aboutsummaryrefslogtreecommitdiffstats
path: root/mm/rmap.c
blob: 89770bd25f31be71877813a292793fcc62e01116 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/*
 * mm/rmap.c - physical to virtual reverse mappings
 *
 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
 * Released under the General Public License (GPL).
 *
 * Simple, low overhead reverse mapping scheme.
 * Please try to keep this thing as modular as possible.
 *
 * Provides methods for unmapping each kind of mapped page:
 * the anon methods track anonymous pages, and
 * the file methods track pages belonging to an inode.
 *
 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
 */

/*
 * Lock ordering in mm:
 *
 * inode->i_sem	(while writing or truncating, not reading or faulting)
 *   inode->i_alloc_sem
 *
 * When a page fault occurs in writing from user to file, down_read
 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
 * taken together; in truncation, i_sem is taken outermost.
 *
 * mm->mmap_sem
 *   page->flags PG_locked (lock_page)
 *     mapping->i_mmap_lock
 *       anon_vma->lock
 *         mm->page_table_lock
 *           zone->lru_lock (in mark_page_accessed)
 *           swap_list_lock (in swap_free etc's swap_info_get)
 *             mmlist_lock (in mmput, drain_mmlist and others)
 *             swap_device_lock (in swap_duplicate, swap_info_get)
 *             mapping->private_lock (in __set_page_dirty_buffers)
 *             inode_lock (in set_page_dirty's __mark_inode_dirty)
 *               sb_lock (within inode_lock in fs/fs-writeback.c)
 *               mapping->tree_lock (widely used, in set_page_dirty,
 *                         in arch-dependent flush_dcache_mmap_lock,
 *                         within inode_lock in __sync_single_inode)
 */

#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rmap.h>
#include <linux/rcupdate.h>

#include <asm/tlbflush.h>

//#define RMAP_DEBUG /* can be enabled only for debugging */

kmem_cache_t *anon_vma_cachep;

static inline void validate_anon_vma(struct vm_area_struct *find_vma)
{
#ifdef RMAP_DEBUG
	struct anon_vma *anon_vma = find_vma->anon_vma;
	struct vm_area_struct *vma;
	unsigned int mapcount = 0;
	int found = 0;

	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
		mapcount++;
		BUG_ON(mapcount > 100000);
		if (vma == find_vma)
			found = 1;
	}
	BUG_ON(!found);
#endif
}

/* This must be called under the mmap_sem. */
int anon_vma_prepare(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	might_sleep();
	if (unlikely(!anon_vma)) {
		struct mm_struct *mm = vma->vm_mm;
		struct anon_vma *allocated, *locked;

		anon_vma = find_mergeable_anon_vma(vma);
		if (anon_vma) {
			allocated = NULL;
			locked = anon_vma;
			spin_lock(&locked->lock);
		} else {
			anon_vma = anon_vma_alloc();
			if (unlikely(!anon_vma))
				return -ENOMEM;
			allocated = anon_vma;
			locked = NULL;
		}

		/* page_table_lock to protect against threads */
		spin_lock(&mm->page_table_lock);
		if (likely(!vma->anon_vma)) {
			vma->anon_vma = anon_vma;
			list_add(&vma->anon_vma_node, &anon_vma->head);
			allocated = NULL;
		}
		spin_unlock(&mm->page_table_lock);

		if (locked)
			spin_unlock(&locked->lock);
		if (unlikely(allocated))
			anon_vma_free(allocated);
	}
	return 0;
}

void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
{
	BUG_ON(vma->anon_vma != next->anon_vma);
	list_del(&next->anon_vma_node);
}

void __anon_vma_link(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	if (anon_vma) {
		list_add(&vma->anon_vma_node, &anon_vma->head);
		validate_anon_vma(vma);
	}
}

void anon_vma_link(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	if (anon_vma) {
		spin_lock(&anon_vma->lock);
		list_add(&vma->anon_vma_node, &anon_vma->head);
		validate_anon_vma(vma);
		spin_unlock(&anon_vma->lock);
	}
}

void anon_vma_unlink(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;
	int empty;

	if (!anon_vma)
		return;

	spin_lock(&anon_vma->lock);
	validate_anon_vma(vma);
	list_del(&vma->anon_vma_node);

	/* We must garbage collect the anon_vma if it's empty */
	empty = list_empty(&anon_vma->head);
	spin_unlock(&anon_vma->lock);

	if (empty)
		anon_vma_free(anon_vma);
}

static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
{
	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
						SLAB_CTOR_CONSTRUCTOR) {
		struct anon_vma *anon_vma = data;

		spin_lock_init(&anon_vma->lock);
		INIT_LIST_HEAD(&anon_vma->head);
	}
}

void __init anon_vma_init(void)
{
	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
}

/*
 * Getting a lock on a stable anon_vma from a page off the LRU is
 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
 */
static struct anon_vma *page_lock_anon_vma(struct page *page)
{
	struct anon_vma *anon_vma = NULL;
	unsigned long anon_mapping;

	rcu_read_lock();
	anon_mapping = (unsigned long) page->mapping;
	if (!(anon_mapping & PAGE_MAPPING_ANON))
		goto out;
	if (!page_mapped(page))
		goto out;

	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
	spin_lock(&anon_vma->lock);
out:
	rcu_read_unlock();
	return anon_vma;
}

/*
 * At what user virtual address is page expected in vma?
 */
static inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long address;

	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
		/* page should be within any vma from prio_tree_next */
		BUG_ON(!PageAnon(page));
		return -EFAULT;
	}
	return address;
}

/*
 * At what user virtual address is page expected in vma? checking that the
 * page matches the vma: currently only used by unuse_process, on anon pages.
 */
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
	if (PageAnon(page)) {
		if ((void *)vma->anon_vma !=
		    (void *)page->mapping - PAGE_MAPPING_ANON)
			return -EFAULT;
	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
		if (vma->vm_file->f_mapping != page->mapping)
			return -EFAULT;
	} else
		return -EFAULT;
	return vma_address(page, vma);
}

/*
 * Check that @page is mapped at @address into @mm.
 *
 * On success returns with mapped pte and locked mm->page_table_lock.
 */
static pte_t *page_check_address(struct page *page, struct mm_struct *mm,
					unsigned long address)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	/*
	 * We need the page_table_lock to protect us from page faults,
	 * munmap, fork, etc...
	 */
	spin_lock(&mm->page_table_lock);
	pgd = pgd_offset(mm, address);
	if (likely(pgd_present(*pgd))) {
		pud = pud_offset(pgd, address);
		if (likely(pud_present(*pud))) {
			pmd = pmd_offset(pud, address);
			if (likely(pmd_present(*pmd))) {
				pte = pte_offset_map(pmd, address);
				if (likely(pte_present(*pte) &&
					   page_to_pfn(page) == pte_pfn(*pte)))
					return pte;
				pte_unmap(pte);
			}
		}
	}
	spin_unlock(&mm->page_table_lock);
	return ERR_PTR(-ENOENT);
}

/*
 * Subfunctions of page_referenced: page_referenced_one called
 * repeatedly from either page_referenced_anon or page_referenced_file.
 */
static int page_referenced_one(struct page *page,
	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	int referenced = 0;

	if (!get_mm_counter(mm, rss))
		goto out;
	address = vma_address(page, vma);
	if (address == -EFAULT)
		goto out;

	pte = page_check_address(page, mm, address);
	if (!IS_ERR(pte)) {
		if (ptep_clear_flush_young(vma, address, pte))
			referenced++;

		if (mm != current->mm && !ignore_token && has_swap_token(mm))
			referenced++;

		(*mapcount)--;
		pte_unmap(pte);
		spin_unlock(&mm->page_table_lock);
	}
out:
	return referenced;
}

static int page_referenced_anon(struct page *page, int ignore_token)
{
	unsigned int mapcount;
	struct anon_vma *anon_vma;
	struct vm_area_struct *vma;
	int referenced = 0;

	anon_vma = page_lock_anon_vma(page);
	if (!anon_vma)
		return referenced;

	mapcount = page_mapcount(page);
	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
		referenced += page_referenced_one(page, vma, &mapcount,
							ignore_token);
		if (!mapcount)
			break;
	}
	spin_unlock(&anon_vma->lock);
	return referenced;
}

/**
 * page_referenced_file - referenced check for object-based rmap
 * @page: the page we're checking references on.
 *
 * For an object-based mapped page, find all the places it is mapped and
 * check/clear the referenced flag.  This is done by following the page->mapping
 * pointer, then walking the chain of vmas it holds.  It returns the number
 * of references it found.
 *
 * This function is only called from page_referenced for object-based pages.
 */
static int page_referenced_file(struct page *page, int ignore_token)
{
	unsigned int mapcount;
	struct address_space *mapping = page->mapping;
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	int referenced = 0;

	/*
	 * The caller's checks on page->mapping and !PageAnon have made
	 * sure that this is a file page: the check for page->mapping
	 * excludes the case just before it gets set on an anon page.
	 */
	BUG_ON(PageAnon(page));

	/*
	 * The page lock not only makes sure that page->mapping cannot
	 * suddenly be NULLified by truncation, it makes sure that the
	 * structure at mapping cannot be freed and reused yet,
	 * so we can safely take mapping->i_mmap_lock.
	 */
	BUG_ON(!PageLocked(page));

	spin_lock(&mapping->i_mmap_lock);

	/*
	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
	 * is more likely to be accurate if we note it after spinning.
	 */
	mapcount = page_mapcount(page);

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
				  == (VM_LOCKED|VM_MAYSHARE)) {
			referenced++;
			break;
		}
		referenced += page_referenced_one(page, vma, &mapcount,
							ignore_token);
		if (!mapcount)
			break;
	}

	spin_unlock(&mapping->i_mmap_lock);
	return referenced;
}

/**
 * page_referenced - test if the page was referenced
 * @page: the page to test
 * @is_locked: caller holds lock on the page
 *
 * Quick test_and_clear_referenced for all mappings to a page,
 * returns the number of ptes which referenced the page.
 */
int page_referenced(struct page *page, int is_locked, int ignore_token)
{
	int referenced = 0;

	if (!swap_token_default_timeout)
		ignore_token = 1;

	if (page_test_and_clear_young(page))
		referenced++;

	if (TestClearPageReferenced(page))
		referenced++;

	if (page_mapped(page) && page->mapping) {
		if (PageAnon(page))
			referenced += page_referenced_anon(page, ignore_token);
		else if (is_locked)
			referenced += page_referenced_file(page, ignore_token);
		else if (TestSetPageLocked(page))
			referenced++;
		else {
			if (page->mapping)
				referenced += page_referenced_file(page,
								ignore_token);
			unlock_page(page);
		}
	}
	return referenced;
}

/**
 * page_add_anon_rmap - add pte mapping to an anonymous page
 * @page:	the page to add the mapping to
 * @vma:	the vm area in which the mapping is added
 * @address:	the user virtual address mapped
 *
 * The caller needs to hold the mm->page_table_lock.
 */
void page_add_anon_rmap(struct page *page,
	struct vm_area_struct *vma, unsigned long address)
{
	struct anon_vma *anon_vma = vma->anon_vma;
	pgoff_t index;

	BUG_ON(PageReserved(page));
	BUG_ON(!anon_vma);

	inc_mm_counter(vma->vm_mm, anon_rss);

	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
	index = (address - vma->vm_start) >> PAGE_SHIFT;
	index += vma->vm_pgoff;
	index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;

	if (atomic_inc_and_test(&page->_mapcount)) {
		page->index = index;
		page->mapping = (struct address_space *) anon_vma;
		inc_page_state(nr_mapped);
	}
	/* else checking page index and mapping is racy */
}

/**
 * page_add_file_rmap - add pte mapping to a file page
 * @page: the page to add the mapping to
 *
 * The caller needs to hold the mm->page_table_lock.
 */
void page_add_file_rmap(struct page *page)
{
	BUG_ON(PageAnon(page));
	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
		return;

	if (atomic_inc_and_test(&page->_mapcount))
		inc_page_state(nr_mapped);
}

/**
 * page_remove_rmap - take down pte mapping from a page
 * @page: page to remove mapping from
 *
 * Caller needs to hold the mm->page_table_lock.
 */
void page_remove_rmap(struct page *page)
{
	BUG_ON(PageReserved(page));

	if (atomic_add_negative(-1, &page->_mapcount)) {
		BUG_ON(page_mapcount(page) < 0);
		/*
		 * It would be tidy to reset the PageAnon mapping here,
		 * but that might overwrite a racing page_add_anon_rmap
		 * which increments mapcount after us but sets mapping
		 * before us: so leave the reset to free_hot_cold_page,
		 * and remember that it's only reliable while mapped.
		 * Leaving it set also helps swapoff to reinstate ptes
		 * faster for those pages still in swapcache.
		 */
		if (page_test_and_clear_dirty(page))
			set_page_dirty(page);
		dec_page_state(nr_mapped);
	}
}

/*
 * Subfunctions of try_to_unmap: try_to_unmap_one called
 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
 */
static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	pte_t pteval;
	int ret = SWAP_AGAIN;

	if (!get_mm_counter(mm, rss))
		goto out;
	address = vma_address(page, vma);
	if (address == -EFAULT)
		goto out;

	pte = page_check_address(page, mm, address);
	if (IS_ERR(pte))
		goto out;

	/*
	 * If the page is mlock()d, we cannot swap it out.
	 * If it's recently referenced (perhaps page_referenced
	 * skipped over this mm) then we should reactivate it.
	 */
	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
			ptep_clear_flush_young(vma, address, pte)) {
		ret = SWAP_FAIL;
		goto out_unmap;
	}

	/* Nuke the page table entry. */
	flush_cache_page(vma, address, page_to_pfn(page));
	pteval = ptep_clear_flush(vma, address, pte);

	/* Move the dirty bit to the physical page now the pte is gone. */
	if (pte_dirty(pteval))
		set_page_dirty(page);

	if (PageAnon(page)) {
		swp_entry_t entry = { .val = page->private };
		/*
		 * Store the swap location in the pte.
		 * See handle_pte_fault() ...
		 */
		BUG_ON(!PageSwapCache(page));
		swap_duplicate(entry);
		if (list_empty(&mm->mmlist)) {
			spin_lock(&mmlist_lock);
			list_add(&mm->mmlist, &init_mm.mmlist);
			spin_unlock(&mmlist_lock);
		}
		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
		BUG_ON(pte_file(*pte));
		dec_mm_counter(mm, anon_rss);
	}

	dec_mm_counter(mm, rss);
	page_remove_rmap(page);
	page_cache_release(page);

out_unmap:
	pte_unmap(pte);
	spin_unlock(&mm->page_table_lock);
out:
	return ret;
}

/*
 * objrmap doesn't work for nonlinear VMAs because the assumption that
 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
 * Consequently, given a particular page and its ->index, we cannot locate the
 * ptes which are mapping that page without an exhaustive linear search.
 *
 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
 * maps the file to which the target page belongs.  The ->vm_private_data field
 * holds the current cursor into that scan.  Successive searches will circulate
 * around the vma's virtual address space.
 *
 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
 * more scanning pressure is placed against them as well.   Eventually pages
 * will become fully unmapped and are eligible for eviction.
 *
 * For very sparsely populated VMAs this is a little inefficient - chances are
 * there there won't be many ptes located within the scan cluster.  In this case
 * maybe we could scan further - to the end of the pte page, perhaps.
 */
#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))

static void try_to_unmap_cluster(unsigned long cursor,
	unsigned int *mapcount, struct vm_area_struct *vma)
{
	struct mm_struct *mm = vma->vm_mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte, *original_pte;
	pte_t pteval;
	struct page *page;
	unsigned long address;
	unsigned long end;
	unsigned long pfn;

	/*
	 * We need the page_table_lock to protect us from page faults,
	 * munmap, fork, etc...
	 */
	spin_lock(&mm->page_table_lock);

	address = (vma->vm_start + cursor) & CLUSTER_MASK;
	end = address + CLUSTER_SIZE;
	if (address < vma->vm_start)
		address = vma->vm_start;
	if (end > vma->vm_end)
		end = vma->vm_end;

	pgd = pgd_offset(mm, address);
	if (!pgd_present(*pgd))
		goto out_unlock;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		goto out_unlock;

	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		goto out_unlock;

	for (original_pte = pte = pte_offset_map(pmd, address);
			address < end; pte++, address += PAGE_SIZE) {

		if (!pte_present(*pte))
			continue;

		pfn = pte_pfn(*pte);
		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		BUG_ON(PageAnon(page));
		if (PageReserved(page))
			continue;

		if (ptep_clear_flush_young(vma, address, pte))
			continue;

		/* Nuke the page table entry. */
		flush_cache_page(vma, address, pfn);
		pteval = ptep_clear_flush(vma, address, pte);

		/* If nonlinear, store the file page offset in the pte. */
		if (page->index != linear_page_index(vma, address))
			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));

		/* Move the dirty bit to the physical page now the pte is gone. */
		if (pte_dirty(pteval))
			set_page_dirty(page);

		page_remove_rmap(page);
		page_cache_release(page);
		dec_mm_counter(mm, rss);
		(*mapcount)--;
	}

	pte_unmap(original_pte);
out_unlock:
	spin_unlock(&mm->page_table_lock);
}

static int try_to_unmap_anon(struct page *page)
{
	struct anon_vma *anon_vma;
	struct vm_area_struct *vma;
	int ret = SWAP_AGAIN;

	anon_vma = page_lock_anon_vma(page);
	if (!anon_vma)
		return ret;

	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
		ret = try_to_unmap_one(page, vma);
		if (ret == SWAP_FAIL || !page_mapped(page))
			break;
	}
	spin_unlock(&anon_vma->lock);
	return ret;
}

/**
 * try_to_unmap_file - unmap file page using the object-based rmap method
 * @page: the page to unmap
 *
 * Find all the mappings of a page using the mapping pointer and the vma chains
 * contained in the address_space struct it points to.
 *
 * This function is only called from try_to_unmap for object-based pages.
 */
static int try_to_unmap_file(struct page *page)
{
	struct address_space *mapping = page->mapping;
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	int ret = SWAP_AGAIN;
	unsigned long cursor;
	unsigned long max_nl_cursor = 0;
	unsigned long max_nl_size = 0;
	unsigned int mapcount;

	spin_lock(&mapping->i_mmap_lock);
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		ret = try_to_unmap_one(page, vma);
		if (ret == SWAP_FAIL || !page_mapped(page))
			goto out;
	}

	if (list_empty(&mapping->i_mmap_nonlinear))
		goto out;

	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
						shared.vm_set.list) {
		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
			continue;
		cursor = (unsigned long) vma->vm_private_data;
		if (cursor > max_nl_cursor)
			max_nl_cursor = cursor;
		cursor = vma->vm_end - vma->vm_start;
		if (cursor > max_nl_size)
			max_nl_size = cursor;
	}

	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
		ret = SWAP_FAIL;
		goto out;
	}

	/*
	 * We don't try to search for this page in the nonlinear vmas,
	 * and page_referenced wouldn't have found it anyway.  Instead
	 * just walk the nonlinear vmas trying to age and unmap some.
	 * The mapcount of the page we came in with is irrelevant,
	 * but even so use it as a guide to how hard we should try?
	 */
	mapcount = page_mapcount(page);
	if (!mapcount)
		goto out;
	cond_resched_lock(&mapping->i_mmap_lock);

	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
	if (max_nl_cursor == 0)
		max_nl_cursor = CLUSTER_SIZE;

	do {
		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
						shared.vm_set.list) {
			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
				continue;
			cursor = (unsigned long) vma->vm_private_data;
			while (get_mm_counter(vma->vm_mm, rss) &&
				cursor < max_nl_cursor &&
				cursor < vma->vm_end - vma->vm_start) {
				try_to_unmap_cluster(cursor, &mapcount, vma);
				cursor += CLUSTER_SIZE;
				vma->vm_private_data = (void *) cursor;
				if ((int)mapcount <= 0)
					goto out;
			}
			vma->vm_private_data = (void *) max_nl_cursor;
		}
		cond_resched_lock(&mapping->i_mmap_lock);
		max_nl_cursor += CLUSTER_SIZE;
	} while (max_nl_cursor <= max_nl_size);

	/*
	 * Don't loop forever (perhaps all the remaining pages are
	 * in locked vmas).  Reset cursor on all unreserved nonlinear
	 * vmas, now forgetting on which ones it had fallen behind.
	 */
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
						shared.vm_set.list) {
		if (!(vma->vm_flags & VM_RESERVED))
			vma->vm_private_data = NULL;
	}
out:
	spin_unlock(&mapping->i_mmap_lock);
	return ret;
}

/**
 * try_to_unmap - try to remove all page table mappings to a page
 * @page: the page to get unmapped
 *
 * Tries to remove all the page table entries which are mapping this
 * page, used in the pageout path.  Caller must hold the page lock.
 * Return values are:
 *
 * SWAP_SUCCESS	- we succeeded in removing all mappings
 * SWAP_AGAIN	- we missed a mapping, try again later
 * SWAP_FAIL	- the page is unswappable
 */
int try_to_unmap(struct page *page)
{
	int ret;

	BUG_ON(PageReserved(page));
	BUG_ON(!PageLocked(page));

	if (PageAnon(page))
		ret = try_to_unmap_anon(page);
	else
		ret = try_to_unmap_file(page);

	if (!page_mapped(page))
		ret = SWAP_SUCCESS;
	return ret;
}