aboutsummaryrefslogtreecommitdiffstats
path: root/init/calibrate.c
blob: d206c7548fe6f80aa14f508d89f7a5f76c4216cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* calibrate.c: default delay calibration
 *
 * Excised from init/main.c
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/init.h>

#include <asm/timex.h>

static unsigned long preset_lpj;
static int __init lpj_setup(char *str)
{
	preset_lpj = simple_strtoul(str,NULL,0);
	return 1;
}

__setup("lpj=", lpj_setup);

#ifdef ARCH_HAS_READ_CURRENT_TIMER

/* This routine uses the read_current_timer() routine and gets the
 * loops per jiffy directly, instead of guessing it using delay().
 * Also, this code tries to handle non-maskable asynchronous events
 * (like SMIs)
 */
#define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
#define MAX_DIRECT_CALIBRATION_RETRIES		5

static unsigned long __devinit calibrate_delay_direct(void)
{
	unsigned long pre_start, start, post_start;
	unsigned long pre_end, end, post_end;
	unsigned long start_jiffies;
	unsigned long tsc_rate_min, tsc_rate_max;
	unsigned long good_tsc_sum = 0;
	unsigned long good_tsc_count = 0;
	int i;

	if (read_current_timer(&pre_start) < 0 )
		return 0;

	/*
	 * A simple loop like
	 *	while ( jiffies < start_jiffies+1)
	 *		start = read_current_timer();
	 * will not do. As we don't really know whether jiffy switch
	 * happened first or timer_value was read first. And some asynchronous
	 * event can happen between these two events introducing errors in lpj.
	 *
	 * So, we do
	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
	 * 2. check jiffy switch
	 * 3. start <- timer value before or after jiffy switch
	 * 4. post_start <- When we are sure that jiffy switch has happened
	 *
	 * Note, we don't know anything about order of 2 and 3.
	 * Now, by looking at post_start and pre_start difference, we can
	 * check whether any asynchronous event happened or not
	 */

	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
		pre_start = 0;
		read_current_timer(&start);
		start_jiffies = jiffies;
		while (jiffies <= (start_jiffies + 1)) {
			pre_start = start;
			read_current_timer(&start);
		}
		read_current_timer(&post_start);

		pre_end = 0;
		end = post_start;
		while (jiffies <=
		       (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
			pre_end = end;
			read_current_timer(&end);
		}
		read_current_timer(&post_end);

		tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS;
		tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS;

		/*
	 	 * If the upper limit and lower limit of the tsc_rate is
		 * >= 12.5% apart, redo calibration.
		 */
		if (pre_start != 0 && pre_end != 0 &&
		    (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) {
			good_tsc_count++;
			good_tsc_sum += tsc_rate_max;
		}
	}

	if (good_tsc_count)
		return (good_tsc_sum/good_tsc_count);

	printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
	       "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
	return 0;
}
#else
static unsigned long __devinit calibrate_delay_direct(void) {return 0;}
#endif

/*
 * This is the number of bits of precision for the loops_per_jiffy.  Each
 * bit takes on average 1.5/HZ seconds.  This (like the original) is a little
 * better than 1%
 */
#define LPS_PREC 8

void __devinit calibrate_delay(void)
{
	unsigned long ticks, loopbit;
	int lps_precision = LPS_PREC;

	if (preset_lpj) {
		loops_per_jiffy = preset_lpj;
		printk("Calibrating delay loop (skipped)... "
			"%lu.%02lu BogoMIPS preset\n",
			loops_per_jiffy/(500000/HZ),
			(loops_per_jiffy/(5000/HZ)) % 100);
	} else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
		printk("Calibrating delay using timer specific routine.. ");
		printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
			loops_per_jiffy/(500000/HZ),
			(loops_per_jiffy/(5000/HZ)) % 100,
			loops_per_jiffy);
	} else {
		loops_per_jiffy = (1<<12);

		printk(KERN_DEBUG "Calibrating delay loop... ");
		while ((loops_per_jiffy <<= 1) != 0) {
			/* wait for "start of" clock tick */
			ticks = jiffies;
			while (ticks == jiffies)
				/* nothing */;
			/* Go .. */
			ticks = jiffies;
			__delay(loops_per_jiffy);
			ticks = jiffies - ticks;
			if (ticks)
				break;
		}

		/*
		 * Do a binary approximation to get loops_per_jiffy set to
		 * equal one clock (up to lps_precision bits)
		 */
		loops_per_jiffy >>= 1;
		loopbit = loops_per_jiffy;
		while (lps_precision-- && (loopbit >>= 1)) {
			loops_per_jiffy |= loopbit;
			ticks = jiffies;
			while (ticks == jiffies)
				/* nothing */;
			ticks = jiffies;
			__delay(loops_per_jiffy);
			if (jiffies != ticks)	/* longer than 1 tick */
				loops_per_jiffy &= ~loopbit;
		}

		/* Round the value and print it */
		printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
			loops_per_jiffy/(500000/HZ),
			(loops_per_jiffy/(5000/HZ)) % 100,
			loops_per_jiffy);
	}

}