq->raising_coeff == 1)
		bfqq->last_rais_start_finish = jiffies;

	if (bfqd->low_latency && bfqd->bfq_raising_max_softrt_rate > 0) {
	    if(reason != BFQ_BFQQ_BUDGET_TIMEOUT)
		bfqq->soft_rt_next_start =
			jiffies +
			HZ * bfqq->entity.service /
			bfqd->bfq_raising_max_softrt_rate;
		else
			bfqq->soft_rt_next_start = -1; /* infinity */
	}
	bfq_log_bfqq(bfqd, bfqq,
		"expire (%d, slow %d, num_disp %d, idle_win %d)", reason, slow,
		bfqq->dispatched, bfq_bfqq_idle_window(bfqq));

	/* Increase, decrease or leave budget unchanged according to reason */
	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
	__bfq_bfqq_expire(bfqd, bfqq);
}

/*
 * Budget timeout is not implemented through a dedicated timer, but
 * just checked on request arrivals and completions, as well as on
 * idle timer expirations.
 */
static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
{
	if (bfq_bfqq_budget_new(bfqq))
		return 0;

	if (time_before(jiffies, bfqq->budget_timeout))
		return 0;

	return 1;
}

/*
 * If we expire a queue that is waiting for the arrival of a new
 * request, we may prevent the fictitious timestamp backshifting that
 * allows the guarantees of the queue to be preserved (see [1] for
 * this tricky aspect). Hence we return true only if this condition
 * does not hold, or if the queue is slow enough to deserve only to be
 * kicked off for preserving a high throughput.
*/
static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
{
	bfq_log_bfqq(bfqq->bfqd, bfqq,
		"may_budget_timeout: wr %d left %d timeout %d",
		bfq_bfqq_wait_request(bfqq),
			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
		bfq_bfqq_budget_timeout(bfqq));

	return (!bfq_bfqq_wait_request(bfqq) ||
		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
		&&
		bfq_bfqq_budget_timeout(bfqq);
}

/*
 * Select a queue for service.  If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
 */
static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
{
	struct bfq_queue *bfqq, *new_bfqq = NULL;
	struct request *next_rq;
	enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;

	bfqq = bfqd->active_queue;
	if (bfqq == NULL)
		goto new_queue;

	bfq_log_bfqq(bfqd, bfqq, "select_queue: already active queue");

	/*
         * If another queue has a request waiting within our mean seek
         * distance, let it run. The expire code will check for close
         * cooperators and put the close queue at the front of the
         * service tree. If possible, merge the expiring queue with the
         * new bfqq.
         */
        new_bfqq = bfq_close_cooperator(bfqd, bfqq);
        if (new_bfqq != NULL && bfqq->new_bfqq == NULL)
                bfq_setup_merge(bfqq, new_bfqq);

	if (bfq_may_expire_for_budg_timeout(bfqq))
		goto expire;

	next_rq = bfqq->next_rq;
	/*
	 * If bfqq has requests queued and it has enough budget left to
	 * serve them, keep the queue, otherwise expire it.
	 */
	if (next_rq != NULL) {
		if (bfq_serv_to_charge(next_rq, bfqq) >
			bfq_bfqq_budget_left(bfqq)) {
			reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
			goto expire;
		} else {
			/*
			 * The idle timer may be pending because we may not
			 * disable disk idling even when a new request arrives
			 */
			if (timer_pending(&bfqd->idle_slice_timer)) {
				/*
				 * If we get here: 1) at least a new request
				 * has arrived but we have not disabled the
				 * timer because the request was too small,
				 * 2) then the block layer has unplugged the
				 * device, causing the dispatch to be invoked.
				 *
				 * Since the device is unplugged, now the
				 * requests are probably large enough to
				 * provide a reasonable throughput.
				 * So we disable idling.
				 */
				bfq_clear_bfqq_wait_request(bfqq);
				del_timer(&bfqd->idle_slice_timer);
			}
			if (new_bfqq == NULL)
				goto keep_queue;
			else
				goto expire;
		}
	}

	/*
	 * No requests pending.  If there is no cooperator, and the active
	 * queue still has requests in flight or is idling for a new request,
	 * then keep it.
	 */
	if (new_bfqq == NULL && (timer_pending(&bfqd->idle_slice_timer) ||
		(bfqq->dispatched != 0 && bfq_bfqq_idle_window(bfqq) &&
		 !bfq_queue_nonrot_noidle(bfqd, bfqq)))) {
		bfqq = NULL;
		goto keep_queue;
	} else if (new_bfqq != NULL && timer_pending(&bfqd->idle_slice_timer)) {
		/*
		 * Expiring the queue because there is a close cooperator,
		 * cancel timer.
		 */
		bfq_clear_bfqq_wait_request(bfqq);
		del_timer(&bfqd->idle_slice_timer);
	}

	reason = BFQ_BFQQ_NO_MORE_REQUESTS;
expire:
	bfq_bfqq_expire(bfqd, bfqq, 0, reason);
new_queue:
	bfqq = bfq_set_active_queue(bfqd, new_bfqq);
	bfq_log(bfqd, "select_queue: new queue %d returned",
		bfqq != NULL ? bfqq->pid : 0);
keep_queue:
	return bfqq;
}

static void update_raising_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
	if (bfqq->raising_coeff > 1) { /* queue is being boosted */
		struct bfq_entity *entity = &bfqq->entity;

		bfq_log_bfqq(bfqd, bfqq,
			"raising period dur %u/%u msec, "
			"old raising coeff %u, w %d(%d)",
			jiffies_to_msecs(jiffies -
				bfqq->last_rais_start_finish),
			jiffies_to_msecs(bfqq->raising_cur_max_time),
			bfqq->raising_coeff,
			bfqq->entity.weight, bfqq->entity.orig_weight);

		BUG_ON(bfqq != bfqd->active_queue && entity->weight !=
			entity->orig_weight * bfqq->raising_coeff);
		if(entity->ioprio_changed)
			bfq_log_bfqq(bfqd, bfqq,
			"WARN: pending prio change");
		/*
		 * If too much time has elapsed from the beginning
		 * of this weight-raising period and process is not soft
		 * real-time, stop it
		 */
		if (jiffies - bfqq->last_rais_start_finish >
			bfqq->raising_cur_max_time) {
			int soft_rt = bfqd->bfq_raising_max_softrt_rate > 0 &&
				bfqq->soft_rt_next_start < jiffies;

			bfqq->last_rais_start_finish = jiffies;
			if (soft_rt)
				bfqq->raising_cur_max_time =
					bfqd->bfq_raising_rt_max_time;
			else {
				bfqq->raising_coeff = 1;
				entity->ioprio_changed = 1;
				__bfq_entity_update_weight_prio(
					bfq_entity_service_tree(entity),
					entity);
			}
		}
	}
}


/*
 * Dispatch one request from bfqq, moving it to the request queue
 * dispatch list.
 */
static int bfq_dispatch_request(struct bfq_data *bfqd,
				struct bfq_queue *bfqq)
{
	int dispatched = 0;
	struct request *rq;
	unsigned long service_to_charge;

	BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));

	/* Follow expired path, else get first next available. */
	rq = bfq_check_fifo(bfqq);
	if (rq == NULL)
		rq = bfqq->next_rq;
	service_to_charge = bfq_serv_to_charge(rq, bfqq);

	if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
		/*
		 * This may happen if the next rq is chosen
		 * in fifo order instead of sector order.
		 * The budget is properly dimensioned
		 * to be always sufficient to serve the next request
		 * only if it is chosen in sector order. The reason is
		 * that it would be quite inefficient and little useful
		 * to always make sure that the budget is large enough
		 * to serve even the possible next rq in fifo order.
		 * In fact, requests are seldom served in fifo order.
		 *
		 * Expire the queue for budget exhaustion, and
		 * make sure that the next act_budget is enough
		 * to serve the next request, even if it comes
		 * from the fifo expired path.
		 */
		bfqq->next_rq = rq;
		/*
		 * Since this dispatch is failed, make sure that
		 * a new one will be performed
		 */
		if (!bfqd->rq_in_driver)
			bfq_schedule_dispatch(bfqd);
		goto expire;
	}

	/* Finally, insert request into driver dispatch list. */
	bfq_bfqq_served(bfqq, service_to_charge);
	bfq_dispatch_insert(bfqd->queue, rq);

	update_raising_data(bfqd, bfqq);

	bfq_log_bfqq(bfqd, bfqq, "dispatched %u sec req (%llu), "
			"budg left %lu",
			blk_rq_sectors(rq),
			(long long unsigned)blk_rq_pos(rq),
			bfq_bfqq_budget_left(bfqq));

	dispatched++;

	if (bfqd->active_cic == NULL) {
		atomic_long_inc(&RQ_CIC(rq)->ioc->refcount);
		bfqd->active_cic = RQ_CIC(rq);
	}

	if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
	    dispatched >= bfqd->bfq_max_budget_async_rq) ||
	    bfq_class_idle(bfqq)))
		goto expire;

	return dispatched;

expire:
	bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
	return dispatched;
}

static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
{
	int dispatched = 0;

	while (bfqq->next_rq != NULL) {
		bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&bfqq->fifo));
	return dispatched;
}

/*
 * Drain our current requests.  Used for barriers and when switching
 * io schedulers on-the-fly.
 */
static int bfq_forced_dispatch(struct bfq_data *bfqd)
{
	struct bfq_queue *bfqq, *n;
	struct bfq_service_tree *st;
	int dispatched = 0;

	bfqq = bfqd->active_queue;
	if (bfqq != NULL)
		__bfq_bfqq_expire(bfqd, bfqq);

	/*
	 * Loop through classes, and be careful to leave the scheduler
	 * in a consistent state, as feedback mechanisms and vtime
	 * updates cannot be disabled during the process.
	 */
	list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
		st = bfq_entity_service_tree(&bfqq->entity);

		dispatched += __bfq_forced_dispatch_bfqq(bfqq);
		bfqq->max_budget = bfq_max_budget(bfqd);

		bfq_forget_idle(st);
	}

	BUG_ON(bfqd->busy_queues != 0);

	return dispatched;
}

static int bfq_dispatch_requests(struct request_queue *q, int force)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct bfq_queue *bfqq;
	int max_dispatch;

	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
	if (bfqd->busy_queues == 0)
		return 0;

	if (unlikely(force))
		return bfq_forced_dispatch(bfqd);

	if((bfqq = bfq_select_queue(bfqd)) == NULL)
		return 0;

	max_dispatch = bfqd->bfq_quantum;
	if (bfq_class_idle(bfqq))
		max_dispatch = 1;

	if (!bfq_bfqq_sync(bfqq))
		max_dispatch = bfqd->bfq_max_budget_async_rq;

	if (bfqq->dispatched >= max_dispatch) {
		if (bfqd->busy_queues > 1)
			return 0;
		if (bfqq->dispatched >= 4 * max_dispatch)
			return 0;
	}

	if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
		return 0;

	bfq_clear_bfqq_wait_request(bfqq);
	BUG_ON(timer_pending(&bfqd->idle_slice_timer));

	if (! bfq_dispatch_request(bfqd, bfqq))
		return 0;

	bfq_log_bfqq(bfqd, bfqq, "dispatched one request of %d"
		     "(max_disp %d)", bfqq->pid, max_dispatch);

	return 1;
}

/*
 * Task holds one reference to the queue, dropped when task exits.  Each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
 *
 * Queue lock must be held here.
 */
static void bfq_put_queue(struct bfq_queue *bfqq)
{
	struct bfq_data *bfqd = bfqq->bfqd;

	BUG_ON(atomic_read(&bfqq->ref) <= 0);

	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
		     atomic_read(&bfqq->ref));
	if (!atomic_dec_and_test(&bfqq->ref))
		return;

	BUG_ON(rb_first(&bfqq->sort_list) != NULL);
	BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
	BUG_ON(bfqq->entity.tree != NULL);
	BUG_ON(bfq_bfqq_busy(bfqq));
	BUG_ON(bfqd->active_queue == bfqq);

	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);

	kmem_cache_free(bfq_pool, bfqq);
}

static void bfq_put_cooperator(struct bfq_queue *bfqq)
{
	struct bfq_queue *__bfqq, *next;

	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
	 */
	__bfqq = bfqq->new_bfqq;
	while (__bfqq) {
		if (__bfqq == bfqq) {
			WARN(1, "bfqq->new_bfqq loop detected.\n");
			break;
		}
		next = __bfqq->new_bfqq;
		bfq_put_queue(__bfqq);
		__bfqq = next;
	}
}

static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
	if (bfqq == bfqd->active_queue) {
		__bfq_bfqq_expire(bfqd, bfqq);
		bfq_schedule_dispatch(bfqd);
	}

	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
		     atomic_read(&bfqq->ref));

	bfq_put_cooperator(bfqq);

	bfq_put_queue(bfqq);
}

/*
 * Update the entity prio values; note that the new values will not
 * be used until the next (re)activation.
 */
static void bfq_init_prio_data(struct bfq_queue *bfqq, struct io_context *ioc)
{
	struct task_struct *tsk = current;
	int ioprio_class;

	if (!bfq_bfqq_prio_changed(bfqq))
		return;

	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
	switch (ioprio_class) {
	default:
		printk(KERN_ERR "bfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
		 * No prio set, inherit CPU scheduling settings.
		 */
		bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
		bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
		break;
	case IOPRIO_CLASS_RT:
		bfqq->entity.new_ioprio = task_ioprio(ioc);
		bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		bfqq->entity.new_ioprio = task_ioprio(ioc);
		bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
		bfqq->entity.new_ioprio = 7;
		bfq_clear_bfqq_idle_window(bfqq);
		break;
	}

	bfqq->entity.ioprio_changed = 1;

	/*
	 * Keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue.
	 */
	bfqq->org_ioprio = bfqq->entity.new_ioprio;
	bfqq->org_ioprio_class = bfqq->entity.new_ioprio_class;
	bfq_clear_bfqq_prio_changed(bfqq);
}

static void bfq_changed_ioprio(struct io_context *ioc,
			       struct cfq_io_context *cic)
{
	struct bfq_data *bfqd;
	struct bfq_queue *bfqq, *new_bfqq;
	struct bfq_group *bfqg;
	unsigned long uninitialized_var(flags);

	bfqd = bfq_get_bfqd_locked(&cic->key, &flags);
	if (unlikely(bfqd == NULL))
		return;

	bfqq = cic->cfqq[BLK_RW_ASYNC];
	if (bfqq != NULL) {
		bfqg = container_of(bfqq->entity.sched_data, struct bfq_group,
				    sched_data);
		new_bfqq = bfq_get_queue(bfqd, bfqg, BLK_RW_ASYNC, cic->ioc,
					 GFP_ATOMIC);
		if (new_bfqq != NULL) {
			cic->cfqq[BLK_RW_ASYNC] = new_bfqq;
			bfq_log_bfqq(bfqd, bfqq,
				     "changed_ioprio: bfqq %p %d",
				     bfqq, atomic_read(&bfqq->ref));
			bfq_put_queue(bfqq);
		}
	}

	bfqq = cic->cfqq[BLK_RW_SYNC];
	if (bfqq != NULL)
		bfq_mark_bfqq_prio_changed(bfqq);

	bfq_put_bfqd_unlock(bfqd, &flags);
}

static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
			  pid_t pid, int is_sync)
{
	RB_CLEAR_NODE(&bfqq->entity.rb_node);
	INIT_LIST_HEAD(&bfqq->fifo);

	atomic_set(&bfqq->ref, 0);
	bfqq->bfqd = bfqd;

	bfq_mark_bfqq_prio_changed(bfqq);

	if (is_sync) {
		if (!bfq_class_idle(bfqq))
			bfq_mark_bfqq_idle_window(bfqq);
		bfq_mark_bfqq_sync(bfqq);
	}

	/* Tentative initial value to trade off between thr and lat */
	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
	bfqq->pid = pid;

	bfqq->raising_coeff = 1;
	bfqq->last_rais_start_finish = 0;
	bfqq->soft_rt_next_start = -1;
}

static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
					      struct bfq_group *bfqg,
					      int is_sync,
					      struct io_context *ioc,
					      gfp_t gfp_mask)
{
	struct bfq_queue *bfqq, *new_bfqq = NULL;
	struct cfq_io_context *cic;

retry:
	cic = bfq_cic_lookup(bfqd, ioc);
	/* cic always exists here */
	bfqq = cic_to_bfqq(cic, is_sync);

	/*
	 * Always try a new alloc if we fall back to the OOM bfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
		bfqq = NULL;
		if (new_bfqq != NULL) {
			bfqq = new_bfqq;
			new_bfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(bfqd->queue->queue_lock);
			new_bfqq = kmem_cache_alloc_node(bfq_pool,
					gfp_mask | __GFP_ZERO,
					bfqd->queue->node);
			spin_lock_irq(bfqd->queue->queue_lock);
			if (new_bfqq != NULL)
				goto retry;
		} else {
			bfqq = kmem_cache_alloc_node(bfq_pool,
					gfp_mask | __GFP_ZERO,
					bfqd->queue->node);
		}

		if (bfqq != NULL) {
			bfq_init_bfqq(bfqd, bfqq, current->pid, is_sync);
			bfq_log_bfqq(bfqd, bfqq, "allocated");
		} else {
			bfqq = &bfqd->oom_bfqq;
			bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
		}

		bfq_init_prio_data(bfqq, ioc);
		bfq_init_entity(&bfqq->entity, bfqg);
	}

	if (new_bfqq != NULL)
		kmem_cache_free(bfq_pool, new_bfqq);

	return bfqq;
}

static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
					       struct bfq_group *bfqg,
					       int ioprio_class, int ioprio)
{
	switch (ioprio_class) {
	case IOPRIO_CLASS_RT:
		return &bfqg->async_bfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &bfqg->async_bfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &bfqg->async_idle_bfqq;
	default:
		BUG();
	}
}

static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
				       struct bfq_group *bfqg, int is_sync,
				       struct io_context *ioc, gfp_t gfp_mask)
{
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
	struct bfq_queue **async_bfqq = NULL;
	struct bfq_queue *bfqq = NULL;

	if (!is_sync) {
		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
						  ioprio);
		bfqq = *async_bfqq;
	}

	if (bfqq == NULL)
		bfqq = bfq_find_alloc_queue(bfqd, bfqg, is_sync, ioc, gfp_mask);

	/*
	 * Pin the queue now that it's allocated, scheduler exit will prune it.
	 */
	if (!is_sync && *async_bfqq == NULL) {
		atomic_inc(&bfqq->ref);
		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
			     bfqq, atomic_read(&bfqq->ref));
		*async_bfqq = bfqq;
	}

	atomic_inc(&bfqq->ref);
	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
		     atomic_read(&bfqq->ref));
	return bfqq;
}

static void bfq_update_io_thinktime(struct bfq_data *bfqd,
				    struct cfq_io_context *cic)
{
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);

	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}

static void bfq_update_io_seektime(struct bfq_data *bfqd,
				   struct bfq_queue *bfqq,
				   struct request *rq)
{
	sector_t sdist;
	u64 total;

	if (bfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
	else
		sdist = bfqq->last_request_pos - blk_rq_pos(rq);

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc.
	 */
	if (bfqq->seek_samples == 0) /* first request, not really a seek */
		sdist = 0;
	else if (bfqq->seek_samples <= 60) /* second & third seek */
		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
	else
		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);

	bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
	bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
	total = bfqq->seek_total + (bfqq->seek_samples/2);
	do_div(total, bfqq->seek_samples);
	if (bfq_bfqq_coop(bfqq)) {
		/*
		 * If the mean seektime increases for a (non-seeky) shared
		 * queue, some cooperator is likely to be idling too much.
		 * On the contrary,  if it decreases, some cooperator has
		 * probably waked up.
		 *
		 */
		if ((sector_t)total < bfqq->seek_mean)
			bfq_mark_bfqq_some_coop_idle(bfqq) ;
		else if ((sector_t)total > bfqq->seek_mean)
			bfq_clear_bfqq_some_coop_idle(bfqq) ;
	}
	bfqq->seek_mean = (sector_t)total;

	bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
			(u64)bfqq->seek_mean);
}

/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter.
 */
static void bfq_update_idle_window(struct bfq_data *bfqd,
				   struct bfq_queue *bfqq,
				   struct cfq_io_context *cic)
{
	int enable_idle;

	/* Don't idle for async or idle io prio class. */
	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
		return;

	enable_idle = bfq_bfqq_idle_window(bfqq);

	if (atomic_read(&cic->ioc->nr_tasks) == 0 ||
	    bfqd->bfq_slice_idle == 0 ||
		(bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
			bfqq->raising_coeff == 1))
		enable_idle = 0;
	else if (bfq_sample_valid(cic->ttime_samples)) {
		if (cic->ttime_mean > bfqd->bfq_slice_idle &&
			bfqq->raising_coeff == 1)
			enable_idle = 0;
		else
			enable_idle = 1;
	}
	bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
		enable_idle);

	if (enable_idle)
		bfq_mark_bfqq_idle_window(bfqq);
	else
		bfq_clear_bfqq_idle_window(bfqq);
}

/*
 * Called when a new fs request (rq) is added to bfqq.  Check if there's
 * something we should do about it.
 */
static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
			    struct request *rq)
{
	struct cfq_io_context *cic = RQ_CIC(rq);

	if (rq->cmd_flags & REQ_META)
		bfqq->meta_pending++;

	bfq_update_io_thinktime(bfqd, cic);
	bfq_update_io_seektime(bfqd, bfqq, rq);
	if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
	    !BFQQ_SEEKY(bfqq))
		bfq_update_idle_window(bfqd, bfqq, cic);

	bfq_log_bfqq(bfqd, bfqq,
		     "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
		     bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
		     (long long unsigned)bfqq->seek_mean);

	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);

	if (bfqq == bfqd->active_queue) {
		/*
		 * If there is just this request queued and the request
		 * is small, just exit.
		 * In this way, if the disk is being idled to wait for a new
		 * request from the active queue, we avoid unplugging the
		 * device now.
		 *
		 * By doing so, we spare the disk to be committed
		 * to serve just a small request. On the contrary, we wait for
		 * the block layer to decide when to unplug the device:
		 * hopefully, new requests will be merged to this
		 * one quickly, then the device will be unplugged
		 * and larger requests will be dispatched.
		 */
	        if (bfqq->queued[rq_is_sync(rq)] == 1 &&
		    blk_rq_sectors(rq) < 32) {
		        return;
		}
		if (bfq_bfqq_wait_request(bfqq)) {
			/*
			 * If we are waiting for a request for this queue, let
			 * it rip immediately and flag that we must not expire
			 * this queue just now.
			 */
			bfq_clear_bfqq_wait_request(bfqq);
			del_timer(&bfqd->idle_slice_timer);
			/*
			 * Here we can safely expire the queue, in
			 * case of budget timeout, without wasting
			 * guarantees
			 */
			if (bfq_bfqq_budget_timeout(bfqq))
				bfq_bfqq_expire(bfqd, bfqq, 0,
						BFQ_BFQQ_BUDGET_TIMEOUT);
			__blk_run_queue(bfqd->queue);
		}
	}
}

static void bfq_insert_request(struct request_queue *q, struct request *rq)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct bfq_queue *bfqq = RQ_BFQQ(rq);

	assert_spin_locked(bfqd->queue->queue_lock);
	bfq_init_prio_data(bfqq, RQ_CIC(rq)->ioc);

	bfq_add_rq_rb(rq);

	rq_set_fifo_time(rq, jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)]);
	list_add_tail(&rq->queuelist, &bfqq->fifo);

	bfq_rq_enqueued(bfqd, bfqq, rq);
}

static void bfq_update_hw_tag(struct bfq_data *bfqd)
{
	bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
				     bfqd->rq_in_driver);

	if (bfqd->hw_tag == 1)
		return;

	/*
	 * This sample is valid if the number of outstanding requests
	 * is large enough to allow a queueing behavior.  Note that the
	 * sum is not exact, as it's not taking into account deactivated
	 * requests.
	 */
	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
		return;

	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
		return;

	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
	bfqd->max_rq_in_driver = 0;
	bfqd->hw_tag_samples = 0;
}

static void bfq_completed_request(struct request_queue *q, struct request *rq)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);
	struct bfq_data *bfqd = bfqq->bfqd;
	const int sync = rq_is_sync(rq);

	bfq_log_bfqq(bfqd, bfqq, "completed %u sects req (%d)",
			blk_rq_sectors(rq), sync);

	bfq_update_hw_tag(bfqd);

	WARN_ON(!bfqd->rq_in_driver);
	WARN_ON(!bfqq->dispatched);
	bfqd->rq_in_driver--;
	bfqq->dispatched--;

	if (bfq_bfqq_sync(bfqq))
		bfqd->sync_flight--;

	if (sync)
		RQ_CIC(rq)->last_end_request = jiffies;

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (bfqd->active_queue == bfqq) {
		if (bfq_bfqq_budget_new(bfqq))
			bfq_set_budget_timeout(bfqd);

		/* Idling is disabled also for cooperation issues:
		 * 1) there is a close cooperator for the queue, or
		 * 2) the queue is shared and some cooperator is likely
		 *    to be idle (in this case, by not arming the idle timer,
		 *    we try to slow down the queue, to prevent the zones
		 *    of the disk accessed by the active cooperators to become
		 *    too distant from the zone that will be accessed by the
		 *    currently idle cooperators)
		 */
		if (bfq_may_expire_for_budg_timeout(bfqq))
			bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
		else if (sync &&
			(bfqd->rq_in_driver == 0 ||
				bfqq->raising_coeff > 1)
			&& RB_EMPTY_ROOT(&bfqq->sort_list)
			&& !bfq_close_cooperator(bfqd, bfqq)
			&& (!bfq_bfqq_coop(bfqq) ||
				!bfq_bfqq_some_coop_idle(bfqq)))
			bfq_arm_slice_timer(bfqd);
	}

	if (!bfqd->rq_in_driver)
		bfq_schedule_dispatch(bfqd);
}

/*
 * We temporarily boost lower priority queues if they are holding fs exclusive
 * resources.  They are boosted to normal prio (CLASS_BE/4).
 */
static void bfq_prio_boost(struct bfq_queue *bfqq)
{
	if (has_fs_excl()) {
		/*
		 * Boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (bfq_class_idle(bfqq))
			bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
		if (bfqq->entity.new_ioprio > IOPRIO_NORM)
			bfqq->entity.new_ioprio = IOPRIO_NORM;
	} else {
		/*
		 * Unboost the queue (if needed)
		 */
		bfqq->entity.new_ioprio_class = bfqq->org_ioprio_class;
		bfqq->entity.new_ioprio = bfqq->org_ioprio;
	}
}

static inline int __bfq_may_queue(struct bfq_queue *bfqq)
{
	if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
		bfq_clear_bfqq_must_alloc(bfqq);
		return ELV_MQUEUE_MUST;
	}

	return ELV_MQUEUE_MAY;
}

static int bfq_may_queue(struct request_queue *q, int rw)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
	struct cfq_io_context *cic;
	struct bfq_queue *bfqq;

	/*
	 * Don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * So just lookup a possibly existing queue, or return 'may queue'
	 * if that fails.
	 */
	cic = bfq_cic_lookup(bfqd, tsk->io_context);
	if (cic == NULL)
		return ELV_MQUEUE_MAY;

	bfqq = cic_to_bfqq(cic, rw_is_sync(rw));
	if (bfqq != NULL) {
		bfq_init_prio_data(bfqq, cic->ioc);
		bfq_prio_boost(bfqq);

		return __bfq_may_queue(bfqq);
	}

	return ELV_MQUEUE_MAY;
}

/*
 * Queue lock held here.
 */
static void bfq_put_request(struct request *rq)
{
	struct bfq_queue *bfqq = RQ_BFQQ(rq);

	if (bfqq != NULL) {
		const int rw = rq_data_dir(rq);

		BUG_ON(!bfqq->allocated[rw]);
		bfqq->allocated[rw]--;

		put_io_context(RQ_CIC(rq)->ioc);

		rq->elevator_private[0] = NULL;
		rq->elevator_private[1] = NULL;

		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
			     bfqq, atomic_read(&bfqq->ref));
		bfq_put_queue(bfqq);
	}
}

static struct bfq_queue *
bfq_merge_bfqqs(struct bfq_data *bfqd, struct cfq_io_context *cic,
                struct bfq_queue *bfqq)
{
        bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
		(long unsigned)bfqq->new_bfqq->pid);
        cic_set_bfqq(cic, bfqq->new_bfqq, 1);
        bfq_mark_bfqq_coop(bfqq->new_bfqq);
        bfq_put_queue(bfqq);
        return cic_to_bfqq(cic, 1);
}

/*
 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
 * was the last process referring to said bfqq.
 */
static struct bfq_queue *
bfq_split_bfqq(struct cfq_io_context *cic, struct bfq_queue *bfqq)
{
	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
	if (bfqq_process_refs(bfqq) == 1) {
		bfqq->pid = current->pid;
		bfq_clear_bfqq_some_coop_idle(bfqq);
		bfq_clear_bfqq_coop(bfqq);
		bfq_clear_bfqq_split_coop(bfqq);
		return bfqq;
	}

	cic_set_bfqq(cic, NULL, 1);

	bfq_put_cooperator(bfqq);

	bfq_put_queue(bfqq);
	return NULL;
}

/*
 * Allocate bfq data structures associated with this request.
 */
static int bfq_set_request(struct request_queue *q, struct request *rq,
			   gfp_t gfp_mask)
{
	struct bfq_data *bfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
	const int is_sync = rq_is_sync(rq);
	struct bfq_queue *bfqq;
	struct bfq_group *bfqg;
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

	cic = bfq_get_io_context(bfqd, gfp_mask);

	spin_lock_irqsave(q->queue_lock, flags);

	if (cic == NULL)
		goto queue_fail;

	bfqg = bfq_cic_update_cgroup(cic);

new_queue:
	bfqq = cic_to_bfqq(cic, is_sync);
	if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
		bfqq = bfq_get_queue(bfqd, bfqg, is_sync, cic->ioc, gfp_mask);
		cic_set_bfqq(cic, bfqq, is_sync);
	} else {
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
			bfqq = bfq_split_bfqq(cic, bfqq);
			if (!bfqq)
				goto new_queue;
		}

		/*
		 * Check to see if this queue is scheduled to merge with
		 * another closely cooperating queue. The merging of queues
		 * happens here as it must be done in process context.
		 * The reference on new_bfqq was taken in merge_bfqqs.
		 */
		if (bfqq->new_bfqq != NULL)
			bfqq = bfq_merge_bfqqs(bfqd, cic, bfqq);
	}

	bfqq->allocated[rw]++;
	atomic_inc(&bfqq->ref);
	bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
		     atomic_read(&bfqq->ref));

	spin_unlock_irqrestore(q->queue_lock, flags);

	rq->elevator_private[0] = cic;
	rq->elevator_private[1] = bfqq;

	return 0;

queue_fail:
	if (cic != NULL)
		put_io_context(cic->ioc);

	bfq_schedule_dispatch(bfqd);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return 1;
}

static void bfq_kick_queue(struct work_struct *work)
{
	struct bfq_data *bfqd =
		container_of(work, struct bfq_data, unplug_work);
	struct request_queue *q = bfqd->queue;

	spin_lock_irq(q->queue_lock);
	__blk_run_queue(q);
	spin_unlock_irq(q->queue_lock);
}

/*
 * Handler of the expiration of the timer running if the active_queue
 * is idling inside its time slice.
 */
static void bfq_idle_slice_timer(unsigned long data)
{
	struct bfq_data *bfqd = (struct bfq_data *)data;
	struct bfq_queue *bfqq;
	unsigned long flags;
	enum bfqq_expiration reason;

	spin_lock_irqsave(bfqd->queue->queue_lock, flags);

	bfqq = bfqd->active_queue;
	/*
	 * Theoretical race here: active_queue can be NULL or different
	 * from the queue that was idling if the timer handler spins on
	 * the queue_lock and a new request arrives for the current
	 * queue and there is a full dispatch cycle that changes the
	 * active_queue.  This can hardly happen, but in the worst case
	 * we just expire a queue too early.
	 */
	if (bfqq != NULL) {
		bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
		if (bfq_bfqq_budget_timeout(bfqq))
			/*
			 * Also here the queue can be safely expired
			 * for budget timeout without wasting
			 * guarantees
			 */
			reason = BFQ_BFQQ_BUDGET_TIMEOUT;
		else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
			/*
			 * The queue may not be empty upon timer expiration,
			 * because we may not disable the timer when the first
			 * request of the active queue arrives during
			 * disk idling
			 */
			reason = BFQ_BFQQ_TOO_IDLE;
		else
			goto schedule_dispatch;

		bfq_bfqq_expire(bfqd, bfqq, 1, reason);
	}

schedule_dispatch:
	bfq_schedule_dispatch(bfqd);

	spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
}

static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
{
	del_timer_sync(&bfqd->idle_slice_timer);
	cancel_work_sync(&bfqd->unplug_work);
}

static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
					struct bfq_queue **bfqq_ptr)
{
	struct bfq_group *root_group = bfqd->root_group;
	struct bfq_queue *bfqq = *bfqq_ptr;

	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
	if (bfqq != NULL) {
		bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
			     bfqq, atomic_read(&bfqq->ref));
		bfq_put_queue(bfqq);
		*bfqq_ptr = NULL;
	}
}

/*
 * Release all the bfqg references to its async queues.  If we are
 * deallocating the group these queues may still contain requests, so
 * we reparent them to the root cgroup (i.e., the only one that will
 * exist for sure untill all the requests on a device are gone).
 */
static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
{
	int i, j;

	for (i = 0; i < 2; i++)
		for (j = 0; j < IOPRIO_BE_NR; j++)
			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);

	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
}

static void bfq_exit_queue(struct elevator_queue *e)
{
	struct bfq_data *bfqd = e->elevator_data;
	struct request_queue *q = bfqd->queue;
	struct bfq_queue *bfqq, *n;
	struct cfq_io_context *cic;

	bfq_shutdown_timer_wq(bfqd);

	spin_lock_irq(q->queue_lock);

	while (!list_empty(&bfqd->cic_list)) {
		cic = list_entry(bfqd->cic_list.next, struct cfq_io_context,
				 queue_list);
		__bfq_exit_single_io_context(bfqd, cic);
	}

	BUG_ON(bfqd->active_queue != NULL);
	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
		bfq_deactivate_bfqq(bfqd, bfqq, 0);

	bfq_disconnect_groups(bfqd);
	spin_unlock_irq(q->queue_lock);

	bfq_shutdown_timer_wq(bfqd);

	spin_lock(&cic_index_lock);
	ida_remove(&cic_index_ida, bfqd->cic_index);
	spin_unlock(&cic_index_lock);

	/* Wait for cic->key accessors to exit their grace periods. */
	synchronize_rcu();

	BUG_ON(timer_pending(&bfqd->idle_slice_timer));

	bfq_free_root_group(bfqd);
	kfree(bfqd);
}

static int bfq_alloc_cic_index(void)
{
	int index, error;

	do {
		if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
			return -ENOMEM;

		spin_lock(&cic_index_lock);
		error = ida_get_new(&cic_index_ida, &index);
		spin_unlock(&cic_index_lock);
		if (error && error != -EAGAIN)
			return error;
	} while (error);

	return index;
}

static void *bfq_init_queue(struct request_queue *q)
{
	struct bfq_group *bfqg;
	struct bfq_data *bfqd;
	int i;

	i = bfq_alloc_cic_index();
	if (i < 0)
		return NULL;

	bfqd = kmalloc_node(sizeof(*bfqd), GFP_KERNEL | __GFP_ZERO, q->node);
	if (bfqd == NULL)
		return NULL;

	bfqd->cic_index = i;

	/*
	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, 1, 0);
	atomic_inc(&bfqd->oom_bfqq.ref);

	INIT_LIST_HEAD(&bfqd->cic_list);

	bfqd->queue = q;

	bfqg = bfq_alloc_root_group(bfqd, q->node);
	if (bfqg == NULL) {
		kfree(bfqd);
		return NULL;
	}

	bfqd->root_group = bfqg;

	init_timer(&bfqd->idle_slice_timer);
	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
	bfqd->idle_slice_timer.data = (unsigned long)bfqd;

	bfqd->rq_pos_tree = RB_ROOT;

	INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);

	INIT_LIST_HEAD(&bfqd->active_list);
	INIT_LIST_HEAD(&bfqd->idle_list);

	bfqd->hw_tag = -1;

	bfqd->bfq_max_budget = bfq_default_max_budget;

	bfqd->bfq_quantum = bfq_quantum;
	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
	bfqd->bfq_back_max = bfq_back_max;
	bfqd->bfq_back_penalty = bfq_back_penalty;
	bfqd->bfq_slice_idle = bfq_slice_idle;
	bfqd->bfq_class_idle_last_service = 0;
	bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
	bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
	bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;

	bfqd->low_latency = true;

	bfqd->bfq_raising_coeff = 20;
	bfqd->bfq_raising_rt_max_time = msecs_to_jiffies(300);
	bfqd->bfq_raising_max_time = 0;
	bfqd->bfq_raising_min_idle_time = msecs_to_jiffies(2000);
	bfqd->bfq_raising_min_inter_arr_async = msecs_to_jiffies(500);
	bfqd->bfq_raising_max_softrt_rate = 7000;

	/* Initially estimate the device's peak rate as the reference rate */
	if (blk_queue_nonrot(bfqd->queue)) {
		bfqd->RT_prod = R_nonrot * T_nonrot;
		bfqd->peak_rate = R_nonrot;
	} else {
		bfqd->RT_prod = R_rot * T_rot;
		bfqd->peak_rate = R_rot;
	}

	return bfqd;
}

static void bfq_slab_kill(void)
{
	if (bfq_pool != NULL)
		kmem_cache_destroy(bfq_pool);
	if (bfq_ioc_pool != NULL)
		kmem_cache_destroy(bfq_ioc_pool);
}

static int __init bfq_slab_setup(void)
{
	bfq_pool = KMEM_CACHE(bfq_queue, 0);
	if (bfq_pool == NULL)
		goto fail;

	bfq_ioc_pool = kmem_cache_create("bfq_io_context",
					 sizeof(struct cfq_io_context),
					 __alignof__(struct cfq_io_context),
					 0, NULL);
	if (bfq_ioc_pool == NULL)
		goto fail;

	return 0;
fail:
	bfq_slab_kill();
	return -ENOMEM;
}

static ssize_t bfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t bfq_var_store(unsigned long *var, const char *page, size_t count)
{
	unsigned long new_val;
	int ret = strict_strtoul(page, 10, &new_val);

	if (ret == 0)
		*var = new_val;

	return count;
}

static ssize_t bfq_raising_max_time_show(struct elevator_queue *e, char *page)
{
	struct bfq_data *bfqd = e->elevator_data;
	return sprintf(page, "%d\n", bfqd->bfq_raising_max_time > 0 ?
		       bfqd->bfq_raising_max_time :
		       bfq_wrais_duration(bfqd));
}

static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
{
	struct bfq_queue *bfqq;
	struct bfq_data *bfqd = e->elevator_data;
	ssize_t num_char = 0;

	num_char += sprintf(page + num_char, "Active:\n");
	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
		num_char += sprintf(page + num_char,
			"pid%d: weight %hu, dur %d/%u\n",
			bfqq->pid,
			bfqq->entity.weight,
			jiffies_to_msecs(jiffies -
				bfqq->last_rais_start_finish),
			jiffies_to_msecs(bfqq->raising_cur_max_time));
	}
	num_char += sprintf(page + num_char, "Idle:\n");
	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
			num_char += sprintf(page + num_char,
				"pid%d: weight %hu, dur %d/%u\n",
				bfqq->pid,
				bfqq->entity.weight,
				jiffies_to_msecs(jiffies -
					bfqq->last_rais_start_finish),
				jiffies_to_msecs(bfqq->raising_cur_max_time));
	}
	return num_char;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
{									\
	struct bfq_data *bfqd = e->elevator_data;			\
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return bfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0);
SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
SHOW_FUNCTION(bfq_max_budget_async_rq_show, bfqd->bfq_max_budget_async_rq, 0);
SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
SHOW_FUNCTION(bfq_raising_coeff_show, bfqd->bfq_raising_coeff, 0);
SHOW_FUNCTION(bfq_raising_rt_max_time_show, bfqd->bfq_raising_rt_max_time, 1);
SHOW_FUNCTION(bfq_raising_min_idle_time_show, bfqd->bfq_raising_min_idle_time,
	1);
SHOW_FUNCTION(bfq_raising_min_inter_arr_async_show,
	      bfqd->bfq_raising_min_inter_arr_async,
	      1);
SHOW_FUNCTION(bfq_raising_max_softrt_rate_show,
	bfqd->bfq_raising_max_softrt_rate, 0);
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
static ssize_t								\
__FUNC(struct elevator_queue *e, const char *page, size_t count)	\
{									\
	struct bfq_data *bfqd = e->elevator_data;			\
	unsigned long __data;						\
	int ret = bfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0);
STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
		INT_MAX, 1);
STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
		INT_MAX, 1);
STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
		INT_MAX, 0);
STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
		1, INT_MAX, 0);
STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
		INT_MAX, 1);
STORE_FUNCTION(bfq_raising_coeff_store, &bfqd->bfq_raising_coeff, 1,
		INT_MAX, 0);
STORE_FUNCTION(bfq_raising_max_time_store, &bfqd->bfq_raising_max_time, 0,
		INT_MAX, 1);
STORE_FUNCTION(bfq_raising_rt_max_time_store, &bfqd->bfq_raising_rt_max_time, 0,
		INT_MAX, 1);
STORE_FUNCTION(bfq_raising_min_idle_time_store,
	       &bfqd->bfq_raising_min_idle_time, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_raising_min_inter_arr_async_store,
	       &bfqd->bfq_raising_min_inter_arr_async, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_raising_max_softrt_rate_store,
	       &bfqd->bfq_raising_max_softrt_rate, 0, INT_MAX, 0);
#undef STORE_FUNCTION

/* do nothing for the moment */
static ssize_t bfq_weights_store(struct elevator_queue *e,
				    const char *page, size_t count)
{
	return count;
}

static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
{
	u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);

	if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
		return bfq_calc_max_budget(bfqd->peak_rate, timeout);
	else
		return bfq_default_max_budget;
}

static ssize_t bfq_max_budget_store(struct elevator_queue *e,
				    const char *page, size_t count)
{
	struct bfq_data *bfqd = e->elevator_data;
	unsigned long __data;
	int ret = bfq_var_store(&__data, (page), count);

	if (__data == 0)
		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
	else {
		if (__data > INT_MAX)
			__data = INT_MAX;
		bfqd->bfq_max_budget = __data;
	}

	bfqd->bfq_user_max_budget = __data;

	return ret;
}

static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
				      const char *page, size_t count)
{
	struct bfq_data *bfqd = e->elevator_data;
	unsigned long __data;
	int ret = bfq_var_store(&__data, (page), count);

	if (__data < 1)
		__data = 1;
	else if (__data > INT_MAX)
		__data = INT_MAX;

	bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
	if (bfqd->bfq_user_max_budget == 0)
		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);

	return ret;
}

static ssize_t bfq_low_latency_store(struct elevator_queue *e,
				     const char *page, size_t count)
{
	struct bfq_data *bfqd = e->elevator_data;
	unsigned long __data;
	int ret = bfq_var_store(&__data, (page), count);

	if (__data > 1)
		__data = 1;
	bfqd->low_latency = __data;

	return ret;
}

#define BFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)

static struct elv_fs_entry bfq_attrs[] = {
	BFQ_ATTR(quantum),
	BFQ_ATTR(fifo_expire_sync),
	BFQ_ATTR(fifo_expire_async),
	BFQ_ATTR(back_seek_max),
	BFQ_ATTR(back_seek_penalty),
	BFQ_ATTR(slice_idle),
	BFQ_ATTR(max_budget),
	BFQ_ATTR(max_budget_async_rq),
	BFQ_ATTR(timeout_sync),
	BFQ_ATTR(timeout_async),
	BFQ_ATTR(low_latency),
	BFQ_ATTR(raising_coeff),
	BFQ_ATTR(raising_max_time),
	BFQ_ATTR(raising_rt_max_time),
	BFQ_ATTR(raising_min_idle_time),
	BFQ_ATTR(raising_min_inter_arr_async),
	BFQ_ATTR(raising_max_softrt_rate),
	BFQ_ATTR(weights),
	__ATTR_NULL
};

static struct elevator_type iosched_bfq = {
	.ops = {
		.elevator_merge_fn =		bfq_merge,
		.elevator_merged_fn =		bfq_merged_request,
		.elevator_merge_req_fn =	bfq_merged_requests,
		.elevator_allow_merge_fn =	bfq_allow_merge,
		.elevator_dispatch_fn =		bfq_dispatch_requests,
		.elevator_add_req_fn =		bfq_insert_request,
		.elevator_activate_req_fn =	bfq_activate_request,
		.elevator_deactivate_req_fn =	bfq_deactivate_request,
		.elevator_completed_req_fn =	bfq_completed_request,
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
		.elevator_set_req_fn =		bfq_set_request,
		.elevator_put_req_fn =		bfq_put_request,
		.elevator_may_queue_fn =	bfq_may_queue,
		.elevator_init_fn =		bfq_init_queue,
		.elevator_exit_fn =		bfq_exit_queue,
		.trim =				bfq_free_io_context,
	},
	.elevator_attrs =	bfq_attrs,
	.elevator_name =	"bfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init bfq_init(void)
{
	/*
	 * Can be 0 on HZ < 1000 setups.
	 */
	if (bfq_slice_idle == 0)
		bfq_slice_idle = 1;

	if (bfq_timeout_async == 0)
		bfq_timeout_async = 1;

	if (bfq_slab_setup())
		return -ENOMEM;

	elv_register(&iosched_bfq);

	return 0;
}

static void __exit bfq_exit(void)
{
	DECLARE_COMPLETION_ONSTACK(all_gone);
	elv_unregister(&iosched_bfq);
	bfq_ioc_gone = &all_gone;
	/* bfq_ioc_gone's update must be visible before reading bfq_ioc_count */
	smp_wmb();
	if (elv_ioc_count_read(bfq_ioc_count) != 0)
		wait_for_completion(&all_gone);
	ida_destroy(&cic_index_ida);
	bfq_slab_kill();
}

module_init(bfq_init);
module_exit(bfq_exit);

MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Budget Fair Queueing IO scheduler");