aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-arm/pgtable.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-arm/pgtable.h
downloadkernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
kernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
kernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-arm/pgtable.h')
-rw-r--r--include/asm-arm/pgtable.h433
1 files changed, 433 insertions, 0 deletions
diff --git a/include/asm-arm/pgtable.h b/include/asm-arm/pgtable.h
new file mode 100644
index 0000000..91ffb1f
--- /dev/null
+++ b/include/asm-arm/pgtable.h
@@ -0,0 +1,433 @@
+/*
+ * linux/include/asm-arm/pgtable.h
+ *
+ * Copyright (C) 1995-2002 Russell King
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef _ASMARM_PGTABLE_H
+#define _ASMARM_PGTABLE_H
+
+#include <asm-generic/4level-fixup.h>
+
+#include <asm/memory.h>
+#include <asm/proc-fns.h>
+#include <asm/arch/vmalloc.h>
+
+/*
+ * Hardware-wise, we have a two level page table structure, where the first
+ * level has 4096 entries, and the second level has 256 entries. Each entry
+ * is one 32-bit word. Most of the bits in the second level entry are used
+ * by hardware, and there aren't any "accessed" and "dirty" bits.
+ *
+ * Linux on the other hand has a three level page table structure, which can
+ * be wrapped to fit a two level page table structure easily - using the PGD
+ * and PTE only. However, Linux also expects one "PTE" table per page, and
+ * at least a "dirty" bit.
+ *
+ * Therefore, we tweak the implementation slightly - we tell Linux that we
+ * have 2048 entries in the first level, each of which is 8 bytes (iow, two
+ * hardware pointers to the second level.) The second level contains two
+ * hardware PTE tables arranged contiguously, followed by Linux versions
+ * which contain the state information Linux needs. We, therefore, end up
+ * with 512 entries in the "PTE" level.
+ *
+ * This leads to the page tables having the following layout:
+ *
+ * pgd pte
+ * | |
+ * +--------+ +0
+ * | |-----> +------------+ +0
+ * +- - - - + +4 | h/w pt 0 |
+ * | |-----> +------------+ +1024
+ * +--------+ +8 | h/w pt 1 |
+ * | | +------------+ +2048
+ * +- - - - + | Linux pt 0 |
+ * | | +------------+ +3072
+ * +--------+ | Linux pt 1 |
+ * | | +------------+ +4096
+ *
+ * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
+ * PTE_xxx for definitions of bits appearing in the "h/w pt".
+ *
+ * PMD_xxx definitions refer to bits in the first level page table.
+ *
+ * The "dirty" bit is emulated by only granting hardware write permission
+ * iff the page is marked "writable" and "dirty" in the Linux PTE. This
+ * means that a write to a clean page will cause a permission fault, and
+ * the Linux MM layer will mark the page dirty via handle_pte_fault().
+ * For the hardware to notice the permission change, the TLB entry must
+ * be flushed, and ptep_establish() does that for us.
+ *
+ * The "accessed" or "young" bit is emulated by a similar method; we only
+ * allow accesses to the page if the "young" bit is set. Accesses to the
+ * page will cause a fault, and handle_pte_fault() will set the young bit
+ * for us as long as the page is marked present in the corresponding Linux
+ * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
+ * date.
+ *
+ * However, when the "young" bit is cleared, we deny access to the page
+ * by clearing the hardware PTE. Currently Linux does not flush the TLB
+ * for us in this case, which means the TLB will retain the transation
+ * until either the TLB entry is evicted under pressure, or a context
+ * switch which changes the user space mapping occurs.
+ */
+#define PTRS_PER_PTE 512
+#define PTRS_PER_PMD 1
+#define PTRS_PER_PGD 2048
+
+/*
+ * PMD_SHIFT determines the size of the area a second-level page table can map
+ * PGDIR_SHIFT determines what a third-level page table entry can map
+ */
+#define PMD_SHIFT 21
+#define PGDIR_SHIFT 21
+
+#define LIBRARY_TEXT_START 0x0c000000
+
+#ifndef __ASSEMBLY__
+extern void __pte_error(const char *file, int line, unsigned long val);
+extern void __pmd_error(const char *file, int line, unsigned long val);
+extern void __pgd_error(const char *file, int line, unsigned long val);
+
+#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
+#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
+#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
+#endif /* !__ASSEMBLY__ */
+
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+#define FIRST_USER_PGD_NR 1
+#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
+
+/*
+ * ARMv6 supersection address mask and size definitions.
+ */
+#define SUPERSECTION_SHIFT 24
+#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
+#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
+
+/*
+ * Hardware page table definitions.
+ *
+ * + Level 1 descriptor (PMD)
+ * - common
+ */
+#define PMD_TYPE_MASK (3 << 0)
+#define PMD_TYPE_FAULT (0 << 0)
+#define PMD_TYPE_TABLE (1 << 0)
+#define PMD_TYPE_SECT (2 << 0)
+#define PMD_BIT4 (1 << 4)
+#define PMD_DOMAIN(x) ((x) << 5)
+#define PMD_PROTECTION (1 << 9) /* v5 */
+/*
+ * - section
+ */
+#define PMD_SECT_BUFFERABLE (1 << 2)
+#define PMD_SECT_CACHEABLE (1 << 3)
+#define PMD_SECT_AP_WRITE (1 << 10)
+#define PMD_SECT_AP_READ (1 << 11)
+#define PMD_SECT_TEX(x) ((x) << 12) /* v5 */
+#define PMD_SECT_APX (1 << 15) /* v6 */
+#define PMD_SECT_S (1 << 16) /* v6 */
+#define PMD_SECT_nG (1 << 17) /* v6 */
+#define PMD_SECT_SUPER (1 << 18) /* v6 */
+
+#define PMD_SECT_UNCACHED (0)
+#define PMD_SECT_BUFFERED (PMD_SECT_BUFFERABLE)
+#define PMD_SECT_WT (PMD_SECT_CACHEABLE)
+#define PMD_SECT_WB (PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
+#define PMD_SECT_MINICACHE (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE)
+#define PMD_SECT_WBWA (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
+
+/*
+ * - coarse table (not used)
+ */
+
+/*
+ * + Level 2 descriptor (PTE)
+ * - common
+ */
+#define PTE_TYPE_MASK (3 << 0)
+#define PTE_TYPE_FAULT (0 << 0)
+#define PTE_TYPE_LARGE (1 << 0)
+#define PTE_TYPE_SMALL (2 << 0)
+#define PTE_TYPE_EXT (3 << 0) /* v5 */
+#define PTE_BUFFERABLE (1 << 2)
+#define PTE_CACHEABLE (1 << 3)
+
+/*
+ * - extended small page/tiny page
+ */
+#define PTE_EXT_AP_MASK (3 << 4)
+#define PTE_EXT_AP_UNO_SRO (0 << 4)
+#define PTE_EXT_AP_UNO_SRW (1 << 4)
+#define PTE_EXT_AP_URO_SRW (2 << 4)
+#define PTE_EXT_AP_URW_SRW (3 << 4)
+#define PTE_EXT_TEX(x) ((x) << 6) /* v5 */
+
+/*
+ * - small page
+ */
+#define PTE_SMALL_AP_MASK (0xff << 4)
+#define PTE_SMALL_AP_UNO_SRO (0x00 << 4)
+#define PTE_SMALL_AP_UNO_SRW (0x55 << 4)
+#define PTE_SMALL_AP_URO_SRW (0xaa << 4)
+#define PTE_SMALL_AP_URW_SRW (0xff << 4)
+
+/*
+ * "Linux" PTE definitions.
+ *
+ * We keep two sets of PTEs - the hardware and the linux version.
+ * This allows greater flexibility in the way we map the Linux bits
+ * onto the hardware tables, and allows us to have YOUNG and DIRTY
+ * bits.
+ *
+ * The PTE table pointer refers to the hardware entries; the "Linux"
+ * entries are stored 1024 bytes below.
+ */
+#define L_PTE_PRESENT (1 << 0)
+#define L_PTE_FILE (1 << 1) /* only when !PRESENT */
+#define L_PTE_YOUNG (1 << 1)
+#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
+#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
+#define L_PTE_USER (1 << 4)
+#define L_PTE_WRITE (1 << 5)
+#define L_PTE_EXEC (1 << 6)
+#define L_PTE_DIRTY (1 << 7)
+
+#ifndef __ASSEMBLY__
+
+#include <asm/domain.h>
+
+#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER))
+#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))
+
+/*
+ * The following macros handle the cache and bufferable bits...
+ */
+#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
+#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
+
+extern pgprot_t pgprot_kernel;
+
+#define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
+#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
+#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
+#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
+#define PAGE_KERNEL pgprot_kernel
+
+#endif /* __ASSEMBLY__ */
+
+/*
+ * The table below defines the page protection levels that we insert into our
+ * Linux page table version. These get translated into the best that the
+ * architecture can perform. Note that on most ARM hardware:
+ * 1) We cannot do execute protection
+ * 2) If we could do execute protection, then read is implied
+ * 3) write implies read permissions
+ */
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_COPY
+#define __P011 PAGE_COPY
+#define __P100 PAGE_READONLY
+#define __P101 PAGE_READONLY
+#define __P110 PAGE_COPY
+#define __P111 PAGE_COPY
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED
+#define __S011 PAGE_SHARED
+#define __S100 PAGE_READONLY
+#define __S101 PAGE_READONLY
+#define __S110 PAGE_SHARED
+#define __S111 PAGE_SHARED
+
+#ifndef __ASSEMBLY__
+/*
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern struct page *empty_zero_page;
+#define ZERO_PAGE(vaddr) (empty_zero_page)
+
+#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
+#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
+
+#define pte_none(pte) (!pte_val(pte))
+#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
+#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
+#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
+#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
+#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
+#define pte_unmap(pte) do { } while (0)
+#define pte_unmap_nested(pte) do { } while (0)
+
+#define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
+#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
+#define pte_read(pte) (pte_val(pte) & L_PTE_USER)
+#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
+#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
+#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
+#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
+
+/*
+ * The following only works if pte_present() is not true.
+ */
+#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
+#define pte_to_pgoff(x) (pte_val(x) >> 2)
+#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
+
+#define PTE_FILE_MAX_BITS 30
+
+#define PTE_BIT_FUNC(fn,op) \
+static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
+
+/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
+/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
+PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
+PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
+PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
+PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
+PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
+PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
+PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
+PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
+
+/*
+ * Mark the prot value as uncacheable and unbufferable.
+ */
+#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
+#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
+
+#define pmd_none(pmd) (!pmd_val(pmd))
+#define pmd_present(pmd) (pmd_val(pmd))
+#define pmd_bad(pmd) (pmd_val(pmd) & 2)
+
+#define copy_pmd(pmdpd,pmdps) \
+ do { \
+ pmdpd[0] = pmdps[0]; \
+ pmdpd[1] = pmdps[1]; \
+ flush_pmd_entry(pmdpd); \
+ } while (0)
+
+#define pmd_clear(pmdp) \
+ do { \
+ pmdp[0] = __pmd(0); \
+ pmdp[1] = __pmd(0); \
+ clean_pmd_entry(pmdp); \
+ } while (0)
+
+static inline pte_t *pmd_page_kernel(pmd_t pmd)
+{
+ unsigned long ptr;
+
+ ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
+ ptr += PTRS_PER_PTE * sizeof(void *);
+
+ return __va(ptr);
+}
+
+#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
+
+/*
+ * Permanent address of a page. We never have highmem, so this is trivial.
+ */
+#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
+
+/*
+ * The "pgd_xxx()" functions here are trivial for a folded two-level
+ * setup: the pgd is never bad, and a pmd always exists (as it's folded
+ * into the pgd entry)
+ */
+#define pgd_none(pgd) (0)
+#define pgd_bad(pgd) (0)
+#define pgd_present(pgd) (1)
+#define pgd_clear(pgdp) do { } while (0)
+#define set_pgd(pgd,pgdp) do { } while (0)
+
+#define page_pte_prot(page,prot) mk_pte(page, prot)
+#define page_pte(page) mk_pte(page, __pgprot(0))
+
+/* to find an entry in a page-table-directory */
+#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
+
+#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
+
+/* to find an entry in a kernel page-table-directory */
+#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
+
+/* Find an entry in the second-level page table.. */
+#define pmd_offset(dir, addr) ((pmd_t *)(dir))
+
+/* Find an entry in the third-level page table.. */
+#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
+
+static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{
+ const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
+ pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
+ return pte;
+}
+
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
+
+/* Encode and decode a swap entry.
+ *
+ * We support up to 32GB of swap on 4k machines
+ */
+#define __swp_type(x) (((x).val >> 2) & 0x7f)
+#define __swp_offset(x) ((x).val >> 9)
+#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
+#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
+#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
+
+/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
+/* FIXME: this is not correct */
+#define kern_addr_valid(addr) (1)
+
+#include <asm-generic/pgtable.h>
+
+/*
+ * We provide our own arch_get_unmapped_area to cope with VIPT caches.
+ */
+#define HAVE_ARCH_UNMAPPED_AREA
+
+/*
+ * remap a physical address `phys' of size `size' with page protection `prot'
+ * into virtual address `from'
+ */
+#define io_remap_page_range(vma,from,phys,size,prot) \
+ remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot)
+
+#define io_remap_pfn_range(vma,from,pfn,size,prot) \
+ remap_pfn_range(vma, from, pfn, size, prot)
+
+#define MK_IOSPACE_PFN(space, pfn) (pfn)
+#define GET_IOSPACE(pfn) 0
+#define GET_PFN(pfn) (pfn)
+
+#define pgtable_cache_init() do { } while (0)
+
+#endif /* !__ASSEMBLY__ */
+
+#endif /* _ASMARM_PGTABLE_H */