aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mm/mm-armv.c
blob: f5a87db8b498312635d41184a594a73f9bc609e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/*
 *  linux/arch/arm/mm/mm-armv.c
 *
 *  Copyright (C) 1998-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Page table sludge for ARM v3 and v4 processor architectures.
 */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>

#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>

#include <asm/mach/map.h>

#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
pgprot_t pgprot_kernel;

EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
	unsigned int	pte;
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
		.pte		= 0,
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
		.pte		= PTE_BUFFERABLE,
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
		.pte		= PTE_CACHEABLE,
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
	}
};

/*
 * These are useful for identifing cache coherency
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
static void __init early_cachepolicy(char **p)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			*p += len;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
	flush_cache_all();
	set_cr(cr_alignment);
}

static void __init early_nocache(char **__unused)
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}

static void __init early_nowrite(char **__unused)
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}

static void __init early_ecc(char **p)
{
	if (memcmp(*p, "on", 2) == 0) {
		ecc_mask = PMD_PROTECTION;
		*p += 2;
	} else if (memcmp(*p, "off", 3) == 0) {
		ecc_mask = 0;
		*p += 3;
	}
}

__early_param("nocache", early_nocache);
__early_param("nowb", early_nowrite);
__early_param("cachepolicy=", early_cachepolicy);
__early_param("ecc=", early_ecc);

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}

__setup("noalign", noalign_setup);

#define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)

/*
 * need to get a 16k page for level 1
 */
pgd_t *get_pgd_slow(struct mm_struct *mm)
{
	pgd_t *new_pgd, *init_pgd;
	pmd_t *new_pmd, *init_pmd;
	pte_t *new_pte, *init_pte;

	new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
	if (!new_pgd)
		goto no_pgd;

	memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));

	init_pgd = pgd_offset_k(0);

	if (!vectors_high()) {
		/*
		 * This lock is here just to satisfy pmd_alloc and pte_lock
		 */
		spin_lock(&mm->page_table_lock);

		/*
		 * On ARM, first page must always be allocated since it
		 * contains the machine vectors.
		 */
		new_pmd = pmd_alloc(mm, new_pgd, 0);
		if (!new_pmd)
			goto no_pmd;

		new_pte = pte_alloc_map(mm, new_pmd, 0);
		if (!new_pte)
			goto no_pte;

		init_pmd = pmd_offset(init_pgd, 0);
		init_pte = pte_offset_map_nested(init_pmd, 0);
		set_pte(new_pte, *init_pte);
		pte_unmap_nested(init_pte);
		pte_unmap(new_pte);

		spin_unlock(&mm->page_table_lock);
	}

	/*
	 * Copy over the kernel and IO PGD entries
	 */
	memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
		       (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));

	clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	return new_pgd;

no_pte:
	spin_unlock(&mm->page_table_lock);
	pmd_free(new_pmd);
	free_pages((unsigned long)new_pgd, 2);
	return NULL;

no_pmd:
	spin_unlock(&mm->page_table_lock);
	free_pages((unsigned long)new_pgd, 2);
	return NULL;

no_pgd:
	return NULL;
}

void free_pgd_slow(pgd_t *pgd)
{
	pmd_t *pmd;
	struct page *pte;

	if (!pgd)
		return;

	/* pgd is always present and good */
	pmd = (pmd_t *)pgd;
	if (pmd_none(*pmd))
		goto free;
	if (pmd_bad(*pmd)) {
		pmd_ERROR(*pmd);
		pmd_clear(pmd);
		goto free;
	}

	pte = pmd_page(*pmd);
	pmd_clear(pmd);
	dec_page_state(nr_page_table_pages);
	pte_free(pte);
	pmd_free(pmd);
free:
	free_pages((unsigned long) pgd, 2);
}

/*
 * Create a SECTION PGD between VIRT and PHYS in domain
 * DOMAIN with protection PROT.  This operates on half-
 * pgdir entry increments.
 */
static inline void
alloc_init_section(unsigned long virt, unsigned long phys, int prot)
{
	pmd_t *pmdp;

	pmdp = pmd_offset(pgd_offset_k(virt), virt);
	if (virt & (1 << 20))
		pmdp++;

	*pmdp = __pmd(phys | prot);
	flush_pmd_entry(pmdp);
}

/*
 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
 */
static inline void
alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
{
	int i;

	for (i = 0; i < 16; i += 1) {
		alloc_init_section(virt, phys & SUPERSECTION_MASK,
				   prot | PMD_SECT_SUPER);

		virt += (PGDIR_SIZE / 2);
		phys += (PGDIR_SIZE / 2);
	}
}

/*
 * Add a PAGE mapping between VIRT and PHYS in domain
 * DOMAIN with protection PROT.  Note that due to the
 * way we map the PTEs, we must allocate two PTE_SIZE'd
 * blocks - one for the Linux pte table, and one for
 * the hardware pte table.
 */
static inline void
alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = pmd_offset(pgd_offset_k(virt), virt);

	if (pmd_none(*pmdp)) {
		unsigned long pmdval;
		ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
					       sizeof(pte_t));

		pmdval = __pa(ptep) | prot_l1;
		pmdp[0] = __pmd(pmdval);
		pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
		flush_pmd_entry(pmdp);
	}
	ptep = pte_offset_kernel(pmdp, virt);

	set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
}

/*
 * Clear any PGD mapping.  On a two-level page table system,
 * the clearance is done by the middle-level functions (pmd)
 * rather than the top-level (pgd) functions.
 */
static inline void clear_mapping(unsigned long virt)
{
	pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
}

struct mem_types {
	unsigned int	prot_pte;
	unsigned int	prot_l1;
	unsigned int	prot_sect;
	unsigned int	domain;
};

static struct mem_types mem_types[] __initdata = {
	[MT_DEVICE] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_WRITE,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
				PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_IO,
	},
	[MT_CACHECLEAN] = {
		.prot_sect = PMD_TYPE_SECT,
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_USER | L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
		.prot_sect = PMD_TYPE_SECT,
		.domain    = DOMAIN_KERNEL,
	},
	[MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_WRITE,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
				PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
				PMD_SECT_TEX(1),
		.domain    = DOMAIN_IO,
	}
};

/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
	int cpu_arch = cpu_architecture();
	int i;

#if defined(CONFIG_CPU_DCACHE_DISABLE)
	if (cachepolicy > CPOLICY_BUFFERED)
		cachepolicy = CPOLICY_BUFFERED;
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
	if (cachepolicy > CPOLICY_WRITETHROUGH)
		cachepolicy = CPOLICY_WRITETHROUGH;
#endif
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}

	if (cpu_arch <= CPU_ARCH_ARMv5) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}

	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * bit 4 becomes XN which we must clear for the
		 * kernel memory mapping.
		 */
		mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
		mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
		/*
		 * Mark cache clean areas read only from SVC mode
		 * and no access from userspace.
		 */
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
	}

	cp = &cache_policies[cachepolicy];

	if (cpu_arch >= CPU_ARCH_ARMv5) {
		mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
		mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
	} else {
		mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
		mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
	}

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
		v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
		protection_map[i] = __pgprot(v);
	}

	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
				 L_PTE_DIRTY | L_PTE_WRITE |
				 L_PTE_EXEC | cp->pte);

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	unsigned long virt, length;
	int prot_sect, prot_l1, domain;
	pgprot_t prot_pte;
	long off;

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08lx at 0x%08lx in user region\n",
		       md->physical, md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       md->physical, md->virtual);
	}

	domain	  = mem_types[md->type].domain;
	prot_pte  = __pgprot(mem_types[md->type].prot_pte);
	prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
	prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);

	virt   = md->virtual;
	off    = md->physical - virt;
	length = md->length;

	if (mem_types[md->type].prot_l1 == 0 &&
	    (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
		       md->physical, md->virtual);
		return;
	}

	while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, prot_l1, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
		/* Align to supersection boundary */
		while ((virt & ~SUPERSECTION_MASK || (virt + off) &
			~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
			alloc_init_section(virt, virt + off, prot_sect);

			virt   += (PGDIR_SIZE / 2);
			length -= (PGDIR_SIZE / 2);
		}

		while (length >= SUPERSECTION_SIZE) {
			alloc_init_supersection(virt, virt + off, prot_sect);

			virt   += SUPERSECTION_SIZE;
			length -= SUPERSECTION_SIZE;
		}
	}

	/*
	 * A section mapping covers half a "pgdir" entry.
	 */
	while (length >= (PGDIR_SIZE / 2)) {
		alloc_init_section(virt, virt + off, prot_sect);

		virt   += (PGDIR_SIZE / 2);
		length -= (PGDIR_SIZE / 2);
	}

	while (length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, prot_l1, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}
}

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	unsigned long pmdval;
	pgd_t *pgd;
	pmd_t *pmd;
	int i;
	int cpu_arch = cpu_architecture();

	if (current->mm && current->mm->pgd)
		pgd = current->mm->pgd;
	else
		pgd = init_mm.pgd;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
		pmdval = (i << PGDIR_SHIFT) |
			 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
			 PMD_TYPE_SECT;
		if (cpu_arch <= CPU_ARCH_ARMv5)
			pmdval |= PMD_BIT4;
		pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT);
		pmd[0] = __pmd(pmdval);
		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
		flush_pmd_entry(pmd);
	}
}

extern void _stext, _etext;

/*
 * Setup initial mappings.  We use the page we allocated for zero page to hold
 * the mappings, which will get overwritten by the vectors in traps_init().
 * The mappings must be in virtual address order.
 */
void __init memtable_init(struct meminfo *mi)
{
	struct map_desc *init_maps, *p, *q;
	unsigned long address = 0;
	int i;

	build_mem_type_table();

	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);

#ifdef CONFIG_XIP_KERNEL
	p->physical   = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
	p->virtual    = (unsigned long)&_stext & PMD_MASK;
	p->length     = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
	p->type       = MT_ROM;
	p ++;
#endif

	for (i = 0; i < mi->nr_banks; i++) {
		if (mi->bank[i].size == 0)
			continue;

		p->physical   = mi->bank[i].start;
		p->virtual    = __phys_to_virt(p->physical);
		p->length     = mi->bank[i].size;
		p->type       = MT_MEMORY;
		p ++;
	}

#ifdef FLUSH_BASE
	p->physical   = FLUSH_BASE_PHYS;
	p->virtual    = FLUSH_BASE;
	p->length     = PGDIR_SIZE;
	p->type       = MT_CACHECLEAN;
	p ++;
#endif

#ifdef FLUSH_BASE_MINICACHE
	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
	p->virtual    = FLUSH_BASE_MINICACHE;
	p->length     = PGDIR_SIZE;
	p->type       = MT_MINICLEAN;
	p ++;
#endif

	/*
	 * Go through the initial mappings, but clear out any
	 * pgdir entries that are not in the description.
	 */
	q = init_maps;
	do {
		if (address < q->virtual || q == p) {
			clear_mapping(address);
			address += PGDIR_SIZE;
		} else {
			create_mapping(q);

			address = q->virtual + q->length;
			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;

			q ++;
		}
	} while (address != 0);

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	init_maps->physical   = virt_to_phys(init_maps);
	init_maps->virtual    = 0xffff0000;
	init_maps->length     = PAGE_SIZE;
	init_maps->type       = MT_HIGH_VECTORS;
	create_mapping(init_maps);

	if (!vectors_high()) {
		init_maps->virtual = 0;
		init_maps->type = MT_LOW_VECTORS;
		create_mapping(init_maps);
	}

	flush_cache_all();
	flush_tlb_all();
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

static inline void
free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *start_pg, *end_pg;
	unsigned long pg, pgend;

	/*
	 * Convert start_pfn/end_pfn to a struct page pointer.
	 */
	start_pg = pfn_to_page(start_pfn);
	end_pg = pfn_to_page(end_pfn);

	/*
	 * Convert to physical addresses, and
	 * round start upwards and end downwards.
	 */
	pg = PAGE_ALIGN(__pa(start_pg));
	pgend = __pa(end_pg) & PAGE_MASK;

	/*
	 * If there are free pages between these,
	 * free the section of the memmap array.
	 */
	if (pg < pgend)
		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
}

static inline void free_unused_memmap_node(int node, struct meminfo *mi)
{
	unsigned long bank_start, prev_bank_end = 0;
	unsigned int i;

	/*
	 * [FIXME] This relies on each bank being in address order.  This
	 * may not be the case, especially if the user has provided the
	 * information on the command line.
	 */
	for (i = 0; i < mi->nr_banks; i++) {
		if (mi->bank[i].size == 0 || mi->bank[i].node != node)
			continue;

		bank_start = mi->bank[i].start >> PAGE_SHIFT;
		if (bank_start < prev_bank_end) {
			printk(KERN_ERR "MEM: unordered memory banks.  "
				"Not freeing memmap.\n");
			break;
		}

		/*
		 * If we had a previous bank, and there is a space
		 * between the current bank and the previous, free it.
		 */
		if (prev_bank_end && prev_bank_end != bank_start)
			free_memmap(node, prev_bank_end, bank_start);

		prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
					   mi->bank[i].size) >> PAGE_SHIFT;
	}
}

/*
 * The mem_map array can get very big.  Free
 * the unused area of the memory map.
 */
void __init create_memmap_holes(struct meminfo *mi)
{
	int node;

	for_each_online_node(node)
		free_unused_memmap_node(node, mi);
}