1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/*
* DesignWare HS OTG controller driver
* Copyright (C) 2006 Synopsys, Inc.
* Portions Copyright (C) 2010 Applied Micro Circuits Corporation.
*
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License version 2 for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see http://www.gnu.org/licenses
* or write to the Free Software Foundation, Inc., 51 Franklin Street,
* Suite 500, Boston, MA 02110-1335 USA.
*
* Based on Synopsys driver version 2.60a
* Modified by Mark Miesfeld <mmiesfeld@apm.com>
* Modified by Stefan Roese <sr@denx.de>, DENX Software Engineering
* Modified by Chuck Meade <chuck@theptrgroup.com>
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL SYNOPSYS, INC. BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES
* (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* This file contains the functions to manage Queue Heads and Queue
* Transfer Descriptors.
*/
#include "hcd.h"
static inline int is_fs_ls(enum usb_device_speed speed)
{
return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
}
/* Allocates memory for a QH structure. */
static inline struct dwc_qh *dwc_otg_hcd_qh_alloc(void)
{
return kmalloc(sizeof(struct dwc_qh), GFP_ATOMIC);
}
/**
* Initializes a QH structure to initialize the QH.
*/
#define SCHEDULE_SLOP 10
static void dwc_otg_hcd_qh_init(struct dwc_hcd *hcd, struct dwc_qh *qh,
struct urb *urb)
{
memset(qh, 0, sizeof(struct dwc_qh));
/* Initialize QH */
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
break;
case PIPE_BULK:
qh->ep_type = USB_ENDPOINT_XFER_BULK;
break;
case PIPE_ISOCHRONOUS:
qh->ep_type = USB_ENDPOINT_XFER_ISOC;
break;
case PIPE_INTERRUPT:
qh->ep_type = USB_ENDPOINT_XFER_INT;
break;
}
qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
qh->data_toggle = DWC_OTG_HC_PID_DATA0;
qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
INIT_LIST_HEAD(&qh->qtd_list);
INIT_LIST_HEAD(&qh->qh_list_entry);
qh->channel = NULL;
qh->speed = urb->dev->speed;
/*
* FS/LS Enpoint on HS Hub NOT virtual root hub
*/
qh->do_split = 0;
if (is_fs_ls(urb->dev->speed) && urb->dev->tt && urb->dev->tt->hub &&
urb->dev->tt->hub->devnum != 1)
qh->do_split = 1;
if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
/* Compute scheduling parameters once and save them. */
u32 hprt;
int bytecount = dwc_hb_mult(qh->maxp) *
dwc_max_packet(qh->maxp);
qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
usb_pipein(urb->pipe),
(qh->ep_type ==
USB_ENDPOINT_XFER_ISOC),
bytecount));
/* Start in a slightly future (micro)frame. */
qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
SCHEDULE_SLOP);
qh->interval = urb->interval;
hprt = dwc_reg_read(hcd->core_if->host_if->hprt0, 0);
if (DWC_HPRT0_PRT_SPD_RD(hprt) == DWC_HPRT0_PRTSPD_HIGH_SPEED &&
is_fs_ls(urb->dev->speed)) {
qh->interval *= 8;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
}
}
/**
* This function allocates and initializes a QH.
*/
static struct dwc_qh *dwc_otg_hcd_qh_create(struct dwc_hcd *hcd,
struct urb *urb)
{
struct dwc_qh *qh;
/* Allocate memory */
qh = dwc_otg_hcd_qh_alloc();
if (qh == NULL)
return NULL;
dwc_otg_hcd_qh_init(hcd, qh, urb);
return qh;
}
/**
* Free each QTD in the QH's QTD-list then free the QH. QH should already be
* removed from a list. QTD list should already be empty if called from URB
* Dequeue.
*/
void dwc_otg_hcd_qh_free(struct dwc_qh *qh)
{
struct dwc_qtd *qtd;
struct list_head *pos, *temp;
/* Free each QTD in the QTD list */
list_for_each_safe(pos, temp, &qh->qtd_list) {
list_del(pos);
qtd = dwc_list_to_qtd(pos);
dwc_otg_hcd_qtd_free(qtd);
}
kfree(qh);
}
/**
* Microframe scheduler
* track the total use in hcd->frame_usecs
* keep each qh use in qh->frame_usecs
* when surrendering the qh then donate the time back
*/
static const u16 max_uframe_usecs[] = { 100, 100, 100, 100, 100, 100, 30, 0 };
/*
* called from dwc_otg_hcd.c:dwc_otg_hcd_init
*/
int init_hcd_usecs(struct dwc_hcd *hcd)
{
int i;
for (i = 0; i < 8; i++)
hcd->frame_usecs[i] = max_uframe_usecs[i];
return 0;
}
static int find_single_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int i;
u16 utime;
int t_left;
int ret;
int done;
ret = -1;
utime = qh->usecs;
t_left = utime;
i = 0;
done = 0;
while (done == 0) {
/* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
if (utime <= hcd->frame_usecs[i]) {
hcd->frame_usecs[i] -= utime;
qh->frame_usecs[i] += utime;
t_left -= utime;
ret = i;
done = 1;
return ret;
} else {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
}
}
return ret;
}
/*
* use this for FS apps that can span multiple uframes
*/
static int find_multi_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int i;
int j;
u16 utime;
int t_left;
int ret;
int done;
u16 xtime;
ret = -1;
utime = qh->usecs;
t_left = utime;
i = 0;
done = 0;
loop:
while (done == 0) {
if (hcd->frame_usecs[i] <= 0) {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
goto loop;
}
/*
* We need n consequtive slots so use j as a start slot.
* j plus j+1 must be enough time (for now)
*/
xtime = hcd->frame_usecs[i];
for (j = i + 1; j < 8; j++) {
/*
* if we add this frame remaining time to xtime we may
* be OK, if not we need to test j for a complete frame.
*/
if ((xtime + hcd->frame_usecs[j]) < utime) {
if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
j = 8;
ret = -1;
continue;
}
}
if (xtime >= utime) {
ret = i;
j = 8; /* stop loop with a good value ret */
continue;
}
/* add the frame time to x time */
xtime += hcd->frame_usecs[j];
/* we must have a fully available next frame or break */
if ((xtime < utime) &&
(hcd->frame_usecs[j] == max_uframe_usecs[j])) {
ret = -1;
j = 8; /* stop loop with a bad value ret */
continue;
}
}
if (ret >= 0) {
t_left = utime;
for (j = i; (t_left > 0) && (j < 8); j++) {
t_left -= hcd->frame_usecs[j];
if (t_left <= 0) {
qh->frame_usecs[j] +=
hcd->frame_usecs[j] + t_left;
hcd->frame_usecs[j] = -t_left;
ret = i;
done = 1;
} else {
qh->frame_usecs[j] +=
hcd->frame_usecs[j];
hcd->frame_usecs[j] = 0;
}
}
} else {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
}
}
return ret;
}
static int find_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int ret = -1;
if (qh->speed == USB_SPEED_HIGH)
/* if this is a hs transaction we need a full frame */
ret = find_single_uframe(hcd, qh);
else
/* FS transaction may need a sequence of frames */
ret = find_multi_uframe(hcd, qh);
return ret;
}
/**
* Checks that the max transfer size allowed in a host channel is large enough
* to handle the maximum data transfer in a single (micro)frame for a periodic
* transfer.
*/
static int check_max_xfer_size(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int status = 0;
u32 max_xfer_size;
u32 max_channel_xfer_size;
max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
if (max_xfer_size > max_channel_xfer_size) {
pr_notice("%s: Periodic xfer length %d > max xfer "
"length for channel %d\n", __func__, max_xfer_size,
max_channel_xfer_size);
status = -ENOSPC;
}
return status;
}
/**
* Schedules an interrupt or isochronous transfer in the periodic schedule.
*/
static int schedule_periodic(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int status;
struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
int frame;
status = find_uframe(hcd, qh);
frame = -1;
if (status == 0) {
frame = 7;
} else {
if (status > 0)
frame = status - 1;
}
/* Set the new frame up */
if (frame > -1) {
qh->sched_frame &= ~0x7;
qh->sched_frame |= (frame & 7);
}
if (status != -1)
status = 0;
if (status) {
pr_notice("%s: Insufficient periodic bandwidth for "
"periodic transfer.\n", __func__);
return status;
}
status = check_max_xfer_size(hcd, qh);
if (status) {
pr_notice("%s: Channel max transfer size too small "
"for periodic transfer.\n", __func__);
return status;
}
/* Always start in the inactive schedule. */
list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs += qh->usecs;
/*
* Update average periodic bandwidth claimed and # periodic reqs for
* usbfs.
*/
bus->bandwidth_allocated += qh->usecs / qh->interval;
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
bus->bandwidth_int_reqs++;
else
bus->bandwidth_isoc_reqs++;
return status;
}
/**
* This function adds a QH to either the non periodic or periodic schedule if
* it is not already in the schedule. If the QH is already in the schedule, no
* action is taken.
*/
static int dwc_otg_hcd_qh_add(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
int status = 0;
/* QH may already be in a schedule. */
if (!list_empty(&qh->qh_list_entry))
goto done;
/*
* Add the new QH to the appropriate schedule. For non-periodic, always
* start in the inactive schedule.
*/
if (dwc_qh_is_non_per(qh))
list_add_tail(&qh->qh_list_entry,
&hcd->non_periodic_sched_inactive);
else
status = schedule_periodic(hcd, qh);
done:
return status;
}
/**
* This function adds a QH to the non periodic deferred schedule.
*
* @return 0 if successful, negative error code otherwise.
*/
static int dwc_otg_hcd_qh_add_deferred(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
if (!list_empty(&qh->qh_list_entry))
/* QH already in a schedule. */
goto done;
/* Add the new QH to the non periodic deferred schedule */
if (dwc_qh_is_non_per(qh))
list_add_tail(&qh->qh_list_entry,
&hcd->non_periodic_sched_deferred);
done:
return 0;
}
/**
* Removes an interrupt or isochronous transfer from the periodic schedule.
*/
static void deschedule_periodic(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
int i;
list_del_init(&qh->qh_list_entry);
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs -= qh->usecs;
for (i = 0; i < 8; i++) {
hcd->frame_usecs[i] += qh->frame_usecs[i];
qh->frame_usecs[i] = 0;
}
/*
* Update average periodic bandwidth claimed and # periodic reqs for
* usbfs.
*/
bus->bandwidth_allocated -= qh->usecs / qh->interval;
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
bus->bandwidth_int_reqs--;
else
bus->bandwidth_isoc_reqs--;
}
/**
* Removes a QH from either the non-periodic or periodic schedule. Memory is
* not freed.
*/
void dwc_otg_hcd_qh_remove(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
/* Do nothing if QH is not in a schedule */
if (list_empty(&qh->qh_list_entry))
return;
if (dwc_qh_is_non_per(qh)) {
if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry)
hcd->non_periodic_qh_ptr =
hcd->non_periodic_qh_ptr->next;
list_del_init(&qh->qh_list_entry);
} else {
deschedule_periodic(hcd, qh);
}
}
/**
* Defers a QH. For non-periodic QHs, removes the QH from the active
* non-periodic schedule. The QH is added to the deferred non-periodic
* schedule if any QTDs are still attached to the QH.
*/
int dwc_otg_hcd_qh_deferr(struct dwc_hcd *hcd, struct dwc_qh *qh, int delay)
{
int deact = 1;
if (dwc_qh_is_non_per(qh)) {
qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, delay);
qh->channel = NULL;
qh->qtd_in_process = NULL;
deact = 0;
dwc_otg_hcd_qh_remove(hcd, qh);
if (!list_empty(&qh->qtd_list))
/* Add back to deferred non-periodic schedule. */
dwc_otg_hcd_qh_add_deferred(hcd, qh);
}
return deact;
}
/**
* Schedule the next continuing periodic split transfer
*/
static void sched_next_per_split_xfr(struct dwc_qh *qh, u16 fr_num,
int sched_split)
{
if (sched_split) {
qh->sched_frame = fr_num;
if (dwc_frame_num_le(fr_num,
dwc_frame_num_inc(qh->start_split_frame,
1))) {
/*
* Allow one frame to elapse after start split
* microframe before scheduling complete split, but DONT
* if we are doing the next start split in the
* same frame for an ISOC out.
*/
if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
qh->ep_is_in)
qh->sched_frame =
dwc_frame_num_inc(qh->sched_frame, 1);
}
} else {
qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
qh->interval);
if (dwc_frame_num_le(qh->sched_frame, fr_num))
qh->sched_frame = fr_num;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
}
/**
* Deactivates a periodic QH. The QH is removed from the periodic queued
* schedule. If there are any QTDs still attached to the QH, the QH is added to
* either the periodic inactive schedule or the periodic ready schedule and its
* next scheduled frame is calculated. The QH is placed in the ready schedule if
* the scheduled frame has been reached already. Otherwise it's placed in the
* inactive schedule. If there are no QTDs attached to the QH, the QH is
* completely removed from the periodic schedule.
*/
static void deactivate_periodic_qh(struct dwc_hcd *hcd, struct dwc_qh *qh,
int sched_next_split)
{
/* unsigned long flags; */
u16 fr_num = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
if (qh->do_split) {
sched_next_per_split_xfr(qh, fr_num, sched_next_split);
} else {
qh->sched_frame = dwc_frame_num_inc(qh->sched_frame,
qh->interval);
if (dwc_frame_num_le(qh->sched_frame, fr_num))
qh->sched_frame = fr_num;
}
if (list_empty(&qh->qtd_list)) {
dwc_otg_hcd_qh_remove(hcd, qh);
} else {
/*
* Remove from periodic_sched_queued and move to appropriate
* queue.
*/
if (qh->sched_frame == fr_num)
list_move(&qh->qh_list_entry,
&hcd->periodic_sched_ready);
else
list_move(&qh->qh_list_entry,
&hcd->periodic_sched_inactive);
}
}
/**
* Deactivates a non-periodic QH. Removes the QH from the active non-periodic
* schedule. The QH is added to the inactive non-periodic schedule if any QTDs
* are still attached to the QH.
*/
static void deactivate_non_periodic_qh(struct dwc_hcd *hcd, struct dwc_qh *qh)
{
dwc_otg_hcd_qh_remove(hcd, qh);
if (!list_empty(&qh->qtd_list))
dwc_otg_hcd_qh_add(hcd, qh);
}
/**
* Deactivates a QH. Determines if the QH is periodic or non-periodic and takes
* the appropriate action.
*/
void dwc_otg_hcd_qh_deactivate(struct dwc_hcd *hcd, struct dwc_qh *qh,
int sched_next_periodic_split)
{
if (dwc_qh_is_non_per(qh))
deactivate_non_periodic_qh(hcd, qh);
else
deactivate_periodic_qh(hcd, qh, sched_next_periodic_split);
}
/**
* Initializes a QTD structure.
*/
static void dwc_otg_hcd_qtd_init(struct dwc_qtd *qtd, struct urb *urb)
{
memset(qtd, 0, sizeof(struct dwc_qtd));
qtd->urb = urb;
if (usb_pipecontrol(urb->pipe)) {
/*
* The only time the QTD data toggle is used is on the data
* phase of control transfers. This phase always starts with
* DATA1.
*/
qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
qtd->control_phase = DWC_OTG_CONTROL_SETUP;
}
/* start split */
qtd->complete_split = 0;
qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
qtd->isoc_split_offset = 0;
/* Store the qtd ptr in the urb to reference what QTD. */
urb->hcpriv = qtd;
INIT_LIST_HEAD(&qtd->qtd_list_entry);
return;
}
/* Allocates memory for a QTD structure. */
static inline struct dwc_qtd *dwc_otg_hcd_qtd_alloc(gfp_t _mem_flags)
{
return kmalloc(sizeof(struct dwc_qtd), _mem_flags);
}
/**
* This function allocates and initializes a QTD.
*/
struct dwc_qtd *dwc_otg_hcd_qtd_create(struct urb *urb, gfp_t _mem_flags)
{
struct dwc_qtd *qtd = dwc_otg_hcd_qtd_alloc(_mem_flags);
if (!qtd)
return NULL;
dwc_otg_hcd_qtd_init(qtd, urb);
return qtd;
}
/**
* This function adds a QTD to the QTD-list of a QH. It will find the correct
* QH to place the QTD into. If it does not find a QH, then it will create a
* new QH. If the QH to which the QTD is added is not currently scheduled, it
* is placed into the proper schedule based on its EP type.
*
*/
int dwc_otg_hcd_qtd_add(struct dwc_qtd *qtd, struct dwc_hcd *hcd)
{
struct usb_host_endpoint *ep;
struct dwc_qh *qh;
int retval = 0;
struct urb *urb = qtd->urb;
/*
* Get the QH which holds the QTD-list to insert to. Create QH if it
* doesn't exist.
*/
ep = dwc_urb_to_endpoint(urb);
qh = (struct dwc_qh *)ep->hcpriv;
if (!qh) {
qh = dwc_otg_hcd_qh_create(hcd, urb);
if (!qh) {
retval = -1;
goto done;
}
ep->hcpriv = qh;
}
qtd->qtd_qh_ptr = qh;
retval = dwc_otg_hcd_qh_add(hcd, qh);
if (!retval)
list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
done:
return retval;
}
|