aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/bcm4329/bcmpcispi.c
blob: 1a8b6717f9244028e9f6e86ad5aa95dd2a845174 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
 * Broadcom SPI over PCI-SPI Host Controller, low-level hardware driver
 *
 * Copyright (C) 1999-2010, Broadcom Corporation
 * 
 *      Unless you and Broadcom execute a separate written software license
 * agreement governing use of this software, this software is licensed to you
 * under the terms of the GNU General Public License version 2 (the "GPL"),
 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
 * following added to such license:
 * 
 *      As a special exception, the copyright holders of this software give you
 * permission to link this software with independent modules, and to copy and
 * distribute the resulting executable under terms of your choice, provided that
 * you also meet, for each linked independent module, the terms and conditions of
 * the license of that module.  An independent module is a module which is not
 * derived from this software.  The special exception does not apply to any
 * modifications of the software.
 * 
 *      Notwithstanding the above, under no circumstances may you combine this
 * software in any way with any other Broadcom software provided under a license
 * other than the GPL, without Broadcom's express prior written consent.
 *
 * $Id: bcmpcispi.c,v 1.22.2.4.4.5.6.1 2010/08/13 00:26:05 Exp $
 */

#include <typedefs.h>
#include <bcmutils.h>

#include <sdio.h>		/* SDIO Specs */
#include <bcmsdbus.h>		/* bcmsdh to/from specific controller APIs */
#include <sdiovar.h>		/* to get msglevel bit values */

#include <pcicfg.h>
#include <bcmsdspi.h>
#include <bcmspi.h>
#include <bcmpcispi.h>		/* BRCM PCI-SPI Host Controller Register definitions */


/* ndis_osl.h needs to do a runtime check of the osh to map
 * R_REG/W_REG to bus specific access similar to linux_osl.h.
 * Until then...
 */
/* linux */

#define SPIPCI_RREG R_REG
#define SPIPCI_WREG W_REG


#define	SPIPCI_ANDREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) & (v)))
#define	SPIPCI_ORREG(osh, r, v)	SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) | (v)))


int bcmpcispi_dump = 0;		/* Set to dump complete trace of all SPI bus transactions */

typedef struct spih_info_ {
	uint		bar0;		/* BAR0 of PCI Card */
	uint		bar1;		/* BAR1 of PCI Card */
	osl_t 		*osh;		/* osh handle */
	spih_pciregs_t	*pciregs;	/* PCI Core Registers */
	spih_regs_t	*regs;		/* SPI Controller Registers */
	uint8		rev;		/* PCI Card Revision ID */
} spih_info_t;


/* Attach to PCI-SPI Host Controller Hardware */
bool
spi_hw_attach(sdioh_info_t *sd)
{
	osl_t *osh;
	spih_info_t *si;

	sd_trace(("%s: enter\n", __FUNCTION__));

	osh = sd->osh;

	if ((si = (spih_info_t *)MALLOC(osh, sizeof(spih_info_t))) == NULL) {
		sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
		return FALSE;
	}

	bzero(si, sizeof(spih_info_t));

	sd->controller = si;

	si->osh = sd->osh;
	si->rev = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_REV, 4) & 0xFF;

	if (si->rev < 3) {
		sd_err(("Host controller %d not supported, please upgrade to rev >= 3\n", si->rev));
		MFREE(osh, si, sizeof(spih_info_t));
		return (FALSE);
	}

	sd_err(("Attaching to Generic PCI SPI Host Controller Rev %d\n", si->rev));

	/* FPGA Revision < 3 not supported by driver anymore. */
	ASSERT(si->rev >= 3);

	si->bar0 = sd->bar0;

	/* Rev < 10 PciSpiHost has 2 BARs:
	 *    BAR0 = PCI Core Registers
	 *    BAR1 = PciSpiHost Registers (all other cores on backplane)
	 *
	 * Rev 10 and up use a different PCI core which only has a single
	 * BAR0 which contains the PciSpiHost Registers.
	 */
	if (si->rev < 10) {
		si->pciregs = (spih_pciregs_t *)spi_reg_map(osh,
		                                              (uintptr)si->bar0,
		                                              sizeof(spih_pciregs_t));
		sd_err(("Mapped PCI Core regs to BAR0 at %p\n", si->pciregs));

		si->bar1 = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR1, 4);
		si->regs = (spih_regs_t *)spi_reg_map(osh,
		                                        (uintptr)si->bar1,
		                                        sizeof(spih_regs_t));
		sd_err(("Mapped SPI Controller regs to BAR1 at %p\n", si->regs));
	} else {
		si->regs = (spih_regs_t *)spi_reg_map(osh,
		                                              (uintptr)si->bar0,
		                                              sizeof(spih_regs_t));
		sd_err(("Mapped SPI Controller regs to BAR0 at %p\n", si->regs));
		si->pciregs = NULL;
	}
	/* Enable SPI Controller, 16.67MHz SPI Clock */
	SPIPCI_WREG(osh, &si->regs->spih_ctrl, 0x000000d1);

	/* Set extended feature register to defaults */
	SPIPCI_WREG(osh, &si->regs->spih_ext, 0x00000000);

	/* Set GPIO CS# High (de-asserted) */
	SPIPCI_WREG(osh, &si->regs->spih_gpio_data, SPIH_CS);

	/* set GPIO[0] to output for CS# */
	/* set GPIO[1] to output for power control */
	/* set GPIO[2] to input for card detect */
	SPIPCI_WREG(osh, &si->regs->spih_gpio_ctrl, (SPIH_CS | SPIH_SLOT_POWER));

	/* Clear out the Read FIFO in case there is any stuff left in there from a previous run. */
	while ((SPIPCI_RREG(osh, &si->regs->spih_stat) & SPIH_RFEMPTY) == 0) {
		SPIPCI_RREG(osh, &si->regs->spih_data);
	}

	/* Wait for power to stabilize to the SDIO Card (100msec was insufficient) */
	OSL_DELAY(250000);

	/* Check card detect on FPGA Revision >= 4 */
	if (si->rev >= 4) {
		if (SPIPCI_RREG(osh, &si->regs->spih_gpio_data) & SPIH_CARD_DETECT) {
			sd_err(("%s: no card detected in SD slot\n", __FUNCTION__));
			spi_reg_unmap(osh, (uintptr)si->regs, sizeof(spih_regs_t));
			if (si->pciregs) {
				spi_reg_unmap(osh, (uintptr)si->pciregs, sizeof(spih_pciregs_t));
			}
			MFREE(osh, si, sizeof(spih_info_t));
			return FALSE;
		}
	}

	/* Interrupts are level sensitive */
	SPIPCI_WREG(osh, &si->regs->spih_int_edge, 0x80000000);

	/* Interrupts are active low. */
	SPIPCI_WREG(osh, &si->regs->spih_int_pol, 0x40000004);

	/* Enable interrupts through PCI Core. */
	if (si->pciregs) {
		SPIPCI_WREG(osh, &si->pciregs->ICR, PCI_INT_PROP_EN);
	}

	sd_trace(("%s: exit\n", __FUNCTION__));
	return TRUE;
}

/* Detach and return PCI-SPI Hardware to unconfigured state */
bool
spi_hw_detach(sdioh_info_t *sd)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;
	spih_pciregs_t *pciregs = si->pciregs;

	sd_trace(("%s: enter\n", __FUNCTION__));

	SPIPCI_WREG(osh, &regs->spih_ctrl, 0x00000010);
	SPIPCI_WREG(osh, &regs->spih_gpio_ctrl, 0x00000000);	/* Disable GPIO for CS# */
	SPIPCI_WREG(osh, &regs->spih_int_mask, 0x00000000);	/* Clear Intmask */
	SPIPCI_WREG(osh, &regs->spih_hex_disp, 0x0000DEAF);
	SPIPCI_WREG(osh, &regs->spih_int_edge, 0x00000000);
	SPIPCI_WREG(osh, &regs->spih_int_pol, 0x00000000);
	SPIPCI_WREG(osh, &regs->spih_hex_disp, 0x0000DEAD);

	/* Disable interrupts through PCI Core. */
	if (si->pciregs) {
		SPIPCI_WREG(osh, &pciregs->ICR, 0x00000000);
		spi_reg_unmap(osh, (uintptr)pciregs, sizeof(spih_pciregs_t));
	}
	spi_reg_unmap(osh, (uintptr)regs, sizeof(spih_regs_t));

	MFREE(osh, si, sizeof(spih_info_t));

	sd->controller = NULL;

	sd_trace(("%s: exit\n", __FUNCTION__));
	return TRUE;
}

/* Switch between internal (PCI) and external clock oscillator */
static bool
sdspi_switch_clock(sdioh_info_t *sd, bool ext_clk)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;

	/* Switch to desired clock, and reset the PLL. */
	SPIPCI_WREG(osh, &regs->spih_pll_ctrl, ext_clk ? SPIH_EXT_CLK : 0);

	SPINWAIT(((SPIPCI_RREG(osh, &regs->spih_pll_status) & SPIH_PLL_LOCKED)
	          != SPIH_PLL_LOCKED), 1000);
	if ((SPIPCI_RREG(osh, &regs->spih_pll_status) & SPIH_PLL_LOCKED) != SPIH_PLL_LOCKED) {
		sd_err(("%s: timeout waiting for PLL to lock\n", __FUNCTION__));
		return (FALSE);
	}
	return (TRUE);

}

/* Configure PCI-SPI Host Controller's SPI Clock rate as a divisor into the
 * base clock rate.  The base clock is either the PCI Clock (33MHz) or the
 * external clock oscillator at U17 on the PciSpiHost.
 */
bool
spi_start_clock(sdioh_info_t *sd, uint16 div)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;
	uint32 t, espr, disp;
	uint32 disp_xtal_freq;
	bool	ext_clock = FALSE;
	char disp_string[5];

	if (div > 2048) {
		sd_err(("%s: divisor %d too large; using max of 2048\n", __FUNCTION__, div));
		div = 2048;
	} else if (div & (div - 1)) {	/* Not a power of 2? */
		/* Round up to a power of 2 */
		while ((div + 1) & div)
			div |= div >> 1;
		div++;
	}

	/* For FPGA Rev >= 5, the use of an external clock oscillator is supported.
	 * If the oscillator is populated, use it to provide the SPI base clock,
	 * otherwise, default to the PCI clock as the SPI base clock.
	 */
	if (si->rev >= 5) {
		uint32 clk_tick;
		/* Enable the External Clock Oscillator as PLL clock source. */
		if (!sdspi_switch_clock(sd, TRUE)) {
			sd_err(("%s: error switching to external clock\n", __FUNCTION__));
		}

		/* Check to make sure the external clock is running.  If not, then it
		 * is not populated on the card, so we will default to the PCI clock.
		 */
		clk_tick = SPIPCI_RREG(osh, &regs->spih_clk_count);
		if (clk_tick == SPIPCI_RREG(osh, &regs->spih_clk_count)) {

			/* Switch back to the PCI clock as the clock source. */
			if (!sdspi_switch_clock(sd, FALSE)) {
				sd_err(("%s: error switching to external clock\n", __FUNCTION__));
			}
		} else {
			ext_clock = TRUE;
		}
	}

	/* Hack to allow hot-swapping oscillators:
	 * 1. Force PCI clock as clock source, using sd_divisor of 0.
	 * 2. Swap oscillator
	 * 3. Set desired sd_divisor (will switch to external oscillator as clock source.
	 */
	if (div == 0) {
		ext_clock = FALSE;
		div = 2;

		/* Select PCI clock as the clock source. */
		if (!sdspi_switch_clock(sd, FALSE)) {
			sd_err(("%s: error switching to external clock\n", __FUNCTION__));
		}

		sd_err(("%s: Ok to hot-swap oscillators.\n", __FUNCTION__));
	}

	/* If using the external oscillator, read the clock frequency from the controller
	 * The value read is in units of 10000Hz, and it's not a nice round number because
	 * it is calculated by the FPGA.  So to make up for that, we round it off.
	 */
	if (ext_clock == TRUE) {
		uint32 xtal_freq;

		OSL_DELAY(1000);
		xtal_freq = SPIPCI_RREG(osh, &regs->spih_xtal_freq) * 10000;

		sd_info(("%s: Oscillator is %dHz\n", __FUNCTION__, xtal_freq));


		disp_xtal_freq = xtal_freq / 10000;

		/* Round it off to a nice number. */
		if ((disp_xtal_freq % 100) > 50) {
			disp_xtal_freq += 100;
		}

		disp_xtal_freq = (disp_xtal_freq / 100) * 100;
	} else {
		sd_err(("%s: no external oscillator installed, using PCI clock.\n", __FUNCTION__));
		disp_xtal_freq = 3333;
	}

	/* Convert the SPI Clock frequency to BCD format. */
	sprintf(disp_string, "%04d", disp_xtal_freq / div);

	disp  = (disp_string[0] - '0') << 12;
	disp |= (disp_string[1] - '0') << 8;
	disp |= (disp_string[2] - '0') << 4;
	disp |= (disp_string[3] - '0');

	/* Select the correct ESPR register value based on the divisor. */
	switch (div) {
		case 1:		espr = 0x0; break;
		case 2:		espr = 0x1; break;
		case 4:		espr = 0x2; break;
		case 8:		espr = 0x5; break;
		case 16:	espr = 0x3; break;
		case 32:	espr = 0x4; break;
		case 64:	espr = 0x6; break;
		case 128:	espr = 0x7; break;
		case 256:	espr = 0x8; break;
		case 512:	espr = 0x9; break;
		case 1024:	espr = 0xa; break;
		case 2048:	espr = 0xb; break;
		default:	espr = 0x0; ASSERT(0); break;
	}

	t = SPIPCI_RREG(osh, &regs->spih_ctrl);
	t &= ~3;
	t |= espr & 3;
	SPIPCI_WREG(osh, &regs->spih_ctrl, t);

	t = SPIPCI_RREG(osh, &regs->spih_ext);
	t &= ~3;
	t |= (espr >> 2) & 3;
	SPIPCI_WREG(osh, &regs->spih_ext, t);

	SPIPCI_WREG(osh, &regs->spih_hex_disp, disp);

	/* For Rev 8, writing to the PLL_CTRL register resets
	 * the PLL, and it can re-acquire in 200uS.  For
	 * Rev 7 and older, we use a software delay to allow
	 * the PLL to re-acquire, which takes more than 2mS.
	 */
	if (si->rev < 8) {
		/* Wait for clock to settle. */
		OSL_DELAY(5000);
	}

	sd_info(("%s: SPI_CTRL=0x%08x SPI_EXT=0x%08x\n",
	         __FUNCTION__,
	         SPIPCI_RREG(osh, &regs->spih_ctrl),
	         SPIPCI_RREG(osh, &regs->spih_ext)));

	return TRUE;
}

/* Configure PCI-SPI Host Controller High-Speed Clocking mode setting */
bool
spi_controller_highspeed_mode(sdioh_info_t *sd, bool hsmode)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;

	if (si->rev >= 10) {
		if (hsmode) {
			SPIPCI_ORREG(osh, &regs->spih_ext, 0x10);
		} else {
			SPIPCI_ANDREG(osh, &regs->spih_ext, ~0x10);
		}
	}

	return TRUE;
}

/* Disable device interrupt */
void
spi_devintr_off(sdioh_info_t *sd)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;

	sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
	if (sd->use_client_ints) {
		sd->intmask &= ~SPIH_DEV_INTR;
		SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);	/* Clear Intmask */
	}
}

/* Enable device interrupt */
void
spi_devintr_on(sdioh_info_t *sd)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;

	ASSERT(sd->lockcount == 0);
	sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
	if (sd->use_client_ints) {
		if (SPIPCI_RREG(osh, &regs->spih_ctrl) & 0x02) {
			/* Ack in case one was pending but is no longer... */
			SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_DEV_INTR);
		}
		sd->intmask |= SPIH_DEV_INTR;
		/* Set device intr in Intmask */
		SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);
	}
}

/* Check to see if an interrupt belongs to the PCI-SPI Host or a SPI Device */
bool
spi_check_client_intr(sdioh_info_t *sd, int *is_dev_intr)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;
	bool ours = FALSE;

	uint32 raw_int, cur_int;
	ASSERT(sd);

	if (is_dev_intr)
		*is_dev_intr = FALSE;
	raw_int = SPIPCI_RREG(osh, &regs->spih_int_status);
	cur_int = raw_int & sd->intmask;
	if (cur_int & SPIH_DEV_INTR) {
		if (sd->client_intr_enabled && sd->use_client_ints) {
			sd->intrcount++;
			ASSERT(sd->intr_handler);
			ASSERT(sd->intr_handler_arg);
			(sd->intr_handler)(sd->intr_handler_arg);
			if (is_dev_intr)
				*is_dev_intr = TRUE;
		} else {
			sd_trace(("%s: Not ready for intr: enabled %d, handler 0x%p\n",
			        __FUNCTION__, sd->client_intr_enabled, sd->intr_handler));
		}
		SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_DEV_INTR);
		SPIPCI_RREG(osh, &regs->spih_int_status);
		ours = TRUE;
	} else if (cur_int & SPIH_CTLR_INTR) {
		/* Interrupt is from SPI FIFO... just clear and ack it... */
		sd_trace(("%s: SPI CTLR interrupt: raw_int 0x%08x cur_int 0x%08x\n",
		          __FUNCTION__, raw_int, cur_int));

		/* Clear the interrupt in the SPI_STAT register */
		SPIPCI_WREG(osh, &regs->spih_stat, 0x00000080);

		/* Ack the interrupt in the interrupt controller */
		SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_CTLR_INTR);
		SPIPCI_RREG(osh, &regs->spih_int_status);

		ours = TRUE;
	} else if (cur_int & SPIH_WFIFO_INTR) {
		sd_trace(("%s: SPI WR FIFO Empty interrupt: raw_int 0x%08x cur_int 0x%08x\n",
		          __FUNCTION__, raw_int, cur_int));

		/* Disable the FIFO Empty Interrupt */
		sd->intmask &= ~SPIH_WFIFO_INTR;
		SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);

		sd->local_intrcount++;
		sd->got_hcint = TRUE;
		ours = TRUE;
	} else {
		/* Not an error: can share interrupts... */
		sd_trace(("%s: Not my interrupt: raw_int 0x%08x cur_int 0x%08x\n",
		          __FUNCTION__, raw_int, cur_int));
		ours = FALSE;
	}

	return ours;
}

static void
hexdump(char *pfx, unsigned char *msg, int msglen)
{
	int i, col;
	char buf[80];

	ASSERT(strlen(pfx) + 49 <= sizeof(buf));

	col = 0;

	for (i = 0; i < msglen; i++, col++) {
		if (col % 16 == 0)
			strcpy(buf, pfx);
		sprintf(buf + strlen(buf), "%02x", msg[i]);
		if ((col + 1) % 16 == 0)
			printf("%s\n", buf);
		else
			sprintf(buf + strlen(buf), " ");
	}

	if (col % 16 != 0)
		printf("%s\n", buf);
}

/* Send/Receive an SPI Packet */
void
spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;
	uint32 count;
	uint32 spi_data_out;
	uint32 spi_data_in;
	bool yield;

	sd_trace(("%s: enter\n", __FUNCTION__));

	if (bcmpcispi_dump) {
		printf("SENDRECV(len=%d)\n", msglen);
		hexdump(" OUT: ", msg_out, msglen);
	}

#ifdef BCMSDYIELD
	/* Only yield the CPU and wait for interrupt on Rev 8 and newer FPGA images. */
	yield = ((msglen > 500) && (si->rev >= 8));
#else
	yield = FALSE;
#endif /* BCMSDYIELD */

	ASSERT(msglen % 4 == 0);


	SPIPCI_ANDREG(osh, &regs->spih_gpio_data, ~SPIH_CS);	/* Set GPIO CS# Low (asserted) */

	for (count = 0; count < (uint32)msglen/4; count++) {
		spi_data_out = ((uint32)((uint32 *)msg_out)[count]);
		SPIPCI_WREG(osh, &regs->spih_data, spi_data_out);
	}

#ifdef BCMSDYIELD
	if (yield) {
		/* Ack the interrupt in the interrupt controller */
		SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_WFIFO_INTR);
		SPIPCI_RREG(osh, &regs->spih_int_status);

		/* Enable the FIFO Empty Interrupt */
		sd->intmask |= SPIH_WFIFO_INTR;
		sd->got_hcint = FALSE;
		SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);

	}
#endif /* BCMSDYIELD */

	/* Wait for write fifo to empty... */
	SPIPCI_ANDREG(osh, &regs->spih_gpio_data, ~0x00000020);	/* Set GPIO 5 Low */

	if (yield) {
		ASSERT((SPIPCI_RREG(sd->osh, &regs->spih_stat) & SPIH_WFEMPTY) == 0);
	}

	spi_waitbits(sd, yield);
	SPIPCI_ORREG(osh, &regs->spih_gpio_data, 0x00000020);	/* Set GPIO 5 High (de-asserted) */

	for (count = 0; count < (uint32)msglen/4; count++) {
		spi_data_in = SPIPCI_RREG(osh, &regs->spih_data);
		((uint32 *)msg_in)[count] = spi_data_in;
	}

	/* Set GPIO CS# High (de-asserted) */
	SPIPCI_ORREG(osh, &regs->spih_gpio_data, SPIH_CS);

	if (bcmpcispi_dump) {
		hexdump(" IN : ", msg_in, msglen);
	}
}

void
spi_spinbits(sdioh_info_t *sd)
{
	spih_info_t *si = (spih_info_t *)sd->controller;
	osl_t *osh = si->osh;
	spih_regs_t *regs = si->regs;
	uint spin_count; /* Spin loop bound check */

	spin_count = 0;
	while ((SPIPCI_RREG(sd->osh, &regs->spih_stat) & SPIH_WFEMPTY) == 0) {
		if (spin_count > SPI_SPIN_BOUND) {
			sd_err(("%s: SPIH_WFEMPTY spin bits out of bound %u times \n",
				__FUNCTION__, spin_count));
			ASSERT(FALSE);
		}
		spin_count++;
	}

	/* Wait for SPI Transfer state machine to return to IDLE state.
	 * The state bits are only implemented in Rev >= 5 FPGA.  These
	 * bits are hardwired to 00 for Rev < 5, so this check doesn't cause
	 * any problems.
	 */
	spin_count = 0;
	while ((SPIPCI_RREG(osh, &regs->spih_stat) & SPIH_STATE_MASK) != 0) {
		if (spin_count > SPI_SPIN_BOUND) {
			sd_err(("%s: SPIH_STATE_MASK spin bits out of bound %u times \n",
				__FUNCTION__, spin_count));
			ASSERT(FALSE);
		}
		spin_count++;
	}
}