diff options
Diffstat (limited to 'Documentation/sound/alsa/soc/dapm.txt')
-rw-r--r-- | Documentation/sound/alsa/soc/dapm.txt | 297 |
1 files changed, 297 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/soc/dapm.txt b/Documentation/sound/alsa/soc/dapm.txt new file mode 100644 index 0000000..c11877f --- /dev/null +++ b/Documentation/sound/alsa/soc/dapm.txt @@ -0,0 +1,297 @@ +Dynamic Audio Power Management for Portable Devices +=================================================== + +1. Description +============== + +Dynamic Audio Power Management (DAPM) is designed to allow portable Linux devices +to use the minimum amount of power within the audio subsystem at all times. It +is independent of other kernel PM and as such, can easily co-exist with the +other PM systems. + +DAPM is also completely transparent to all user space applications as all power +switching is done within the ASoC core. No code changes or recompiling are +required for user space applications. DAPM makes power switching descisions based +upon any audio stream (capture/playback) activity and audio mixer settings +within the device. + +DAPM spans the whole machine. It covers power control within the entire audio +subsystem, this includes internal codec power blocks and machine level power +systems. + +There are 4 power domains within DAPM + + 1. Codec domain - VREF, VMID (core codec and audio power) + Usually controlled at codec probe/remove and suspend/resume, although + can be set at stream time if power is not needed for sidetone, etc. + + 2. Platform/Machine domain - physically connected inputs and outputs + Is platform/machine and user action specific, is configured by the + machine driver and responds to asynchronous events e.g when HP + are inserted + + 3. Path domain - audio susbsystem signal paths + Automatically set when mixer and mux settings are changed by the user. + e.g. alsamixer, amixer. + + 4. Stream domain - DAC's and ADC's. + Enabled and disabled when stream playback/capture is started and + stopped respectively. e.g. aplay, arecord. + +All DAPM power switching descisons are made automatically by consulting an audio +routing map of the whole machine. This map is specific to each machine and +consists of the interconnections between every audio component (including +internal codec components). All audio components that effect power are called +widgets hereafter. + + +2. DAPM Widgets +=============== + +Audio DAPM widgets fall into a number of types:- + + o Mixer - Mixes several analog signals into a single analog signal. + o Mux - An analog switch that outputs only 1 of it's inputs. + o PGA - A programmable gain amplifier or attenuation widget. + o ADC - Analog to Digital Converter + o DAC - Digital to Analog Converter + o Switch - An analog switch + o Input - A codec input pin + o Output - A codec output pin + o Headphone - Headphone (and optional Jack) + o Mic - Mic (and optional Jack) + o Line - Line Input/Output (and optional Jack) + o Speaker - Speaker + o Pre - Special PRE widget (exec before all others) + o Post - Special POST widget (exec after all others) + +(Widgets are defined in include/sound/soc-dapm.h) + +Widgets are usually added in the codec driver and the machine driver. There are +convience macros defined in soc-dapm.h that can be used to quickly build a +list of widgets of the codecs and machines DAPM widgets. + +Most widgets have a name, register, shift and invert. Some widgets have extra +parameters for stream name and kcontrols. + + +2.1 Stream Domain Widgets +------------------------- + +Stream Widgets relate to the stream power domain and only consist of ADC's +(analog to digital converters) and DAC's (digital to analog converters). + +Stream widgets have the following format:- + +SND_SOC_DAPM_DAC(name, stream name, reg, shift, invert), + +NOTE: the stream name must match the corresponding stream name in your codecs +snd_soc_codec_dai. + +e.g. stream widgets for HiFi playback and capture + +SND_SOC_DAPM_DAC("HiFi DAC", "HiFi Playback", REG, 3, 1), +SND_SOC_DAPM_ADC("HiFi ADC", "HiFi Capture", REG, 2, 1), + + +2.2 Path Domain Widgets +----------------------- + +Path domain widgets have a ability to control or effect the audio signal or +audio paths within the audio subsystem. They have the following form:- + +SND_SOC_DAPM_PGA(name, reg, shift, invert, controls, num_controls) + +Any widget kcontrols can be set using the controls and num_controls members. + +e.g. Mixer widget (the kcontrols are declared first) + +/* Output Mixer */ +static const snd_kcontrol_new_t wm8731_output_mixer_controls[] = { +SOC_DAPM_SINGLE("Line Bypass Switch", WM8731_APANA, 3, 1, 0), +SOC_DAPM_SINGLE("Mic Sidetone Switch", WM8731_APANA, 5, 1, 0), +SOC_DAPM_SINGLE("HiFi Playback Switch", WM8731_APANA, 4, 1, 0), +}; + +SND_SOC_DAPM_MIXER("Output Mixer", WM8731_PWR, 4, 1, wm8731_output_mixer_controls, + ARRAY_SIZE(wm8731_output_mixer_controls)), + + +2.3 Platform/Machine domain Widgets +----------------------------------- + +Machine widgets are different from codec widgets in that they don't have a +codec register bit associated with them. A machine widget is assigned to each +machine audio component (non codec) that can be independently powered. e.g. + + o Speaker Amp + o Microphone Bias + o Jack connectors + +A machine widget can have an optional call back. + +e.g. Jack connector widget for an external Mic that enables Mic Bias +when the Mic is inserted:- + +static int spitz_mic_bias(struct snd_soc_dapm_widget* w, int event) +{ + if(SND_SOC_DAPM_EVENT_ON(event)) + set_scoop_gpio(&spitzscoop2_device.dev, SPITZ_SCP2_MIC_BIAS); + else + reset_scoop_gpio(&spitzscoop2_device.dev, SPITZ_SCP2_MIC_BIAS); + + return 0; +} + +SND_SOC_DAPM_MIC("Mic Jack", spitz_mic_bias), + + +2.4 Codec Domain +---------------- + +The Codec power domain has no widgets and is handled by the codecs DAPM event +handler. This handler is called when the codec powerstate is changed wrt to any +stream event or by kernel PM events. + + +2.5 Virtual Widgets +------------------- + +Sometimes widgets exist in the codec or machine audio map that don't have any +corresponding register bit for power control. In this case it's necessary to +create a virtual widget - a widget with no control bits e.g. + +SND_SOC_DAPM_MIXER("AC97 Mixer", SND_SOC_DAPM_NOPM, 0, 0, NULL, 0), + +This can be used to merge to signal paths together in software. + +After all the widgets have been defined, they can then be added to the DAPM +subsystem individually with a call to snd_soc_dapm_new_control(). + + +3. Codec Widget Interconnections +================================ + +Widgets are connected to each other within the codec and machine by audio +paths (called interconnections). Each interconnection must be defined in order +to create a map of all audio paths between widgets. +This is easiest with a diagram of the codec (and schematic of the machine audio +system), as it requires joining widgets together via their audio signal paths. + +i.e. from the WM8731 codec's output mixer (wm8731.c) + +The WM8731 output mixer has 3 inputs (sources) + + 1. Line Bypass Input + 2. DAC (HiFi playback) + 3. Mic Sidetone Input + +Each input in this example has a kcontrol associated with it (defined in example +above) and is connected to the output mixer via it's kcontrol name. We can now +connect the destination widget (wrt audio signal) with it's source widgets. + + /* output mixer */ + {"Output Mixer", "Line Bypass Switch", "Line Input"}, + {"Output Mixer", "HiFi Playback Switch", "DAC"}, + {"Output Mixer", "Mic Sidetone Switch", "Mic Bias"}, + +So we have :- + + Destination Widget <=== Path Name <=== Source Widget + +Or:- + + Sink, Path, Source + +Or :- + + "Output Mixer" is connected to the "DAC" via the "HiFi Playback Switch". + +When there is no path name connecting widgets (e.g. a direct connection) we +pass NULL for the path name. + +Interconnections are created with a call to:- + +snd_soc_dapm_connect_input(codec, sink, path, source); + +Finally, snd_soc_dapm_new_widgets(codec) must be called after all widgets and +interconnections have been registered with the core. This causes the core to +scan the codec and machine so that the internal DAPM state matches the +physical state of the machine. + + +3.1 Machine Widget Interconnections +----------------------------------- +Machine widget interconnections are created in the same way as codec ones and +directly connect the codec pins to machine level widgets. + +e.g. connects the speaker out codec pins to the internal speaker. + + /* ext speaker connected to codec pins LOUT2, ROUT2 */ + {"Ext Spk", NULL , "ROUT2"}, + {"Ext Spk", NULL , "LOUT2"}, + +This allows the DAPM to power on and off pins that are connected (and in use) +and pins that are NC respectively. + + +4 Endpoint Widgets +=================== +An endpoint is a start or end point (widget) of an audio signal within the +machine and includes the codec. e.g. + + o Headphone Jack + o Internal Speaker + o Internal Mic + o Mic Jack + o Codec Pins + +When a codec pin is NC it can be marked as not used with a call to + +snd_soc_dapm_set_endpoint(codec, "Widget Name", 0); + +The last argument is 0 for inactive and 1 for active. This way the pin and its +input widget will never be powered up and consume power. + +This also applies to machine widgets. e.g. if a headphone is connected to a +jack then the jack can be marked active. If the headphone is removed, then +the headphone jack can be marked inactive. + + +5 DAPM Widget Events +==================== + +Some widgets can register their interest with the DAPM core in PM events. +e.g. A Speaker with an amplifier registers a widget so the amplifier can be +powered only when the spk is in use. + +/* turn speaker amplifier on/off depending on use */ +static int corgi_amp_event(struct snd_soc_dapm_widget *w, int event) +{ + if (SND_SOC_DAPM_EVENT_ON(event)) + set_scoop_gpio(&corgiscoop_device.dev, CORGI_SCP_APM_ON); + else + reset_scoop_gpio(&corgiscoop_device.dev, CORGI_SCP_APM_ON); + + return 0; +} + +/* corgi machine dapm widgets */ +static const struct snd_soc_dapm_widget wm8731_dapm_widgets = + SND_SOC_DAPM_SPK("Ext Spk", corgi_amp_event); + +Please see soc-dapm.h for all other widgets that support events. + + +5.1 Event types +--------------- + +The following event types are supported by event widgets. + +/* dapm event types */ +#define SND_SOC_DAPM_PRE_PMU 0x1 /* before widget power up */ +#define SND_SOC_DAPM_POST_PMU 0x2 /* after widget power up */ +#define SND_SOC_DAPM_PRE_PMD 0x4 /* before widget power down */ +#define SND_SOC_DAPM_POST_PMD 0x8 /* after widget power down */ +#define SND_SOC_DAPM_PRE_REG 0x10 /* before audio path setup */ +#define SND_SOC_DAPM_POST_REG 0x20 /* after audio path setup */ |