aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/cavium-octeon/msi.c
blob: 964b03b75a8f29b775ea0b19d80c1d23763230dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2005-2007 Cavium Networks
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>

#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/cvmx-npei-defs.h>
#include <asm/octeon/cvmx-pexp-defs.h>

#include "pci-common.h"

/*
 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
 * in use.
 */
static uint64_t msi_free_irq_bitmask;

/*
 * Each bit in msi_multiple_irq_bitmask tells that the device using
 * this bit in msi_free_irq_bitmask is also using the next bit. This
 * is used so we can disable all of the MSI interrupts when a device
 * uses multiple.
 */
static uint64_t msi_multiple_irq_bitmask;

/*
 * This lock controls updates to msi_free_irq_bitmask and
 * msi_multiple_irq_bitmask.
 */
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);


/**
 * Called when a driver request MSI interrupts instead of the
 * legacy INT A-D. This routine will allocate multiple interrupts
 * for MSI devices that support them. A device can override this by
 * programming the MSI control bits [6:4] before calling
 * pci_enable_msi().
 *
 * @param dev    Device requesting MSI interrupts
 * @param desc   MSI descriptor
 *
 * Returns 0 on success.
 */
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
	struct msi_msg msg;
	uint16_t control;
	int configured_private_bits;
	int request_private_bits;
	int irq;
	int irq_step;
	uint64_t search_mask;

	/*
	 * Read the MSI config to figure out how many IRQs this device
	 * wants.  Most devices only want 1, which will give
	 * configured_private_bits and request_private_bits equal 0.
	 */
	pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
			     &control);

	/*
	 * If the number of private bits has been configured then use
	 * that value instead of the requested number. This gives the
	 * driver the chance to override the number of interrupts
	 * before calling pci_enable_msi().
	 */
	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
	if (configured_private_bits == 0) {
		/* Nothing is configured, so use the hardware requested size */
		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
	} else {
		/*
		 * Use the number of configured bits, assuming the
		 * driver wanted to override the hardware request
		 * value.
		 */
		request_private_bits = configured_private_bits;
	}

	/*
	 * The PCI 2.3 spec mandates that there are at most 32
	 * interrupts. If this device asks for more, only give it one.
	 */
	if (request_private_bits > 5)
		request_private_bits = 0;

try_only_one:
	/*
	 * The IRQs have to be aligned on a power of two based on the
	 * number being requested.
	 */
	irq_step = 1 << request_private_bits;

	/* Mask with one bit for each IRQ */
	search_mask = (1 << irq_step) - 1;

	/*
	 * We're going to search msi_free_irq_bitmask_lock for zero
	 * bits. This represents an MSI interrupt number that isn't in
	 * use.
	 */
	spin_lock(&msi_free_irq_bitmask_lock);
	for (irq = 0; irq < 64; irq += irq_step) {
		if ((msi_free_irq_bitmask & (search_mask << irq)) == 0) {
			msi_free_irq_bitmask |= search_mask << irq;
			msi_multiple_irq_bitmask |= (search_mask >> 1) << irq;
			break;
		}
	}
	spin_unlock(&msi_free_irq_bitmask_lock);

	/* Make sure the search for available interrupts didn't fail */
	if (irq >= 64) {
		if (request_private_bits) {
			pr_err("arch_setup_msi_irq: Unable to find %d free "
			       "interrupts, trying just one",
			       1 << request_private_bits);
			request_private_bits = 0;
			goto try_only_one;
		} else
			panic("arch_setup_msi_irq: Unable to find a free MSI "
			      "interrupt");
	}

	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
	irq += OCTEON_IRQ_MSI_BIT0;

	switch (octeon_dma_bar_type) {
	case OCTEON_DMA_BAR_TYPE_SMALL:
		/* When not using big bar, Bar 0 is based at 128MB */
		msg.address_lo =
			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
	case OCTEON_DMA_BAR_TYPE_BIG:
		/* When using big bar, Bar 0 is based at 0 */
		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
		break;
	case OCTEON_DMA_BAR_TYPE_PCIE:
		/* When using PCIe, Bar 0 is based at 0 */
		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
		break;
	default:
		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
	}
	msg.data = irq - OCTEON_IRQ_MSI_BIT0;

	/* Update the number of IRQs the device has available to it */
	control &= ~PCI_MSI_FLAGS_QSIZE;
	control |= request_private_bits << 4;
	pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
			      control);

	set_irq_msi(irq, desc);
	write_msi_msg(irq, &msg);
	return 0;
}


/**
 * Called when a device no longer needs its MSI interrupts. All
 * MSI interrupts for the device are freed.
 *
 * @irq:    The devices first irq number. There may be multple in sequence.
 */
void arch_teardown_msi_irq(unsigned int irq)
{
	int number_irqs;
	uint64_t bitmask;

	if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > OCTEON_IRQ_MSI_BIT63))
		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
		      "MSI interrupt (%d)", irq);
	irq -= OCTEON_IRQ_MSI_BIT0;

	/*
	 * Count the number of IRQs we need to free by looking at the
	 * msi_multiple_irq_bitmask. Each bit set means that the next
	 * IRQ is also owned by this device.
	 */
	number_irqs = 0;
	while ((irq+number_irqs < 64) &&
	       (msi_multiple_irq_bitmask & (1ull << (irq + number_irqs))))
		number_irqs++;
	number_irqs++;
	/* Mask with one bit for each IRQ */
	bitmask = (1 << number_irqs) - 1;
	/* Shift the mask to the correct bit location */
	bitmask <<= irq;
	if ((msi_free_irq_bitmask & bitmask) != bitmask)
		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
		      "interrupt (%d) not in use", irq);

	/* Checks are done, update the in use bitmask */
	spin_lock(&msi_free_irq_bitmask_lock);
	msi_free_irq_bitmask &= ~bitmask;
	msi_multiple_irq_bitmask &= ~bitmask;
	spin_unlock(&msi_free_irq_bitmask_lock);
}


/**
 * Called by the interrupt handling code when an MSI interrupt
 * occurs.
 *
 * @param cpl
 * @param dev_id
 *
 * @return
 */
static irqreturn_t octeon_msi_interrupt(int cpl, void *dev_id)
{
	uint64_t msi_bits;
	int irq;

	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE)
		msi_bits = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_RCV0);
	else
		msi_bits = cvmx_read_csr(CVMX_NPI_NPI_MSI_RCV);
	irq = fls64(msi_bits);
	if (irq) {
		irq += OCTEON_IRQ_MSI_BIT0 - 1;
		if (irq_desc[irq].action) {
			do_IRQ(irq);
			return IRQ_HANDLED;
		} else {
			pr_err("Spurious MSI interrupt %d\n", irq);
			if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
				/* These chips have PCIe */
				cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
					       1ull << (irq -
							OCTEON_IRQ_MSI_BIT0));
			} else {
				/* These chips have PCI */
				cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
					       1ull << (irq -
							OCTEON_IRQ_MSI_BIT0));
			}
		}
	}
	return IRQ_NONE;
}


/**
 * Initializes the MSI interrupt handling code
 *
 * @return
 */
int octeon_msi_initialize(void)
{
	int r;
	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
		r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
				IRQF_SHARED,
				"MSI[0:63]", octeon_msi_interrupt);
	} else if (octeon_is_pci_host()) {
		r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
				IRQF_SHARED,
				"MSI[0:15]", octeon_msi_interrupt);
		r += request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt,
				 IRQF_SHARED,
				 "MSI[16:31]", octeon_msi_interrupt);
		r += request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt,
				 IRQF_SHARED,
				 "MSI[32:47]", octeon_msi_interrupt);
		r += request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt,
				 IRQF_SHARED,
				 "MSI[48:63]", octeon_msi_interrupt);
	}
	return 0;
}

subsys_initcall(octeon_msi_initialize);