aboutsummaryrefslogtreecommitdiffstats
path: root/sound/pci/rme9652/hdspm.c
blob: 0b0293fb8f09b357670e8c73d0d534b85d9a6899 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
/*
 *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
 *
 *      Copyright (c) 2003 Winfried Ritsch (IEM)
 *      code based on hdsp.c   Paul Davis
 *                             Marcus Andersson
 *                             Thomas Charbonnel
 *      Modified 2006-06-01 for AES32 support by Remy Bruno
 *                                               <remy.bruno@trinnov.com>
 *
 *      Modified 2009-04-13 for proper metering by Florian Faber
 *                                               <faber@faberman.de>
 *
 *      Modified 2009-04-14 for native float support by Florian Faber
 *                                               <faber@faberman.de>
 *
 *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
 *                                               <faber@faberman.de>
 *
 *      Modified 2009-04-30 added hw serial number support by Florian Faber
 *
 *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
 *
 *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/math64.h>
#include <asm/io.h>

#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/info.h>
#include <sound/asoundef.h>
#include <sound/rawmidi.h>
#include <sound/hwdep.h>
#include <sound/initval.h>

#include <sound/hdspm.h>

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");

module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");

module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");


MODULE_AUTHOR
(
	"Winfried Ritsch <ritsch_AT_iem.at>, "
	"Paul Davis <paul@linuxaudiosystems.com>, "
	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
	"Remy Bruno <remy.bruno@trinnov.com>, "
	"Florian Faber <faberman@linuxproaudio.org>, "
	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
);
MODULE_DESCRIPTION("RME HDSPM");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");

/* --- Write registers. ---
  These are defined as byte-offsets from the iobase value.  */

#define HDSPM_WR_SETTINGS             0
#define HDSPM_outputBufferAddress    32
#define HDSPM_inputBufferAddress     36
#define HDSPM_controlRegister	     64
#define HDSPM_interruptConfirmation  96
#define HDSPM_control2Reg	     256  /* not in specs ???????? */
#define HDSPM_freqReg                256  /* for AES32 */
#define HDSPM_midiDataOut0	     352  /* just believe in old code */
#define HDSPM_midiDataOut1	     356
#define HDSPM_eeprom_wr		     384  /* for AES32 */

/* DMA enable for 64 channels, only Bit 0 is relevant */
#define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
#define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */

/* 16 page addresses for each of the 64 channels DMA buffer in and out
   (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
#define HDSPM_pageAddressBufferOut       8192
#define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)

#define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */

#define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */

/* --- Read registers. ---
   These are defined as byte-offsets from the iobase value */
#define HDSPM_statusRegister    0
/*#define HDSPM_statusRegister2  96 */
/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
 * offset 192, for AES32 *and* MADI
 * => need to check that offset 192 is working on MADI */
#define HDSPM_statusRegister2  192
#define HDSPM_timecodeRegister 128

/* AIO, RayDAT */
#define HDSPM_RD_STATUS_0 0
#define HDSPM_RD_STATUS_1 64
#define HDSPM_RD_STATUS_2 128
#define HDSPM_RD_STATUS_3 192

#define HDSPM_RD_TCO           256
#define HDSPM_RD_PLL_FREQ      512
#define HDSPM_WR_TCO           128

#define HDSPM_TCO1_TCO_lock			0x00000001
#define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
#define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
#define HDSPM_TCO1_LTC_Input_valid		0x00000008
#define HDSPM_TCO1_WCK_Input_valid		0x00000010
#define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
#define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040

#define HDSPM_TCO1_set_TC			0x00000100
#define HDSPM_TCO1_set_drop_frame_flag		0x00000200
#define HDSPM_TCO1_LTC_Format_LSB		0x00000400
#define HDSPM_TCO1_LTC_Format_MSB		0x00000800

#define HDSPM_TCO2_TC_run			0x00010000
#define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
#define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
#define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
#define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
#define HDSPM_TCO2_set_jam_sync			0x00200000
#define HDSPM_TCO2_set_flywheel			0x00400000

#define HDSPM_TCO2_set_01_4			0x01000000
#define HDSPM_TCO2_set_pull_down		0x02000000
#define HDSPM_TCO2_set_pull_up			0x04000000
#define HDSPM_TCO2_set_freq			0x08000000
#define HDSPM_TCO2_set_term_75R			0x10000000
#define HDSPM_TCO2_set_input_LSB		0x20000000
#define HDSPM_TCO2_set_input_MSB		0x40000000
#define HDSPM_TCO2_set_freq_from_app		0x80000000


#define HDSPM_midiDataOut0    352
#define HDSPM_midiDataOut1    356
#define HDSPM_midiDataOut2    368

#define HDSPM_midiDataIn0     360
#define HDSPM_midiDataIn1     364
#define HDSPM_midiDataIn2     372
#define HDSPM_midiDataIn3     376

/* status is data bytes in MIDI-FIFO (0-128) */
#define HDSPM_midiStatusOut0  384
#define HDSPM_midiStatusOut1  388
#define HDSPM_midiStatusOut2  400

#define HDSPM_midiStatusIn0   392
#define HDSPM_midiStatusIn1   396
#define HDSPM_midiStatusIn2   404
#define HDSPM_midiStatusIn3   408


/* the meters are regular i/o-mapped registers, but offset
   considerably from the rest. the peak registers are reset
   when read; the least-significant 4 bits are full-scale counters;
   the actual peak value is in the most-significant 24 bits.
*/

#define HDSPM_MADI_INPUT_PEAK		4096
#define HDSPM_MADI_PLAYBACK_PEAK	4352
#define HDSPM_MADI_OUTPUT_PEAK		4608

#define HDSPM_MADI_INPUT_RMS_L		6144
#define HDSPM_MADI_PLAYBACK_RMS_L	6400
#define HDSPM_MADI_OUTPUT_RMS_L		6656

#define HDSPM_MADI_INPUT_RMS_H		7168
#define HDSPM_MADI_PLAYBACK_RMS_H	7424
#define HDSPM_MADI_OUTPUT_RMS_H		7680

/* --- Control Register bits --------- */
#define HDSPM_Start                (1<<0) /* start engine */

#define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
#define HDSPM_Latency1             (1<<2) /* where n is defined */
#define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */

#define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
#define HDSPM_c0Master		0x1    /* Master clock bit in settings
					  register [RayDAT, AIO] */

#define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */

#define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
#define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
#define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
#define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */

#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
#define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
				     56channelMODE=0 */ /* MADI ONLY*/
#define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */

#define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
                                     0=off, 1=on  */ /* MADI ONLY */
#define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */

#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
				    * -- MADI ONLY
				    */
#define HDSPM_InputSelect1 (1<<15) /* should be 0 */

#define HDSPM_SyncRef2     (1<<13)
#define HDSPM_SyncRef3     (1<<25)

#define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
#define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
                                      AES additional bits in
				      lower 5 Audiodatabits ??? */
#define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
#define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */

#define HDSPM_Midi0InterruptEnable 0x0400000
#define HDSPM_Midi1InterruptEnable 0x0800000
#define HDSPM_Midi2InterruptEnable 0x0200000
#define HDSPM_Midi3InterruptEnable 0x4000000

#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
#define HDSPe_FLOAT_FORMAT         0x2000000

#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
#define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */

#define HDSPM_wclk_sel (1<<30)

/* --- bit helper defines */
#define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
#define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
#define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
#define HDSPM_InputOptical   0
#define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
#define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
			      HDSPM_SyncRef2|HDSPM_SyncRef3)

#define HDSPM_c0_SyncRef0      0x2
#define HDSPM_c0_SyncRef1      0x4
#define HDSPM_c0_SyncRef2      0x8
#define HDSPM_c0_SyncRef3      0x10
#define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)

#define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
#define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
#define HDSPM_SYNC_FROM_TCO     2
#define HDSPM_SYNC_FROM_SYNC_IN 3

#define HDSPM_Frequency32KHz    HDSPM_Frequency0
#define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
#define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
#define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
#define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
				HDSPM_Frequency0)
#define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
#define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
#define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
				 HDSPM_Frequency0)


/* Synccheck Status */
#define HDSPM_SYNC_CHECK_NO_LOCK 0
#define HDSPM_SYNC_CHECK_LOCK    1
#define HDSPM_SYNC_CHECK_SYNC	 2

/* AutoSync References - used by "autosync_ref" control switch */
#define HDSPM_AUTOSYNC_FROM_WORD      0
#define HDSPM_AUTOSYNC_FROM_MADI      1
#define HDSPM_AUTOSYNC_FROM_TCO       2
#define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
#define HDSPM_AUTOSYNC_FROM_NONE      4

/* Possible sources of MADI input */
#define HDSPM_OPTICAL 0		/* optical   */
#define HDSPM_COAXIAL 1		/* BNC */

#define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
#define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))

#define hdspm_encode_in(x) (((x)&0x3)<<14)
#define hdspm_decode_in(x) (((x)>>14)&0x3)

/* --- control2 register bits --- */
#define HDSPM_TMS             (1<<0)
#define HDSPM_TCK             (1<<1)
#define HDSPM_TDI             (1<<2)
#define HDSPM_JTAG            (1<<3)
#define HDSPM_PWDN            (1<<4)
#define HDSPM_PROGRAM	      (1<<5)
#define HDSPM_CONFIG_MODE_0   (1<<6)
#define HDSPM_CONFIG_MODE_1   (1<<7)
/*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
#define HDSPM_BIGENDIAN_MODE  (1<<9)
#define HDSPM_RD_MULTIPLE     (1<<10)

/* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
     that do not conflict with specific bits for AES32 seem to be valid also
     for the AES32
 */
#define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
#define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
#define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
					 * (like inp0)
					 */

#define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
#define HDSPM_madiSync          (1<<18) /* MADI is in sync */

#define HDSPM_tcoLock    0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
#define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status */

#define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
#define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */

#define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
			/* since 64byte accurate, last 6 bits are not used */



#define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */

#define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
#define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
#define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
#define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */

#define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
					 * Interrupt
					 */
#define HDSPM_tco_detect         0x08000000
#define HDSPM_tco_lock	         0x20000000

#define HDSPM_s2_tco_detect      0x00000040
#define HDSPM_s2_AEBO_D          0x00000080
#define HDSPM_s2_AEBI_D          0x00000100


#define HDSPM_midi0IRQPending    0x40000000
#define HDSPM_midi1IRQPending    0x80000000
#define HDSPM_midi2IRQPending    0x20000000
#define HDSPM_midi2IRQPendingAES 0x00000020
#define HDSPM_midi3IRQPending    0x00200000

/* --- status bit helpers */
#define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
			     HDSPM_madiFreq2|HDSPM_madiFreq3)
#define HDSPM_madiFreq32    (HDSPM_madiFreq0)
#define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
#define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
#define HDSPM_madiFreq64    (HDSPM_madiFreq2)
#define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
#define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
#define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
#define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)

/* Status2 Register bits */ /* MADI ONLY */

#define HDSPM_version0 (1<<0)	/* not realy defined but I guess */
#define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
#define HDSPM_version2 (1<<2)

#define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
#define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */

#define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
#define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
#define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, */
/* missing Bit   for               111=128, 1000=176.4, 1001=192 */

#define HDSPM_SyncRef0 0x10000  /* Sync Reference */
#define HDSPM_SyncRef1 0x20000

#define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
#define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
#define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */

#define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)

#define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
#define HDSPM_wcFreq32    (HDSPM_wc_freq0)
#define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
#define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
#define HDSPM_wcFreq64    (HDSPM_wc_freq2)
#define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
#define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)

#define HDSPM_status1_F_0 0x0400000
#define HDSPM_status1_F_1 0x0800000
#define HDSPM_status1_F_2 0x1000000
#define HDSPM_status1_F_3 0x2000000
#define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)


#define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
				    HDSPM_SelSyncRef2)
#define HDSPM_SelSyncRef_WORD      0
#define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
#define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
#define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
#define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
				    HDSPM_SelSyncRef2)

/*
   For AES32, bits for status, status2 and timecode are different
*/
/* status */
#define HDSPM_AES32_wcLock	0x0200000
#define HDSPM_AES32_wcFreq_bit  22
/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
  HDSPM_bit2freq */
#define HDSPM_AES32_syncref_bit  16
/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */

#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
#define HDSPM_AES32_AUTOSYNC_FROM_NONE 9

/*  status2 */
/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
#define HDSPM_LockAES   0x80
#define HDSPM_LockAES1  0x80
#define HDSPM_LockAES2  0x40
#define HDSPM_LockAES3  0x20
#define HDSPM_LockAES4  0x10
#define HDSPM_LockAES5  0x8
#define HDSPM_LockAES6  0x4
#define HDSPM_LockAES7  0x2
#define HDSPM_LockAES8  0x1
/*
   Timecode
   After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
   AES i+1
 bits 3210
      0001  32kHz
      0010  44.1kHz
      0011  48kHz
      0100  64kHz
      0101  88.2kHz
      0110  96kHz
      0111  128kHz
      1000  176.4kHz
      1001  192kHz
  NB: Timecode register doesn't seem to work on AES32 card revision 230
*/

/* Mixer Values */
#define UNITY_GAIN          32768	/* = 65536/2 */
#define MINUS_INFINITY_GAIN 0

/* Number of channels for different Speed Modes */
#define MADI_SS_CHANNELS       64
#define MADI_DS_CHANNELS       32
#define MADI_QS_CHANNELS       16

#define RAYDAT_SS_CHANNELS     36
#define RAYDAT_DS_CHANNELS     20
#define RAYDAT_QS_CHANNELS     12

#define AIO_IN_SS_CHANNELS        14
#define AIO_IN_DS_CHANNELS        10
#define AIO_IN_QS_CHANNELS        8
#define AIO_OUT_SS_CHANNELS        16
#define AIO_OUT_DS_CHANNELS        12
#define AIO_OUT_QS_CHANNELS        10

/* the size of a substream (1 mono data stream) */
#define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
#define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)

/* the size of the area we need to allocate for DMA transfers. the
   size is the same regardless of the number of channels, and
   also the latency to use.
   for one direction !!!
*/
#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)

/* revisions >= 230 indicate AES32 card */
#define HDSPM_MADI_REV		210
#define HDSPM_RAYDAT_REV	211
#define HDSPM_AIO_REV		212
#define HDSPM_MADIFACE_REV	213
#define HDSPM_AES_REV		240

/* speed factor modes */
#define HDSPM_SPEED_SINGLE 0
#define HDSPM_SPEED_DOUBLE 1
#define HDSPM_SPEED_QUAD   2

/* names for speed modes */
static char *hdspm_speed_names[] = { "single", "double", "quad" };

static char *texts_autosync_aes_tco[] = { "Word Clock",
					  "AES1", "AES2", "AES3", "AES4",
					  "AES5", "AES6", "AES7", "AES8",
					  "TCO" };
static char *texts_autosync_aes[] = { "Word Clock",
				      "AES1", "AES2", "AES3", "AES4",
				      "AES5", "AES6", "AES7", "AES8" };
static char *texts_autosync_madi_tco[] = { "Word Clock",
					   "MADI", "TCO", "Sync In" };
static char *texts_autosync_madi[] = { "Word Clock",
				       "MADI", "Sync In" };

static char *texts_autosync_raydat_tco[] = {
	"Word Clock",
	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
	"AES", "SPDIF", "TCO", "Sync In"
};
static char *texts_autosync_raydat[] = {
	"Word Clock",
	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
	"AES", "SPDIF", "Sync In"
};
static char *texts_autosync_aio_tco[] = {
	"Word Clock",
	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
};
static char *texts_autosync_aio[] = { "Word Clock",
				      "ADAT", "AES", "SPDIF", "Sync In" };

static char *texts_freq[] = {
	"No Lock",
	"32 kHz",
	"44.1 kHz",
	"48 kHz",
	"64 kHz",
	"88.2 kHz",
	"96 kHz",
	"128 kHz",
	"176.4 kHz",
	"192 kHz"
};

static char *texts_ports_madi[] = {
	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
};


static char *texts_ports_raydat_ss[] = {
	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
	"ADAT4.7", "ADAT4.8",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R"
};

static char *texts_ports_raydat_ds[] = {
	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R"
};

static char *texts_ports_raydat_qs[] = {
	"ADAT1.1", "ADAT1.2",
	"ADAT2.1", "ADAT2.2",
	"ADAT3.1", "ADAT3.2",
	"ADAT4.1", "ADAT4.2",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R"
};


static char *texts_ports_aio_in_ss[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
	"ADAT.7", "ADAT.8"
};

static char *texts_ports_aio_out_ss[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
	"ADAT.7", "ADAT.8",
	"Phone.L", "Phone.R"
};

static char *texts_ports_aio_in_ds[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
};

static char *texts_ports_aio_out_ds[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
	"Phone.L", "Phone.R"
};

static char *texts_ports_aio_in_qs[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
};

static char *texts_ports_aio_out_qs[] = {
	"Analogue.L", "Analogue.R",
	"AES.L", "AES.R",
	"SPDIF.L", "SPDIF.R",
	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
	"Phone.L", "Phone.R"
};

static char *texts_ports_aes32[] = {
	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
	"AES.15", "AES.16"
};

/* These tables map the ALSA channels 1..N to the channels that we
   need to use in order to find the relevant channel buffer. RME
   refers to this kind of mapping as between "the ADAT channel and
   the DMA channel." We index it using the logical audio channel,
   and the value is the DMA channel (i.e. channel buffer number)
   where the data for that channel can be read/written from/to.
*/

static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
	0, 1, 2, 3, 4, 5, 6, 7,
	8, 9, 10, 11, 12, 13, 14, 15,
	16, 17, 18, 19, 20, 21, 22, 23,
	24, 25, 26, 27, 28, 29, 30, 31,
	32, 33, 34, 35, 36, 37, 38, 39,
	40, 41, 42, 43, 44, 45, 46, 47,
	48, 49, 50, 51, 52, 53, 54, 55,
	56, 57, 58, 59, 60, 61, 62, 63
};

static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
	0, 1,			/* AES */
	2, 3,			/* SPDIF */
	-1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
};

static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
	4, 5, 6, 7,		/* ADAT 1 */
	8, 9, 10, 11,		/* ADAT 2 */
	12, 13, 14, 15,		/* ADAT 3 */
	16, 17, 18, 19,		/* ADAT 4 */
	0, 1,			/* AES */
	2, 3,			/* SPDIF */
	-1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
};

static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
	4, 5,			/* ADAT 1 */
	6, 7,			/* ADAT 2 */
	8, 9,			/* ADAT 3 */
	10, 11,			/* ADAT 4 */
	0, 1,			/* AES */
	2, 3,			/* SPDIF */
	-1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
};

static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line in */
	8, 9,			/* aes in, */
	10, 11,			/* spdif in */
	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
	-1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
};

static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line out */
	8, 9,			/* aes out */
	10, 11,			/* spdif out */
	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
	6, 7,			/* phone out */
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
};

static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line in */
	8, 9,			/* aes in */
	10, 11,			/* spdif in */
	12, 14, 16, 18,		/* adat in */
	-1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1
};

static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line out */
	8, 9,			/* aes out */
	10, 11,			/* spdif out */
	12, 14, 16, 18,		/* adat out */
	6, 7,			/* phone out */
	-1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1
};

static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line in */
	8, 9,			/* aes in */
	10, 11,			/* spdif in */
	12, 16,			/* adat in */
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1
};

static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
	0, 1,			/* line out */
	8, 9,			/* aes out */
	10, 11,			/* spdif out */
	12, 16,			/* adat out */
	6, 7,			/* phone out */
	-1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1
};

static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
	0, 1, 2, 3, 4, 5, 6, 7,
	8, 9, 10, 11, 12, 13, 14, 15,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1
};

struct hdspm_midi {
	struct hdspm *hdspm;
	int id;
	struct snd_rawmidi *rmidi;
	struct snd_rawmidi_substream *input;
	struct snd_rawmidi_substream *output;
	char istimer;		/* timer in use */
	struct timer_list timer;
	spinlock_t lock;
	int pending;
	int dataIn;
	int statusIn;
	int dataOut;
	int statusOut;
	int ie;
	int irq;
};

struct hdspm_tco {
	int input;
	int framerate;
	int wordclock;
	int samplerate;
	int pull;
	int term; /* 0 = off, 1 = on */
};

struct hdspm {
        spinlock_t lock;
	/* only one playback and/or capture stream */
        struct snd_pcm_substream *capture_substream;
        struct snd_pcm_substream *playback_substream;

	char *card_name;	     /* for procinfo */
	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/

	uint8_t io_type;

	int monitor_outs;	/* set up monitoring outs init flag */

	u32 control_register;	/* cached value */
	u32 control2_register;	/* cached value */
	u32 settings_register;

	struct hdspm_midi midi[4];
	struct tasklet_struct midi_tasklet;

	size_t period_bytes;
	unsigned char ss_in_channels;
	unsigned char ds_in_channels;
	unsigned char qs_in_channels;
	unsigned char ss_out_channels;
	unsigned char ds_out_channels;
	unsigned char qs_out_channels;

	unsigned char max_channels_in;
	unsigned char max_channels_out;

	char *channel_map_in;
	char *channel_map_out;

	char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
	char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;

	char **port_names_in;
	char **port_names_out;

	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;

	unsigned char *playback_buffer;	/* suitably aligned address */
	unsigned char *capture_buffer;	/* suitably aligned address */

	pid_t capture_pid;	/* process id which uses capture */
	pid_t playback_pid;	/* process id which uses capture */
	int running;		/* running status */

	int last_external_sample_rate;	/* samplerate mystic ... */
	int last_internal_sample_rate;
	int system_sample_rate;

	int dev;		/* Hardware vars... */
	int irq;
	unsigned long port;
	void __iomem *iobase;

	int irq_count;		/* for debug */
	int midiPorts;

	struct snd_card *card;	/* one card */
	struct snd_pcm *pcm;		/* has one pcm */
	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
	struct pci_dev *pci;	/* and an pci info */

	/* Mixer vars */
	/* fast alsa mixer */
	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
	/* but input to much, so not used */
	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
	/* full mixer accessable over mixer ioctl or hwdep-device */
	struct hdspm_mixer *mixer;

	struct hdspm_tco *tco;  /* NULL if no TCO detected */

	char **texts_autosync;
	int texts_autosync_items;

	cycles_t last_interrupt;

	struct hdspm_peak_rms peak_rms;
};


static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
	{
	 .vendor = PCI_VENDOR_ID_XILINX,
	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
	 .subvendor = PCI_ANY_ID,
	 .subdevice = PCI_ANY_ID,
	 .class = 0,
	 .class_mask = 0,
	 .driver_data = 0},
	{0,}
};

MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);

/* prototypes */
static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
						   struct hdspm * hdspm);
static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
					  struct hdspm * hdspm);

static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
static int hdspm_autosync_ref(struct hdspm *hdspm);
static int snd_hdspm_set_defaults(struct hdspm *hdspm);
static void hdspm_set_sgbuf(struct hdspm *hdspm,
			    struct snd_pcm_substream *substream,
			     unsigned int reg, int channels);

static inline int HDSPM_bit2freq(int n)
{
	static const int bit2freq_tab[] = {
		0, 32000, 44100, 48000, 64000, 88200,
		96000, 128000, 176400, 192000 };
	if (n < 1 || n > 9)
		return 0;
	return bit2freq_tab[n];
}

/* Write/read to/from HDSPM with Adresses in Bytes
   not words but only 32Bit writes are allowed */

static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
			       unsigned int val)
{
	writel(val, hdspm->iobase + reg);
}

static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
{
	return readl(hdspm->iobase + reg);
}

/* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
   mixer is write only on hardware so we have to cache him for read
   each fader is a u32, but uses only the first 16 bit */

static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
				     unsigned int in)
{
	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
		return 0;

	return hdspm->mixer->ch[chan].in[in];
}

static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
				     unsigned int pb)
{
	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
		return 0;
	return hdspm->mixer->ch[chan].pb[pb];
}

static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
				      unsigned int in, unsigned short data)
{
	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
		return -1;

	hdspm_write(hdspm,
		    HDSPM_MADI_mixerBase +
		    ((in + 128 * chan) * sizeof(u32)),
		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
	return 0;
}

static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
				      unsigned int pb, unsigned short data)
{
	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
		return -1;

	hdspm_write(hdspm,
		    HDSPM_MADI_mixerBase +
		    ((64 + pb + 128 * chan) * sizeof(u32)),
		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
	return 0;
}


/* enable DMA for specific channels, now available for DSP-MADI */
static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
{
	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
}

static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
{
	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
}

/* check if same process is writing and reading */
static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
{
	unsigned long flags;
	int ret = 1;

	spin_lock_irqsave(&hdspm->lock, flags);
	if ((hdspm->playback_pid != hdspm->capture_pid) &&
	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
		ret = 0;
	}
	spin_unlock_irqrestore(&hdspm->lock, flags);
	return ret;
}

/* check for external sample rate */
static int hdspm_external_sample_rate(struct hdspm *hdspm)
{
	unsigned int status, status2, timecode;
	int syncref, rate = 0, rate_bits;

	switch (hdspm->io_type) {
	case AES32:
		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
		status = hdspm_read(hdspm, HDSPM_statusRegister);
		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);

		syncref = hdspm_autosync_ref(hdspm);

		if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
				status & HDSPM_AES32_wcLock)
			return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);

		if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
				syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
				status2 & (HDSPM_LockAES >>
				(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
			return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
		return 0;
		break;

	case MADIface:
		status = hdspm_read(hdspm, HDSPM_statusRegister);

		if (!(status & HDSPM_madiLock)) {
			rate = 0;  /* no lock */
		} else {
			switch (status & (HDSPM_status1_freqMask)) {
			case HDSPM_status1_F_0*1:
				rate = 32000; break;
			case HDSPM_status1_F_0*2:
				rate = 44100; break;
			case HDSPM_status1_F_0*3:
				rate = 48000; break;
			case HDSPM_status1_F_0*4:
				rate = 64000; break;
			case HDSPM_status1_F_0*5:
				rate = 88200; break;
			case HDSPM_status1_F_0*6:
				rate = 96000; break;
			case HDSPM_status1_F_0*7:
				rate = 128000; break;
			case HDSPM_status1_F_0*8:
				rate = 176400; break;
			case HDSPM_status1_F_0*9:
				rate = 192000; break;
			default:
				rate = 0; break;
			}
		}

		break;

	case MADI:
	case AIO:
	case RayDAT:
		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
		status = hdspm_read(hdspm, HDSPM_statusRegister);
		rate = 0;

		/* if wordclock has synced freq and wordclock is valid */
		if ((status2 & HDSPM_wcLock) != 0 &&
				(status & HDSPM_SelSyncRef0) == 0) {

			rate_bits = status2 & HDSPM_wcFreqMask;


			switch (rate_bits) {
			case HDSPM_wcFreq32:
				rate = 32000;
				break;
			case HDSPM_wcFreq44_1:
				rate = 44100;
				break;
			case HDSPM_wcFreq48:
				rate = 48000;
				break;
			case HDSPM_wcFreq64:
				rate = 64000;
				break;
			case HDSPM_wcFreq88_2:
				rate = 88200;
				break;
			case HDSPM_wcFreq96:
				rate = 96000;
				break;
			default:
				rate = 0;
				break;
			}
		}

		/* if rate detected and Syncref is Word than have it,
		 * word has priority to MADI
		 */
		if (rate != 0 &&
		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
			return rate;

		/* maybe a madi input (which is taken if sel sync is madi) */
		if (status & HDSPM_madiLock) {
			rate_bits = status & HDSPM_madiFreqMask;

			switch (rate_bits) {
			case HDSPM_madiFreq32:
				rate = 32000;
				break;
			case HDSPM_madiFreq44_1:
				rate = 44100;
				break;
			case HDSPM_madiFreq48:
				rate = 48000;
				break;
			case HDSPM_madiFreq64:
				rate = 64000;
				break;
			case HDSPM_madiFreq88_2:
				rate = 88200;
				break;
			case HDSPM_madiFreq96:
				rate = 96000;
				break;
			case HDSPM_madiFreq128:
				rate = 128000;
				break;
			case HDSPM_madiFreq176_4:
				rate = 176400;
				break;
			case HDSPM_madiFreq192:
				rate = 192000;
				break;
			default:
				rate = 0;
				break;
			}
		}
		break;
	}

	return rate;
}

/* Latency function */
static inline void hdspm_compute_period_size(struct hdspm *hdspm)
{
	hdspm->period_bytes = 1 << ((hdspm_decode_latency(hdspm->control_register) + 8));
}


static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
{
	int position;

	position = hdspm_read(hdspm, HDSPM_statusRegister);

	switch (hdspm->io_type) {
	case RayDAT:
	case AIO:
		position &= HDSPM_BufferPositionMask;
		position /= 4; /* Bytes per sample */
		break;
	default:
		position = (position & HDSPM_BufferID) ?
			(hdspm->period_bytes / 4) : 0;
	}

	return position;
}


static inline void hdspm_start_audio(struct hdspm * s)
{
	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
	hdspm_write(s, HDSPM_controlRegister, s->control_register);
}

static inline void hdspm_stop_audio(struct hdspm * s)
{
	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
	hdspm_write(s, HDSPM_controlRegister, s->control_register);
}

/* should I silence all or only opened ones ? doit all for first even is 4MB*/
static void hdspm_silence_playback(struct hdspm *hdspm)
{
	int i;
	int n = hdspm->period_bytes;
	void *buf = hdspm->playback_buffer;

	if (buf == NULL)
		return;

	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
		memset(buf, 0, n);
		buf += HDSPM_CHANNEL_BUFFER_BYTES;
	}
}

static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
{
	int n;

	spin_lock_irq(&s->lock);

	frames >>= 7;
	n = 0;
	while (frames) {
		n++;
		frames >>= 1;
	}
	s->control_register &= ~HDSPM_LatencyMask;
	s->control_register |= hdspm_encode_latency(n);

	hdspm_write(s, HDSPM_controlRegister, s->control_register);

	hdspm_compute_period_size(s);

	spin_unlock_irq(&s->lock);

	return 0;
}

static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
{
	u64 freq_const;

	if (period == 0)
		return 0;

	switch (hdspm->io_type) {
	case MADI:
	case AES32:
		freq_const = 110069313433624ULL;
		break;
	case RayDAT:
	case AIO:
		freq_const = 104857600000000ULL;
		break;
	case MADIface:
		freq_const = 131072000000000ULL;
	}

	return div_u64(freq_const, period);
}


static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
{
	u64 n;

	if (rate >= 112000)
		rate /= 4;
	else if (rate >= 56000)
		rate /= 2;

	switch (hdspm->io_type) {
	case MADIface:
	  n = 131072000000000ULL;  /* 125 MHz */
	  break;
	case MADI:
	case AES32:
	  n = 110069313433624ULL;  /* 105 MHz */
	  break;
	case RayDAT:
	case AIO:
	  n = 104857600000000ULL;  /* 100 MHz */
	  break;
	}

	n = div_u64(n, rate);
	/* n should be less than 2^32 for being written to FREQ register */
	snd_BUG_ON(n >> 32);
	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
}

/* dummy set rate lets see what happens */
static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
{
	int current_rate;
	int rate_bits;
	int not_set = 0;
	int current_speed, target_speed;

	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
	   it (e.g. during module initialization).
	 */

	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {

		/* SLAVE --- */
		if (called_internally) {

			/* request from ctl or card initialization
			   just make a warning an remember setting
			   for future master mode switching */

			snd_printk(KERN_WARNING "HDSPM: "
				   "Warning: device is not running "
				   "as a clock master.\n");
			not_set = 1;
		} else {

			/* hw_param request while in AutoSync mode */
			int external_freq =
			    hdspm_external_sample_rate(hdspm);

			if (hdspm_autosync_ref(hdspm) ==
			    HDSPM_AUTOSYNC_FROM_NONE) {

				snd_printk(KERN_WARNING "HDSPM: "
					   "Detected no Externel Sync \n");
				not_set = 1;

			} else if (rate != external_freq) {

				snd_printk(KERN_WARNING "HDSPM: "
					   "Warning: No AutoSync source for "
					   "requested rate\n");
				not_set = 1;
			}
		}
	}

	current_rate = hdspm->system_sample_rate;

	/* Changing between Singe, Double and Quad speed is not
	   allowed if any substreams are open. This is because such a change
	   causes a shift in the location of the DMA buffers and a reduction
	   in the number of available buffers.

	   Note that a similar but essentially insoluble problem exists for
	   externally-driven rate changes. All we can do is to flag rate
	   changes in the read/write routines.
	 */

	if (current_rate <= 48000)
		current_speed = HDSPM_SPEED_SINGLE;
	else if (current_rate <= 96000)
		current_speed = HDSPM_SPEED_DOUBLE;
	else
		current_speed = HDSPM_SPEED_QUAD;

	if (rate <= 48000)
		target_speed = HDSPM_SPEED_SINGLE;
	else if (rate <= 96000)
		target_speed = HDSPM_SPEED_DOUBLE;
	else
		target_speed = HDSPM_SPEED_QUAD;

	switch (rate) {
	case 32000:
		rate_bits = HDSPM_Frequency32KHz;
		break;
	case 44100:
		rate_bits = HDSPM_Frequency44_1KHz;
		break;
	case 48000:
		rate_bits = HDSPM_Frequency48KHz;
		break;
	case 64000:
		rate_bits = HDSPM_Frequency64KHz;
		break;
	case 88200:
		rate_bits = HDSPM_Frequency88_2KHz;
		break;
	case 96000:
		rate_bits = HDSPM_Frequency96KHz;
		break;
	case 128000:
		rate_bits = HDSPM_Frequency128KHz;
		break;
	case 176400:
		rate_bits = HDSPM_Frequency176_4KHz;
		break;
	case 192000:
		rate_bits = HDSPM_Frequency192KHz;
		break;
	default:
		return -EINVAL;
	}

	if (current_speed != target_speed
	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
		snd_printk
		    (KERN_ERR "HDSPM: "
		     "cannot change from %s speed to %s speed mode "
		     "(capture PID = %d, playback PID = %d)\n",
		     hdspm_speed_names[current_speed],
		     hdspm_speed_names[target_speed],
		     hdspm->capture_pid, hdspm->playback_pid);
		return -EBUSY;
	}

	hdspm->control_register &= ~HDSPM_FrequencyMask;
	hdspm->control_register |= rate_bits;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	/* For AES32, need to set DDS value in FREQ register
	   For MADI, also apparently */
	hdspm_set_dds_value(hdspm, rate);

	if (AES32 == hdspm->io_type && rate != current_rate)
		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);

	hdspm->system_sample_rate = rate;

	if (rate <= 48000) {
		hdspm->channel_map_in = hdspm->channel_map_in_ss;
		hdspm->channel_map_out = hdspm->channel_map_out_ss;
		hdspm->max_channels_in = hdspm->ss_in_channels;
		hdspm->max_channels_out = hdspm->ss_out_channels;
		hdspm->port_names_in = hdspm->port_names_in_ss;
		hdspm->port_names_out = hdspm->port_names_out_ss;
	} else if (rate <= 96000) {
		hdspm->channel_map_in = hdspm->channel_map_in_ds;
		hdspm->channel_map_out = hdspm->channel_map_out_ds;
		hdspm->max_channels_in = hdspm->ds_in_channels;
		hdspm->max_channels_out = hdspm->ds_out_channels;
		hdspm->port_names_in = hdspm->port_names_in_ds;
		hdspm->port_names_out = hdspm->port_names_out_ds;
	} else {
		hdspm->channel_map_in = hdspm->channel_map_in_qs;
		hdspm->channel_map_out = hdspm->channel_map_out_qs;
		hdspm->max_channels_in = hdspm->qs_in_channels;
		hdspm->max_channels_out = hdspm->qs_out_channels;
		hdspm->port_names_in = hdspm->port_names_in_qs;
		hdspm->port_names_out = hdspm->port_names_out_qs;
	}

	if (not_set != 0)
		return -1;

	return 0;
}

/* mainly for init to 0 on load */
static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
{
	int i, j;
	unsigned int gain;

	if (sgain > UNITY_GAIN)
		gain = UNITY_GAIN;
	else if (sgain < 0)
		gain = 0;
	else
		gain = sgain;

	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
			hdspm_write_in_gain(hdspm, i, j, gain);
			hdspm_write_pb_gain(hdspm, i, j, gain);
		}
}

/*----------------------------------------------------------------------------
   MIDI
  ----------------------------------------------------------------------------*/

static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
						      int id)
{
	/* the hardware already does the relevant bit-mask with 0xff */
	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
}

static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
					      int val)
{
	/* the hardware already does the relevant bit-mask with 0xff */
	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
}

static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
{
	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
}

static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
{
	int fifo_bytes_used;

	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;

	if (fifo_bytes_used < 128)
		return  128 - fifo_bytes_used;
	else
		return 0;
}

static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
{
	while (snd_hdspm_midi_input_available (hdspm, id))
		snd_hdspm_midi_read_byte (hdspm, id);
}

static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
{
	unsigned long flags;
	int n_pending;
	int to_write;
	int i;
	unsigned char buf[128];

	/* Output is not interrupt driven */

	spin_lock_irqsave (&hmidi->lock, flags);
	if (hmidi->output &&
	    !snd_rawmidi_transmit_empty (hmidi->output)) {
		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
							    hmidi->id);
		if (n_pending > 0) {
			if (n_pending > (int)sizeof (buf))
				n_pending = sizeof (buf);

			to_write = snd_rawmidi_transmit (hmidi->output, buf,
							 n_pending);
			if (to_write > 0) {
				for (i = 0; i < to_write; ++i)
					snd_hdspm_midi_write_byte (hmidi->hdspm,
								   hmidi->id,
								   buf[i]);
			}
		}
	}
	spin_unlock_irqrestore (&hmidi->lock, flags);
	return 0;
}

static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
{
	unsigned char buf[128]; /* this buffer is designed to match the MIDI
				 * input FIFO size
				 */
	unsigned long flags;
	int n_pending;
	int i;

	spin_lock_irqsave (&hmidi->lock, flags);
	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
	if (n_pending > 0) {
		if (hmidi->input) {
			if (n_pending > (int)sizeof (buf))
				n_pending = sizeof (buf);
			for (i = 0; i < n_pending; ++i)
				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
								   hmidi->id);
			if (n_pending)
				snd_rawmidi_receive (hmidi->input, buf,
						     n_pending);
		} else {
			/* flush the MIDI input FIFO */
			while (n_pending--)
				snd_hdspm_midi_read_byte (hmidi->hdspm,
							  hmidi->id);
		}
	}
	hmidi->pending = 0;

	hmidi->hdspm->control_register |= hmidi->ie;
	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
		    hmidi->hdspm->control_register);

	spin_unlock_irqrestore (&hmidi->lock, flags);
	return snd_hdspm_midi_output_write (hmidi);
}

static void
snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
	struct hdspm *hdspm;
	struct hdspm_midi *hmidi;
	unsigned long flags;

	hmidi = substream->rmidi->private_data;
	hdspm = hmidi->hdspm;

	spin_lock_irqsave (&hdspm->lock, flags);
	if (up) {
		if (!(hdspm->control_register & hmidi->ie)) {
			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
			hdspm->control_register |= hmidi->ie;
		}
	} else {
		hdspm->control_register &= ~hmidi->ie;
	}

	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
	spin_unlock_irqrestore (&hdspm->lock, flags);
}

static void snd_hdspm_midi_output_timer(unsigned long data)
{
	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
	unsigned long flags;

	snd_hdspm_midi_output_write(hmidi);
	spin_lock_irqsave (&hmidi->lock, flags);

	/* this does not bump hmidi->istimer, because the
	   kernel automatically removed the timer when it
	   expired, and we are now adding it back, thus
	   leaving istimer wherever it was set before.
	*/

	if (hmidi->istimer) {
		hmidi->timer.expires = 1 + jiffies;
		add_timer(&hmidi->timer);
	}

	spin_unlock_irqrestore (&hmidi->lock, flags);
}

static void
snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
	struct hdspm_midi *hmidi;
	unsigned long flags;

	hmidi = substream->rmidi->private_data;
	spin_lock_irqsave (&hmidi->lock, flags);
	if (up) {
		if (!hmidi->istimer) {
			init_timer(&hmidi->timer);
			hmidi->timer.function = snd_hdspm_midi_output_timer;
			hmidi->timer.data = (unsigned long) hmidi;
			hmidi->timer.expires = 1 + jiffies;
			add_timer(&hmidi->timer);
			hmidi->istimer++;
		}
	} else {
		if (hmidi->istimer && --hmidi->istimer <= 0)
			del_timer (&hmidi->timer);
	}
	spin_unlock_irqrestore (&hmidi->lock, flags);
	if (up)
		snd_hdspm_midi_output_write(hmidi);
}

static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
{
	struct hdspm_midi *hmidi;

	hmidi = substream->rmidi->private_data;
	spin_lock_irq (&hmidi->lock);
	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
	hmidi->input = substream;
	spin_unlock_irq (&hmidi->lock);

	return 0;
}

static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
{
	struct hdspm_midi *hmidi;

	hmidi = substream->rmidi->private_data;
	spin_lock_irq (&hmidi->lock);
	hmidi->output = substream;
	spin_unlock_irq (&hmidi->lock);

	return 0;
}

static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
{
	struct hdspm_midi *hmidi;

	snd_hdspm_midi_input_trigger (substream, 0);

	hmidi = substream->rmidi->private_data;
	spin_lock_irq (&hmidi->lock);
	hmidi->input = NULL;
	spin_unlock_irq (&hmidi->lock);

	return 0;
}

static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
{
	struct hdspm_midi *hmidi;

	snd_hdspm_midi_output_trigger (substream, 0);

	hmidi = substream->rmidi->private_data;
	spin_lock_irq (&hmidi->lock);
	hmidi->output = NULL;
	spin_unlock_irq (&hmidi->lock);

	return 0;
}

static struct snd_rawmidi_ops snd_hdspm_midi_output =
{
	.open =		snd_hdspm_midi_output_open,
	.close =	snd_hdspm_midi_output_close,
	.trigger =	snd_hdspm_midi_output_trigger,
};

static struct snd_rawmidi_ops snd_hdspm_midi_input =
{
	.open =		snd_hdspm_midi_input_open,
	.close =	snd_hdspm_midi_input_close,
	.trigger =	snd_hdspm_midi_input_trigger,
};

static int __devinit snd_hdspm_create_midi (struct snd_card *card,
					    struct hdspm *hdspm, int id)
{
	int err;
	char buf[32];

	hdspm->midi[id].id = id;
	hdspm->midi[id].hdspm = hdspm;
	spin_lock_init (&hdspm->midi[id].lock);

	if (0 == id) {
		if (MADIface == hdspm->io_type) {
			/* MIDI-over-MADI on HDSPe MADIface */
			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
		} else {
			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
		}
	} else if (1 == id) {
		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
	} else if ((2 == id) && (MADI == hdspm->io_type)) {
		/* MIDI-over-MADI on HDSPe MADI */
		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
	} else if (2 == id) {
		/* TCO MTC, read only */
		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
		hdspm->midi[2].dataOut = -1;
		hdspm->midi[2].statusOut = -1;
		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
	} else if (3 == id) {
		/* TCO MTC on HDSPe MADI */
		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
		hdspm->midi[3].dataOut = -1;
		hdspm->midi[3].statusOut = -1;
		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
	}

	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
					(MADIface == hdspm->io_type)))) {
		if ((id == 0) && (MADIface == hdspm->io_type)) {
			sprintf(buf, "%s MIDIoverMADI", card->shortname);
		} else if ((id == 2) && (MADI == hdspm->io_type)) {
			sprintf(buf, "%s MIDIoverMADI", card->shortname);
		} else {
			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
		}
		err = snd_rawmidi_new(card, buf, id, 1, 1,
				&hdspm->midi[id].rmidi);
		if (err < 0)
			return err;

		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
				card->id, id+1);
		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];

		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
				SNDRV_RAWMIDI_STREAM_OUTPUT,
				&snd_hdspm_midi_output);
		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
				SNDRV_RAWMIDI_STREAM_INPUT,
				&snd_hdspm_midi_input);

		hdspm->midi[id].rmidi->info_flags |=
			SNDRV_RAWMIDI_INFO_OUTPUT |
			SNDRV_RAWMIDI_INFO_INPUT |
			SNDRV_RAWMIDI_INFO_DUPLEX;
	} else {
		/* TCO MTC, read only */
		sprintf(buf, "%s MTC %d", card->shortname, id+1);
		err = snd_rawmidi_new(card, buf, id, 1, 1,
				&hdspm->midi[id].rmidi);
		if (err < 0)
			return err;

		sprintf(hdspm->midi[id].rmidi->name,
				"%s MTC %d", card->id, id+1);
		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];

		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
				SNDRV_RAWMIDI_STREAM_INPUT,
				&snd_hdspm_midi_input);

		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
	}

	return 0;
}


static void hdspm_midi_tasklet(unsigned long arg)
{
	struct hdspm *hdspm = (struct hdspm *)arg;
	int i = 0;

	while (i < hdspm->midiPorts) {
		if (hdspm->midi[i].pending)
			snd_hdspm_midi_input_read(&hdspm->midi[i]);

		i++;
	}
}


/*-----------------------------------------------------------------------------
  Status Interface
  ----------------------------------------------------------------------------*/

/* get the system sample rate which is set */


/**
 * Calculate the real sample rate from the
 * current DDS value.
 **/
static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
{
	unsigned int period, rate;

	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
	rate = hdspm_calc_dds_value(hdspm, period);

	return rate;
}


#define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .access = SNDRV_CTL_ELEM_ACCESS_READ, \
  .info = snd_hdspm_info_system_sample_rate, \
  .get = snd_hdspm_get_system_sample_rate \
}

static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
					     struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 27000;
	uinfo->value.integer.max = 207000;
	uinfo->value.integer.step = 1;
	return 0;
}


static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
					    struct snd_ctl_elem_value *
					    ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
	return 0;
}


/**
 * Returns the WordClock sample rate class for the given card.
 **/
static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
{
	int status;

	switch (hdspm->io_type) {
	case RayDAT:
	case AIO:
		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
		return (status >> 16) & 0xF;
		break;
	default:
		break;
	}


	return 0;
}


/**
 * Returns the TCO sample rate class for the given card.
 **/
static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
{
	int status;

	if (hdspm->tco) {
		switch (hdspm->io_type) {
		case RayDAT:
		case AIO:
			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
			return (status >> 20) & 0xF;
			break;
		default:
			break;
		}
	}

	return 0;
}


/**
 * Returns the SYNC_IN sample rate class for the given card.
 **/
static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
{
	int status;

	if (hdspm->tco) {
		switch (hdspm->io_type) {
		case RayDAT:
		case AIO:
			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
			return (status >> 12) & 0xF;
			break;
		default:
			break;
		}
	}

	return 0;
}


/**
 * Returns the sample rate class for input source <idx> for
 * 'new style' cards like the AIO and RayDAT.
 **/
static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
{
	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);

	return (status >> (idx*4)) & 0xF;
}



#define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.private_value = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
	.info = snd_hdspm_info_autosync_sample_rate, \
	.get = snd_hdspm_get_autosync_sample_rate \
}


static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
					       struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 10;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
			texts_freq[uinfo->value.enumerated.item]);
	return 0;
}


static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
					      struct snd_ctl_elem_value *
					      ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	switch (hdspm->io_type) {
	case RayDAT:
		switch (kcontrol->private_value) {
		case 0:
			ucontrol->value.enumerated.item[0] =
				hdspm_get_wc_sample_rate(hdspm);
			break;
		case 7:
			ucontrol->value.enumerated.item[0] =
				hdspm_get_tco_sample_rate(hdspm);
			break;
		case 8:
			ucontrol->value.enumerated.item[0] =
				hdspm_get_sync_in_sample_rate(hdspm);
			break;
		default:
			ucontrol->value.enumerated.item[0] =
				hdspm_get_s1_sample_rate(hdspm,
						kcontrol->private_value-1);
		}

	case AIO:
		switch (kcontrol->private_value) {
		case 0: /* WC */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_wc_sample_rate(hdspm);
			break;
		case 4: /* TCO */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_tco_sample_rate(hdspm);
			break;
		case 5: /* SYNC_IN */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_sync_in_sample_rate(hdspm);
			break;
		default:
			ucontrol->value.enumerated.item[0] =
				hdspm_get_s1_sample_rate(hdspm,
						ucontrol->id.index-1);
		}

	case AES32:

		switch (kcontrol->private_value) {
		case 0: /* WC */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_wc_sample_rate(hdspm);
			break;
		case 9: /* TCO */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_tco_sample_rate(hdspm);
			break;
		case 10: /* SYNC_IN */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_sync_in_sample_rate(hdspm);
			break;
		default: /* AES1 to AES8 */
			ucontrol->value.enumerated.item[0] =
				hdspm_get_s1_sample_rate(hdspm,
						kcontrol->private_value-1);
			break;

		}
	default:
		break;
	}

	return 0;
}


#define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_system_clock_mode, \
	.get = snd_hdspm_get_system_clock_mode, \
	.put = snd_hdspm_put_system_clock_mode, \
}


/**
 * Returns the system clock mode for the given card.
 * @returns 0 - master, 1 - slave
 **/
static int hdspm_system_clock_mode(struct hdspm *hdspm)
{
	switch (hdspm->io_type) {
	case AIO:
	case RayDAT:
		if (hdspm->settings_register & HDSPM_c0Master)
			return 0;
		break;

	default:
		if (hdspm->control_register & HDSPM_ClockModeMaster)
			return 0;
	}

	return 1;
}


/**
 * Sets the system clock mode.
 * @param mode 0 - master, 1 - slave
 **/
static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
{
	switch (hdspm->io_type) {
	case AIO:
	case RayDAT:
		if (0 == mode)
			hdspm->settings_register |= HDSPM_c0Master;
		else
			hdspm->settings_register &= ~HDSPM_c0Master;

		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
		break;

	default:
		if (0 == mode)
			hdspm->control_register |= HDSPM_ClockModeMaster;
		else
			hdspm->control_register &= ~HDSPM_ClockModeMaster;

		hdspm_write(hdspm, HDSPM_controlRegister,
				hdspm->control_register);
	}
}


static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
					    struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "Master", "AutoSync" };

	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 2;
	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
		    uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
	       texts[uinfo->value.enumerated.item]);
	return 0;
}

static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
					   struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
	return 0;
}

static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
					   struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;

	val = ucontrol->value.enumerated.item[0];
	if (val < 0)
		val = 0;
	else if (val > 1)
		val = 1;

	hdspm_set_system_clock_mode(hdspm, val);

	return 0;
}


#define HDSPM_INTERNAL_CLOCK(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.info = snd_hdspm_info_clock_source, \
	.get = snd_hdspm_get_clock_source, \
	.put = snd_hdspm_put_clock_source \
}


static int hdspm_clock_source(struct hdspm * hdspm)
{
	switch (hdspm->system_sample_rate) {
	case 32000: return 0;
	case 44100: return 1;
	case 48000: return 2;
	case 64000: return 3;
	case 88200: return 4;
	case 96000: return 5;
	case 128000: return 6;
	case 176400: return 7;
	case 192000: return 8;
	}

	return -1;
}

static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
{
	int rate;
	switch (mode) {
	case 0:
		rate = 32000; break;
	case 1:
		rate = 44100; break;
	case 2:
		rate = 48000; break;
	case 3:
		rate = 64000; break;
	case 4:
		rate = 88200; break;
	case 5:
		rate = 96000; break;
	case 6:
		rate = 128000; break;
	case 7:
		rate = 176400; break;
	case 8:
		rate = 192000; break;
	default:
		rate = 48000;
	}
	hdspm_set_rate(hdspm, rate, 1);
	return 0;
}

static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 9;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
		    uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
	       texts_freq[uinfo->value.enumerated.item+1]);

	return 0;
}

static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
	return 0;
}

static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.enumerated.item[0];
	if (val < 0)
		val = 0;
	if (val > 9)
		val = 9;
	spin_lock_irq(&hdspm->lock);
	if (val != hdspm_clock_source(hdspm))
		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
	else
		change = 0;
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_PREF_SYNC_REF(xname, xindex) \
{.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_pref_sync_ref, \
	.get = snd_hdspm_get_pref_sync_ref, \
	.put = snd_hdspm_put_pref_sync_ref \
}


/**
 * Returns the current preferred sync reference setting.
 * The semantics of the return value are depending on the
 * card, please see the comments for clarification.
 **/
static int hdspm_pref_sync_ref(struct hdspm * hdspm)
{
	switch (hdspm->io_type) {
	case AES32:
		switch (hdspm->control_register & HDSPM_SyncRefMask) {
		case 0: return 0;  /* WC */
		case HDSPM_SyncRef0: return 1; /* AES 1 */
		case HDSPM_SyncRef1: return 2; /* AES 2 */
		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
		case HDSPM_SyncRef2: return 4; /* AES 4 */
		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
						    return 7; /* AES 7 */
		case HDSPM_SyncRef3: return 8; /* AES 8 */
		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
		}
		break;

	case MADI:
	case MADIface:
		if (hdspm->tco) {
			switch (hdspm->control_register & HDSPM_SyncRefMask) {
			case 0: return 0;  /* WC */
			case HDSPM_SyncRef0: return 1;  /* MADI */
			case HDSPM_SyncRef1: return 2;  /* TCO */
			case HDSPM_SyncRef1+HDSPM_SyncRef0:
					     return 3;  /* SYNC_IN */
			}
		} else {
			switch (hdspm->control_register & HDSPM_SyncRefMask) {
			case 0: return 0;  /* WC */
			case HDSPM_SyncRef0: return 1;  /* MADI */
			case HDSPM_SyncRef1+HDSPM_SyncRef0:
					     return 2;  /* SYNC_IN */
			}
		}
		break;

	case RayDAT:
		if (hdspm->tco) {
			switch ((hdspm->settings_register &
				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
			case 0: return 0;  /* WC */
			case 3: return 1;  /* ADAT 1 */
			case 4: return 2;  /* ADAT 2 */
			case 5: return 3;  /* ADAT 3 */
			case 6: return 4;  /* ADAT 4 */
			case 1: return 5;  /* AES */
			case 2: return 6;  /* SPDIF */
			case 9: return 7;  /* TCO */
			case 10: return 8; /* SYNC_IN */
			}
		} else {
			switch ((hdspm->settings_register &
				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
			case 0: return 0;  /* WC */
			case 3: return 1;  /* ADAT 1 */
			case 4: return 2;  /* ADAT 2 */
			case 5: return 3;  /* ADAT 3 */
			case 6: return 4;  /* ADAT 4 */
			case 1: return 5;  /* AES */
			case 2: return 6;  /* SPDIF */
			case 10: return 7; /* SYNC_IN */
			}
		}

		break;

	case AIO:
		if (hdspm->tco) {
			switch ((hdspm->settings_register &
				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
			case 0: return 0;  /* WC */
			case 3: return 1;  /* ADAT */
			case 1: return 2;  /* AES */
			case 2: return 3;  /* SPDIF */
			case 9: return 4;  /* TCO */
			case 10: return 5; /* SYNC_IN */
			}
		} else {
			switch ((hdspm->settings_register &
				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
			case 0: return 0;  /* WC */
			case 3: return 1;  /* ADAT */
			case 1: return 2;  /* AES */
			case 2: return 3;  /* SPDIF */
			case 10: return 4; /* SYNC_IN */
			}
		}

		break;
	}

	return -1;
}


/**
 * Set the preferred sync reference to <pref>. The semantics
 * of <pref> are depending on the card type, see the comments
 * for clarification.
 **/
static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
{
	int p = 0;

	switch (hdspm->io_type) {
	case AES32:
		hdspm->control_register &= ~HDSPM_SyncRefMask;
		switch (pref) {
		case 0: /* WC  */
			break;
		case 1: /* AES 1 */
			hdspm->control_register |= HDSPM_SyncRef0;
			break;
		case 2: /* AES 2 */
			hdspm->control_register |= HDSPM_SyncRef1;
			break;
		case 3: /* AES 3 */
			hdspm->control_register |=
				HDSPM_SyncRef1+HDSPM_SyncRef0;
			break;
		case 4: /* AES 4 */
			hdspm->control_register |= HDSPM_SyncRef2;
			break;
		case 5: /* AES 5 */
			hdspm->control_register |=
				HDSPM_SyncRef2+HDSPM_SyncRef0;
			break;
		case 6: /* AES 6 */
			hdspm->control_register |=
				HDSPM_SyncRef2+HDSPM_SyncRef1;
			break;
		case 7: /* AES 7 */
			hdspm->control_register |=
				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
			break;
		case 8: /* AES 8 */
			hdspm->control_register |= HDSPM_SyncRef3;
			break;
		case 9: /* TCO */
			hdspm->control_register |=
				HDSPM_SyncRef3+HDSPM_SyncRef0;
			break;
		default:
			return -1;
		}

		break;

	case MADI:
	case MADIface:
		hdspm->control_register &= ~HDSPM_SyncRefMask;
		if (hdspm->tco) {
			switch (pref) {
			case 0: /* WC */
				break;
			case 1: /* MADI */
				hdspm->control_register |= HDSPM_SyncRef0;
				break;
			case 2: /* TCO */
				hdspm->control_register |= HDSPM_SyncRef1;
				break;
			case 3: /* SYNC_IN */
				hdspm->control_register |=
					HDSPM_SyncRef0+HDSPM_SyncRef1;
				break;
			default:
				return -1;
			}
		} else {
			switch (pref) {
			case 0: /* WC */
				break;
			case 1: /* MADI */
				hdspm->control_register |= HDSPM_SyncRef0;
				break;
			case 2: /* SYNC_IN */
				hdspm->control_register |=
					HDSPM_SyncRef0+HDSPM_SyncRef1;
				break;
			default:
				return -1;
			}
		}

		break;

	case RayDAT:
		if (hdspm->tco) {
			switch (pref) {
			case 0: p = 0; break;  /* WC */
			case 1: p = 3; break;  /* ADAT 1 */
			case 2: p = 4; break;  /* ADAT 2 */
			case 3: p = 5; break;  /* ADAT 3 */
			case 4: p = 6; break;  /* ADAT 4 */
			case 5: p = 1; break;  /* AES */
			case 6: p = 2; break;  /* SPDIF */
			case 7: p = 9; break;  /* TCO */
			case 8: p = 10; break; /* SYNC_IN */
			default: return -1;
			}
		} else {
			switch (pref) {
			case 0: p = 0; break;  /* WC */
			case 1: p = 3; break;  /* ADAT 1 */
			case 2: p = 4; break;  /* ADAT 2 */
			case 3: p = 5; break;  /* ADAT 3 */
			case 4: p = 6; break;  /* ADAT 4 */
			case 5: p = 1; break;  /* AES */
			case 6: p = 2; break;  /* SPDIF */
			case 7: p = 10; break; /* SYNC_IN */
			default: return -1;
			}
		}
		break;

	case AIO:
		if (hdspm->tco) {
			switch (pref) {
			case 0: p = 0; break;  /* WC */
			case 1: p = 3; break;  /* ADAT */
			case 2: p = 1; break;  /* AES */
			case 3: p = 2; break;  /* SPDIF */
			case 4: p = 9; break;  /* TCO */
			case 5: p = 10; break; /* SYNC_IN */
			default: return -1;
			}
		} else {
			switch (pref) {
			case 0: p = 0; break;  /* WC */
			case 1: p = 3; break;  /* ADAT */
			case 2: p = 1; break;  /* AES */
			case 3: p = 2; break;  /* SPDIF */
			case 4: p = 10; break; /* SYNC_IN */
			default: return -1;
			}
		}
		break;
	}

	switch (hdspm->io_type) {
	case RayDAT:
	case AIO:
		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
		break;

	case MADI:
	case MADIface:
	case AES32:
		hdspm_write(hdspm, HDSPM_controlRegister,
				hdspm->control_register);
	}

	return 0;
}


static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_info *uinfo)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = hdspm->texts_autosync_items;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			hdspm->texts_autosync[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int psf = hdspm_pref_sync_ref(hdspm);

	if (psf >= 0) {
		ucontrol->value.enumerated.item[0] = psf;
		return 0;
	}

	return -1;
}

static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int val, change = 0;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;

	val = ucontrol->value.enumerated.item[0];

	if (val < 0)
		val = 0;
	else if (val >= hdspm->texts_autosync_items)
		val = hdspm->texts_autosync_items-1;

	spin_lock_irq(&hdspm->lock);
	if (val != hdspm_pref_sync_ref(hdspm))
		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;

	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_AUTOSYNC_REF(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .access = SNDRV_CTL_ELEM_ACCESS_READ, \
  .info = snd_hdspm_info_autosync_ref, \
  .get = snd_hdspm_get_autosync_ref, \
}

static int hdspm_autosync_ref(struct hdspm *hdspm)
{
	if (AES32 == hdspm->io_type) {
		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
		unsigned int syncref =
			(status >> HDSPM_AES32_syncref_bit) & 0xF;
		if (syncref == 0)
			return HDSPM_AES32_AUTOSYNC_FROM_WORD;
		if (syncref <= 8)
			return syncref;
		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
	} else if (MADI == hdspm->io_type) {
		/* This looks at the autosync selected sync reference */
		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);

		switch (status2 & HDSPM_SelSyncRefMask) {
		case HDSPM_SelSyncRef_WORD:
			return HDSPM_AUTOSYNC_FROM_WORD;
		case HDSPM_SelSyncRef_MADI:
			return HDSPM_AUTOSYNC_FROM_MADI;
		case HDSPM_SelSyncRef_TCO:
			return HDSPM_AUTOSYNC_FROM_TCO;
		case HDSPM_SelSyncRef_SyncIn:
			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
		case HDSPM_SelSyncRef_NVALID:
			return HDSPM_AUTOSYNC_FROM_NONE;
		default:
			return 0;
		}

	}
	return 0;
}


static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (AES32 == hdspm->io_type) {
		static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
			"AES4",	"AES5", "AES6", "AES7", "AES8", "None"};

		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
		uinfo->count = 1;
		uinfo->value.enumerated.items = 10;
		if (uinfo->value.enumerated.item >=
		    uinfo->value.enumerated.items)
			uinfo->value.enumerated.item =
				uinfo->value.enumerated.items - 1;
		strcpy(uinfo->value.enumerated.name,
				texts[uinfo->value.enumerated.item]);
	} else if (MADI == hdspm->io_type) {
		static char *texts[] = {"Word Clock", "MADI", "TCO",
			"Sync In", "None" };

		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
		uinfo->count = 1;
		uinfo->value.enumerated.items = 5;
		if (uinfo->value.enumerated.item >=
				uinfo->value.enumerated.items)
			uinfo->value.enumerated.item =
				uinfo->value.enumerated.items - 1;
		strcpy(uinfo->value.enumerated.name,
				texts[uinfo->value.enumerated.item]);
	}
	return 0;
}

static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
	return 0;
}


#define HDSPM_LINE_OUT(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_line_out, \
  .get = snd_hdspm_get_line_out, \
  .put = snd_hdspm_put_line_out \
}

static int hdspm_line_out(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
}


static int hdspm_set_line_output(struct hdspm * hdspm, int out)
{
	if (out)
		hdspm->control_register |= HDSPM_LineOut;
	else
		hdspm->control_register &= ~HDSPM_LineOut;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_line_out		snd_ctl_boolean_mono_info

static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_line_out(hdspm);
	hdspm_set_line_output(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_TX_64(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_tx_64, \
  .get = snd_hdspm_get_tx_64, \
  .put = snd_hdspm_put_tx_64 \
}

static int hdspm_tx_64(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
}

static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
{
	if (out)
		hdspm->control_register |= HDSPM_TX_64ch;
	else
		hdspm->control_register &= ~HDSPM_TX_64ch;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_tx_64		snd_ctl_boolean_mono_info

static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_tx_64(hdspm);
	hdspm_set_tx_64(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_C_TMS(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_c_tms, \
  .get = snd_hdspm_get_c_tms, \
  .put = snd_hdspm_put_c_tms \
}

static int hdspm_c_tms(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
}

static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
{
	if (out)
		hdspm->control_register |= HDSPM_clr_tms;
	else
		hdspm->control_register &= ~HDSPM_clr_tms;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_c_tms		snd_ctl_boolean_mono_info

static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_c_tms(hdspm);
	hdspm_set_c_tms(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_SAFE_MODE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_safe_mode, \
  .get = snd_hdspm_get_safe_mode, \
  .put = snd_hdspm_put_safe_mode \
}

static int hdspm_safe_mode(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
}

static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
{
	if (out)
		hdspm->control_register |= HDSPM_AutoInp;
	else
		hdspm->control_register &= ~HDSPM_AutoInp;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_safe_mode	snd_ctl_boolean_mono_info

static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_safe_mode(hdspm);
	hdspm_set_safe_mode(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_EMPHASIS(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_emphasis, \
  .get = snd_hdspm_get_emphasis, \
  .put = snd_hdspm_put_emphasis \
}

static int hdspm_emphasis(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
}

static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
{
	if (emp)
		hdspm->control_register |= HDSPM_Emphasis;
	else
		hdspm->control_register &= ~HDSPM_Emphasis;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_emphasis		snd_ctl_boolean_mono_info

static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_emphasis(hdspm);
	hdspm_set_emphasis(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_DOLBY(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_dolby, \
  .get = snd_hdspm_get_dolby, \
  .put = snd_hdspm_put_dolby \
}

static int hdspm_dolby(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
}

static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
{
	if (dol)
		hdspm->control_register |= HDSPM_Dolby;
	else
		hdspm->control_register &= ~HDSPM_Dolby;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_dolby		snd_ctl_boolean_mono_info

static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_dolby(hdspm);
	hdspm_set_dolby(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_PROFESSIONAL(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_professional, \
  .get = snd_hdspm_get_professional, \
  .put = snd_hdspm_put_professional \
}

static int hdspm_professional(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
}

static int hdspm_set_professional(struct hdspm * hdspm, int dol)
{
	if (dol)
		hdspm->control_register |= HDSPM_Professional;
	else
		hdspm->control_register &= ~HDSPM_Professional;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

#define snd_hdspm_info_professional	snd_ctl_boolean_mono_info

static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_professional(hdspm);
	hdspm_set_professional(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}

#define HDSPM_INPUT_SELECT(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_input_select, \
  .get = snd_hdspm_get_input_select, \
  .put = snd_hdspm_put_input_select \
}

static int hdspm_input_select(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
}

static int hdspm_set_input_select(struct hdspm * hdspm, int out)
{
	if (out)
		hdspm->control_register |= HDSPM_InputSelect0;
	else
		hdspm->control_register &= ~HDSPM_InputSelect0;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "optical", "coaxial" };

	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 2;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
		    uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
	       texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_input_select(hdspm);
	hdspm_set_input_select(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_DS_WIRE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_ds_wire, \
  .get = snd_hdspm_get_ds_wire, \
  .put = snd_hdspm_put_ds_wire \
}

static int hdspm_ds_wire(struct hdspm * hdspm)
{
	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
}

static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
{
	if (ds)
		hdspm->control_register |= HDSPM_DS_DoubleWire;
	else
		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "Single", "Double" };

	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 2;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
		    uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
	       texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	unsigned int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0] & 1;
	spin_lock_irq(&hdspm->lock);
	change = (int) val != hdspm_ds_wire(hdspm);
	hdspm_set_ds_wire(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_QS_WIRE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .name = xname, \
  .index = xindex, \
  .info = snd_hdspm_info_qs_wire, \
  .get = snd_hdspm_get_qs_wire, \
  .put = snd_hdspm_put_qs_wire \
}

static int hdspm_qs_wire(struct hdspm * hdspm)
{
	if (hdspm->control_register & HDSPM_QS_DoubleWire)
		return 1;
	if (hdspm->control_register & HDSPM_QS_QuadWire)
		return 2;
	return 0;
}

static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
{
	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
	switch (mode) {
	case 0:
		break;
	case 1:
		hdspm->control_register |= HDSPM_QS_DoubleWire;
		break;
	case 2:
		hdspm->control_register |= HDSPM_QS_QuadWire;
		break;
	}
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "Single", "Double", "Quad" };

	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 3;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
		    uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
	       texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	int val;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;
	val = ucontrol->value.integer.value[0];
	if (val < 0)
		val = 0;
	if (val > 2)
		val = 2;
	spin_lock_irq(&hdspm->lock);
	change = val != hdspm_qs_wire(hdspm);
	hdspm_set_qs_wire(hdspm, val);
	spin_unlock_irq(&hdspm->lock);
	return change;
}


#define HDSPM_MIXER(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
  .name = xname, \
  .index = xindex, \
  .device = 0, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
  .info = snd_hdspm_info_mixer, \
  .get = snd_hdspm_get_mixer, \
  .put = snd_hdspm_put_mixer \
}

static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 3;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 65535;
	uinfo->value.integer.step = 1;
	return 0;
}

static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int source;
	int destination;

	source = ucontrol->value.integer.value[0];
	if (source < 0)
		source = 0;
	else if (source >= 2 * HDSPM_MAX_CHANNELS)
		source = 2 * HDSPM_MAX_CHANNELS - 1;

	destination = ucontrol->value.integer.value[1];
	if (destination < 0)
		destination = 0;
	else if (destination >= HDSPM_MAX_CHANNELS)
		destination = HDSPM_MAX_CHANNELS - 1;

	spin_lock_irq(&hdspm->lock);
	if (source >= HDSPM_MAX_CHANNELS)
		ucontrol->value.integer.value[2] =
		    hdspm_read_pb_gain(hdspm, destination,
				       source - HDSPM_MAX_CHANNELS);
	else
		ucontrol->value.integer.value[2] =
		    hdspm_read_in_gain(hdspm, destination, source);

	spin_unlock_irq(&hdspm->lock);

	return 0;
}

static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	int source;
	int destination;
	int gain;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;

	source = ucontrol->value.integer.value[0];
	destination = ucontrol->value.integer.value[1];

	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
		return -1;
	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
		return -1;

	gain = ucontrol->value.integer.value[2];

	spin_lock_irq(&hdspm->lock);

	if (source >= HDSPM_MAX_CHANNELS)
		change = gain != hdspm_read_pb_gain(hdspm, destination,
						    source -
						    HDSPM_MAX_CHANNELS);
	else
		change = gain != hdspm_read_in_gain(hdspm, destination,
						    source);

	if (change) {
		if (source >= HDSPM_MAX_CHANNELS)
			hdspm_write_pb_gain(hdspm, destination,
					    source - HDSPM_MAX_CHANNELS,
					    gain);
		else
			hdspm_write_in_gain(hdspm, destination, source,
					    gain);
	}
	spin_unlock_irq(&hdspm->lock);

	return change;
}

/* The simple mixer control(s) provide gain control for the
   basic 1:1 mappings of playback streams to output
   streams.
*/

#define HDSPM_PLAYBACK_MIXER \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
  .info = snd_hdspm_info_playback_mixer, \
  .get = snd_hdspm_get_playback_mixer, \
  .put = snd_hdspm_put_playback_mixer \
}

static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 64;
	uinfo->value.integer.step = 1;
	return 0;
}

static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int channel;

	channel = ucontrol->id.index - 1;

	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
		return -EINVAL;

	spin_lock_irq(&hdspm->lock);
	ucontrol->value.integer.value[0] =
	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
	spin_unlock_irq(&hdspm->lock);

	return 0;
}

static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int change;
	int channel;
	int gain;

	if (!snd_hdspm_use_is_exclusive(hdspm))
		return -EBUSY;

	channel = ucontrol->id.index - 1;

	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
		return -EINVAL;

	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;

	spin_lock_irq(&hdspm->lock);
	change =
	    gain != hdspm_read_pb_gain(hdspm, channel,
				       channel);
	if (change)
		hdspm_write_pb_gain(hdspm, channel, channel,
				    gain);
	spin_unlock_irq(&hdspm->lock);
	return change;
}

#define HDSPM_SYNC_CHECK(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.private_value = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_sync_check, \
	.get = snd_hdspm_get_sync_check \
}


static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 4;
	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;
	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);
	return 0;
}

static int hdspm_wc_sync_check(struct hdspm *hdspm)
{
	int status, status2;

	switch (hdspm->io_type) {
	case AES32:
		status = hdspm_read(hdspm, HDSPM_statusRegister);
		if (status & HDSPM_wcSync)
			return 2;
		else if (status & HDSPM_wcLock)
			return 1;
		return 0;
		break;

	case MADI:
		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
		if (status2 & HDSPM_wcLock) {
			if (status2 & HDSPM_wcSync)
				return 2;
			else
				return 1;
		}
		return 0;
		break;

	case RayDAT:
	case AIO:
		status = hdspm_read(hdspm, HDSPM_statusRegister);

		if (status & 0x2000000)
			return 2;
		else if (status & 0x1000000)
			return 1;
		return 0;

		break;

	case MADIface:
		break;
	}


	return 3;
}


static int hdspm_madi_sync_check(struct hdspm *hdspm)
{
	int status = hdspm_read(hdspm, HDSPM_statusRegister);
	if (status & HDSPM_madiLock) {
		if (status & HDSPM_madiSync)
			return 2;
		else
			return 1;
	}
	return 0;
}


static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
{
	int status, lock, sync;

	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);

	lock = (status & (0x1<<idx)) ? 1 : 0;
	sync = (status & (0x100<<idx)) ? 1 : 0;

	if (lock && sync)
		return 2;
	else if (lock)
		return 1;
	return 0;
}


static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
{
	int status, lock = 0, sync = 0;

	switch (hdspm->io_type) {
	case RayDAT:
	case AIO:
		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
		lock = (status & 0x400) ? 1 : 0;
		sync = (status & 0x800) ? 1 : 0;
		break;

	case MADI:
	case AES32:
		status = hdspm_read(hdspm, HDSPM_statusRegister2);
		lock = (status & 0x400000) ? 1 : 0;
		sync = (status & 0x800000) ? 1 : 0;
		break;

	case MADIface:
		break;
	}

	if (lock && sync)
		return 2;
	else if (lock)
		return 1;

	return 0;
}

static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
{
	int status2, lock, sync;
	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);

	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;

	if (sync)
		return 2;
	else if (lock)
		return 1;
	return 0;
}


static int hdspm_tco_sync_check(struct hdspm *hdspm)
{
	int status;

	if (hdspm->tco) {
		switch (hdspm->io_type) {
		case MADI:
		case AES32:
			status = hdspm_read(hdspm, HDSPM_statusRegister);
			if (status & HDSPM_tcoLock) {
				if (status & HDSPM_tcoSync)
					return 2;
				else
					return 1;
			}
			return 0;

			break;

		case RayDAT:
		case AIO:
			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);

			if (status & 0x8000000)
				return 2; /* Sync */
			if (status & 0x4000000)
				return 1; /* Lock */
			return 0; /* No signal */
			break;

		default:
			break;
		}
	}

	return 3; /* N/A */
}


static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
				    struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
	int val = -1;

	switch (hdspm->io_type) {
	case RayDAT:
		switch (kcontrol->private_value) {
		case 0: /* WC */
			val = hdspm_wc_sync_check(hdspm); break;
		case 7: /* TCO */
			val = hdspm_tco_sync_check(hdspm); break;
		case 8: /* SYNC IN */
			val = hdspm_sync_in_sync_check(hdspm); break;
		default:
			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
		}

	case AIO:
		switch (kcontrol->private_value) {
		case 0: /* WC */
			val = hdspm_wc_sync_check(hdspm); break;
		case 4: /* TCO */
			val = hdspm_tco_sync_check(hdspm); break;
		case 5: /* SYNC IN */
			val = hdspm_sync_in_sync_check(hdspm); break;
		default:
			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
		}

	case MADI:
		switch (kcontrol->private_value) {
		case 0: /* WC */
			val = hdspm_wc_sync_check(hdspm); break;
		case 1: /* MADI */
			val = hdspm_madi_sync_check(hdspm); break;
		case 2: /* TCO */
			val = hdspm_tco_sync_check(hdspm); break;
		case 3: /* SYNC_IN */
			val = hdspm_sync_in_sync_check(hdspm); break;
		}

	case MADIface:
		val = hdspm_madi_sync_check(hdspm); /* MADI */
		break;

	case AES32:
		switch (kcontrol->private_value) {
		case 0: /* WC */
			val = hdspm_wc_sync_check(hdspm); break;
		case 9: /* TCO */
			val = hdspm_tco_sync_check(hdspm); break;
		case 10 /* SYNC IN */:
			val = hdspm_sync_in_sync_check(hdspm); break;
		default: /* AES1 to AES8 */
			 val = hdspm_aes_sync_check(hdspm,
					 kcontrol->private_value-1);
		}

	}

	if (-1 == val)
		val = 3;

	ucontrol->value.enumerated.item[0] = val;
	return 0;
}



/**
 * TCO controls
 **/
static void hdspm_tco_write(struct hdspm *hdspm)
{
	unsigned int tc[4] = { 0, 0, 0, 0};

	switch (hdspm->tco->input) {
	case 0:
		tc[2] |= HDSPM_TCO2_set_input_MSB;
		break;
	case 1:
		tc[2] |= HDSPM_TCO2_set_input_LSB;
		break;
	default:
		break;
	}

	switch (hdspm->tco->framerate) {
	case 1:
		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
		break;
	case 2:
		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
		break;
	case 3:
		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
			HDSPM_TCO1_set_drop_frame_flag;
		break;
	case 4:
		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
			HDSPM_TCO1_LTC_Format_MSB;
		break;
	case 5:
		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
			HDSPM_TCO1_LTC_Format_MSB +
			HDSPM_TCO1_set_drop_frame_flag;
		break;
	default:
		break;
	}

	switch (hdspm->tco->wordclock) {
	case 1:
		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
		break;
	case 2:
		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
		break;
	default:
		break;
	}

	switch (hdspm->tco->samplerate) {
	case 1:
		tc[2] |= HDSPM_TCO2_set_freq;
		break;
	case 2:
		tc[2] |= HDSPM_TCO2_set_freq_from_app;
		break;
	default:
		break;
	}

	switch (hdspm->tco->pull) {
	case 1:
		tc[2] |= HDSPM_TCO2_set_pull_up;
		break;
	case 2:
		tc[2] |= HDSPM_TCO2_set_pull_down;
		break;
	case 3:
		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
		break;
	case 4:
		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
		break;
	default:
		break;
	}

	if (1 == hdspm->tco->term) {
		tc[2] |= HDSPM_TCO2_set_term_75R;
	}

	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
}


#define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_sample_rate, \
	.get = snd_hdspm_get_tco_sample_rate, \
	.put = snd_hdspm_put_tco_sample_rate \
}

static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
					  struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "44.1 kHz", "48 kHz" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 2;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;

	return 0;
}

static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}


#define HDSPM_TCO_PULL(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_pull, \
	.get = snd_hdspm_get_tco_pull, \
	.put = snd_hdspm_put_tco_pull \
}

static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 5;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;

	return 0;
}

static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->pull = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}

#define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_wck_conversion, \
	.get = snd_hdspm_get_tco_wck_conversion, \
	.put = snd_hdspm_put_tco_wck_conversion \
}

static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
					     struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 3;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
					    struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;

	return 0;
}

static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
					    struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}


#define HDSPM_TCO_FRAME_RATE(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_frame_rate, \
	.get = snd_hdspm_get_tco_frame_rate, \
	.put = snd_hdspm_put_tco_frame_rate \
}

static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
					  struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "24 fps", "25 fps", "29.97fps",
		"29.97 dfps", "30 fps", "30 dfps" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 6;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;

	return 0;
}

static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}


#define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_sync_source, \
	.get = snd_hdspm_get_tco_sync_source, \
	.put = snd_hdspm_put_tco_sync_source \
}

static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
					  struct snd_ctl_elem_info *uinfo)
{
	static char *texts[] = { "LTC", "Video", "WCK" };
	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
	uinfo->count = 1;
	uinfo->value.enumerated.items = 3;

	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
		uinfo->value.enumerated.item =
			uinfo->value.enumerated.items - 1;

	strcpy(uinfo->value.enumerated.name,
			texts[uinfo->value.enumerated.item]);

	return 0;
}

static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->input;

	return 0;
}

static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->input = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}


#define HDSPM_TCO_WORD_TERM(xname, xindex) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
	.name = xname, \
	.index = xindex, \
	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
	.info = snd_hdspm_info_tco_word_term, \
	.get = snd_hdspm_get_tco_word_term, \
	.put = snd_hdspm_put_tco_word_term \
}

static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 1;

	return 0;
}


static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	ucontrol->value.enumerated.item[0] = hdspm->tco->term;

	return 0;
}


static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);

	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
		hdspm->tco->term = ucontrol->value.enumerated.item[0];

		hdspm_tco_write(hdspm);

		return 1;
	}

	return 0;
}




static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
	HDSPM_MIXER("Mixer", 0),
	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
	HDSPM_SYNC_CHECK("TCO SyncCHeck", 2),
	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
	HDSPM_LINE_OUT("Line Out", 0),
	HDSPM_TX_64("TX 64 channels mode", 0),
	HDSPM_C_TMS("Clear Track Marker", 0),
	HDSPM_SAFE_MODE("Safe Mode", 0),
	HDSPM_INPUT_SELECT("Input Select", 0)
};


static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
	HDSPM_MIXER("Mixer", 0),
	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
	HDSPM_TX_64("TX 64 channels mode", 0),
	HDSPM_C_TMS("Clear Track Marker", 0),
	HDSPM_SAFE_MODE("Safe Mode", 0)
};

static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
	HDSPM_MIXER("Mixer", 0),
	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)

		/*
		   HDSPM_INPUT_SELECT("Input Select", 0),
		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
		   HDSPM_SPDIF_IN("SPDIF In", 0);
		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
		   HDSPM_INPUT_LEVEL("Input Level", 0);
		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
		   HDSPM_PHONES("Phones", 0);
		   */
};

static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
	HDSPM_MIXER("Mixer", 0),
	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
};

static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
	HDSPM_MIXER("Mixer", 0),
	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
	HDSPM_SYNC_CHECK("WC Sync Check", 0),
	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
	HDSPM_LINE_OUT("Line Out", 0),
	HDSPM_EMPHASIS("Emphasis", 0),
	HDSPM_DOLBY("Non Audio", 0),
	HDSPM_PROFESSIONAL("Professional", 0),
	HDSPM_C_TMS("Clear Track Marker", 0),
	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
};



/* Control elements for the optional TCO module */
static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
	HDSPM_TCO_PULL("TCO Pull", 0),
	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
	HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
};


static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;


static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
{
	int i;

	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
		if (hdspm->system_sample_rate > 48000) {
			hdspm->playback_mixer_ctls[i]->vd[0].access =
				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
				SNDRV_CTL_ELEM_ACCESS_READ |
				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
		} else {
			hdspm->playback_mixer_ctls[i]->vd[0].access =
				SNDRV_CTL_ELEM_ACCESS_READWRITE |
				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
		}
		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
				SNDRV_CTL_EVENT_MASK_INFO,
				&hdspm->playback_mixer_ctls[i]->id);
	}

	return 0;
}


static int snd_hdspm_create_controls(struct snd_card *card,
					struct hdspm *hdspm)
{
	unsigned int idx, limit;
	int err;
	struct snd_kcontrol *kctl;
	struct snd_kcontrol_new *list = NULL;

	switch (hdspm->io_type) {
	case MADI:
		list = snd_hdspm_controls_madi;
		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
		break;
	case MADIface:
		list = snd_hdspm_controls_madiface;
		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
		break;
	case AIO:
		list = snd_hdspm_controls_aio;
		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
		break;
	case RayDAT:
		list = snd_hdspm_controls_raydat;
		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
		break;
	case AES32:
		list = snd_hdspm_controls_aes32;
		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
		break;
	}

	if (NULL != list) {
		for (idx = 0; idx < limit; idx++) {
			err = snd_ctl_add(card,
					snd_ctl_new1(&list[idx], hdspm));
			if (err < 0)
				return err;
		}
	}


	/* create simple 1:1 playback mixer controls */
	snd_hdspm_playback_mixer.name = "Chn";
	if (hdspm->system_sample_rate >= 128000) {
		limit = hdspm->qs_out_channels;
	} else if (hdspm->system_sample_rate >= 64000) {
		limit = hdspm->ds_out_channels;
	} else {
		limit = hdspm->ss_out_channels;
	}
	for (idx = 0; idx < limit; ++idx) {
		snd_hdspm_playback_mixer.index = idx + 1;
		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
		err = snd_ctl_add(card, kctl);
		if (err < 0)
			return err;
		hdspm->playback_mixer_ctls[idx] = kctl;
	}


	if (hdspm->tco) {
		/* add tco control elements */
		list = snd_hdspm_controls_tco;
		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
		for (idx = 0; idx < limit; idx++) {
			err = snd_ctl_add(card,
					snd_ctl_new1(&list[idx], hdspm));
			if (err < 0)
				return err;
		}
	}

	return 0;
}

/*------------------------------------------------------------
   /proc interface
 ------------------------------------------------------------*/

static void
snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
			 struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;
	unsigned int status, status2, control, freq;

	char *pref_sync_ref;
	char *autosync_ref;
	char *system_clock_mode;
	char *insel;
	int x, x2;

	/* TCO stuff */
	int a, ltc, frames, seconds, minutes, hours;
	unsigned int period;
	u64 freq_const = 0;
	u32 rate;

	status = hdspm_read(hdspm, HDSPM_statusRegister);
	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
	control = hdspm->control_register;
	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);

	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
			hdspm->card_name, hdspm->card->number + 1,
			hdspm->firmware_rev,
			(status2 & HDSPM_version0) |
			(status2 & HDSPM_version1) | (status2 &
				HDSPM_version2));

	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);

	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);

	snd_iprintf(buffer, "--- System ---\n");

	snd_iprintf(buffer,
		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
		status & HDSPM_audioIRQPending,
		(status & HDSPM_midi0IRQPending) ? 1 : 0,
		(status & HDSPM_midi1IRQPending) ? 1 : 0,
		hdspm->irq_count);
	snd_iprintf(buffer,
		"HW pointer: id = %d, rawptr = %d (%d->%d) "
		"estimated= %ld (bytes)\n",
		((status & HDSPM_BufferID) ? 1 : 0),
		(status & HDSPM_BufferPositionMask),
		(status & HDSPM_BufferPositionMask) %
		(2 * (int)hdspm->period_bytes),
		((status & HDSPM_BufferPositionMask) - 64) %
		(2 * (int)hdspm->period_bytes),
		(long) hdspm_hw_pointer(hdspm) * 4);

	snd_iprintf(buffer,
		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
	snd_iprintf(buffer,
		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
	snd_iprintf(buffer,
		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
		"status2=0x%x\n",
		hdspm->control_register, hdspm->control2_register,
		status, status2);
	if (status & HDSPM_tco_detect) {
		snd_iprintf(buffer, "TCO module detected.\n");
		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
		if (a & HDSPM_TCO1_LTC_Input_valid) {
			snd_iprintf(buffer, "  LTC valid, ");
			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
						HDSPM_TCO1_LTC_Format_MSB)) {
			case 0:
				snd_iprintf(buffer, "24 fps, ");
				break;
			case HDSPM_TCO1_LTC_Format_LSB:
				snd_iprintf(buffer, "25 fps, ");
				break;
			case HDSPM_TCO1_LTC_Format_MSB:
				snd_iprintf(buffer, "29.97 fps, ");
				break;
			default:
				snd_iprintf(buffer, "30 fps, ");
				break;
			}
			if (a & HDSPM_TCO1_set_drop_frame_flag) {
				snd_iprintf(buffer, "drop frame\n");
			} else {
				snd_iprintf(buffer, "full frame\n");
			}
		} else {
			snd_iprintf(buffer, "  no LTC\n");
		}
		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
			snd_iprintf(buffer, "  Video: NTSC\n");
		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
			snd_iprintf(buffer, "  Video: PAL\n");
		} else {
			snd_iprintf(buffer, "  No video\n");
		}
		if (a & HDSPM_TCO1_TCO_lock) {
			snd_iprintf(buffer, "  Sync: lock\n");
		} else {
			snd_iprintf(buffer, "  Sync: no lock\n");
		}

		switch (hdspm->io_type) {
		case MADI:
		case AES32:
			freq_const = 110069313433624ULL;
			break;
		case RayDAT:
		case AIO:
			freq_const = 104857600000000ULL;
			break;
		case MADIface:
			break; /* no TCO possible */
		}

		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
		snd_iprintf(buffer, "    period: %u\n", period);


		/* rate = freq_const/period; */
		rate = div_u64(freq_const, period);

		if (control & HDSPM_QuadSpeed) {
			rate *= 4;
		} else if (control & HDSPM_DoubleSpeed) {
			rate *= 2;
		}

		snd_iprintf(buffer, "  Frequency: %u Hz\n",
				(unsigned int) rate);

		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
		frames = ltc & 0xF;
		ltc >>= 4;
		frames += (ltc & 0x3) * 10;
		ltc >>= 4;
		seconds = ltc & 0xF;
		ltc >>= 4;
		seconds += (ltc & 0x7) * 10;
		ltc >>= 4;
		minutes = ltc & 0xF;
		ltc >>= 4;
		minutes += (ltc & 0x7) * 10;
		ltc >>= 4;
		hours = ltc & 0xF;
		ltc >>= 4;
		hours += (ltc & 0x3) * 10;
		snd_iprintf(buffer,
			"  LTC In: %02d:%02d:%02d:%02d\n",
			hours, minutes, seconds, frames);

	} else {
		snd_iprintf(buffer, "No TCO module detected.\n");
	}

	snd_iprintf(buffer, "--- Settings ---\n");

	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
							HDSPM_LatencyMask));

	snd_iprintf(buffer,
		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
		x, (unsigned long) hdspm->period_bytes);

	snd_iprintf(buffer, "Line out: %s\n",
		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");

	switch (hdspm->control_register & HDSPM_InputMask) {
	case HDSPM_InputOptical:
		insel = "Optical";
		break;
	case HDSPM_InputCoaxial:
		insel = "Coaxial";
		break;
	default:
		insel = "Unkown";
	}

	snd_iprintf(buffer,
		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
		"Auto Input %s\n",
		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");


	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
		system_clock_mode = "AutoSync";
	else
		system_clock_mode = "Master";
	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);

	switch (hdspm_pref_sync_ref(hdspm)) {
	case HDSPM_SYNC_FROM_WORD:
		pref_sync_ref = "Word Clock";
		break;
	case HDSPM_SYNC_FROM_MADI:
		pref_sync_ref = "MADI Sync";
		break;
	case HDSPM_SYNC_FROM_TCO:
		pref_sync_ref = "TCO";
		break;
	case HDSPM_SYNC_FROM_SYNC_IN:
		pref_sync_ref = "Sync In";
		break;
	default:
		pref_sync_ref = "XXXX Clock";
		break;
	}
	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
			pref_sync_ref);

	snd_iprintf(buffer, "System Clock Frequency: %d\n",
			hdspm->system_sample_rate);


	snd_iprintf(buffer, "--- Status:\n");

	x = status & HDSPM_madiSync;
	x2 = status2 & HDSPM_wcSync;

	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
			"NoLock",
			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
			"NoLock");

	switch (hdspm_autosync_ref(hdspm)) {
	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
		autosync_ref = "Sync In";
		break;
	case HDSPM_AUTOSYNC_FROM_TCO:
		autosync_ref = "TCO";
		break;
	case HDSPM_AUTOSYNC_FROM_WORD:
		autosync_ref = "Word Clock";
		break;
	case HDSPM_AUTOSYNC_FROM_MADI:
		autosync_ref = "MADI Sync";
		break;
	case HDSPM_AUTOSYNC_FROM_NONE:
		autosync_ref = "Input not valid";
		break;
	default:
		autosync_ref = "---";
		break;
	}
	snd_iprintf(buffer,
		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
		autosync_ref, hdspm_external_sample_rate(hdspm),
		(status & HDSPM_madiFreqMask) >> 22,
		(status2 & HDSPM_wcFreqMask) >> 5);

	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
		(status & HDSPM_AB_int) ? "Coax" : "Optical",
		(status & HDSPM_RX_64ch) ? "64 channels" :
		"56 channels");

	snd_iprintf(buffer, "\n");
}

static void
snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
			  struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;
	unsigned int status;
	unsigned int status2;
	unsigned int timecode;
	int pref_syncref;
	char *autosync_ref;
	int x;

	status = hdspm_read(hdspm, HDSPM_statusRegister);
	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);

	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
		    hdspm->card_name, hdspm->card->number + 1,
		    hdspm->firmware_rev);

	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);

	snd_iprintf(buffer, "--- System ---\n");

	snd_iprintf(buffer,
		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
		    status & HDSPM_audioIRQPending,
		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
		    hdspm->irq_count);
	snd_iprintf(buffer,
		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
		    "estimated= %ld (bytes)\n",
		    ((status & HDSPM_BufferID) ? 1 : 0),
		    (status & HDSPM_BufferPositionMask),
		    (status & HDSPM_BufferPositionMask) %
		    (2 * (int)hdspm->period_bytes),
		    ((status & HDSPM_BufferPositionMask) - 64) %
		    (2 * (int)hdspm->period_bytes),
		    (long) hdspm_hw_pointer(hdspm) * 4);

	snd_iprintf(buffer,
		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
	snd_iprintf(buffer,
		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
	snd_iprintf(buffer,
		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
		    "status2=0x%x\n",
		    hdspm->control_register, hdspm->control2_register,
		    status, status2);

	snd_iprintf(buffer, "--- Settings ---\n");

	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
				HDSPM_LatencyMask));

	snd_iprintf(buffer,
		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
		    x, (unsigned long) hdspm->period_bytes);

	snd_iprintf(buffer, "Line out: %s\n",
		    (hdspm->
		     control_register & HDSPM_LineOut) ? "on " : "off");

	snd_iprintf(buffer,
		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
		    (hdspm->
		     control_register & HDSPM_clr_tms) ? "on" : "off",
		    (hdspm->
		     control_register & HDSPM_Emphasis) ? "on" : "off",
		    (hdspm->
		     control_register & HDSPM_Dolby) ? "on" : "off");


	pref_syncref = hdspm_pref_sync_ref(hdspm);
	if (pref_syncref == 0)
		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
	else
		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
				pref_syncref);

	snd_iprintf(buffer, "System Clock Frequency: %d\n",
		    hdspm->system_sample_rate);

	snd_iprintf(buffer, "Double speed: %s\n",
			hdspm->control_register & HDSPM_DS_DoubleWire?
			"Double wire" : "Single wire");
	snd_iprintf(buffer, "Quad speed: %s\n",
			hdspm->control_register & HDSPM_QS_DoubleWire?
			"Double wire" :
			hdspm->control_register & HDSPM_QS_QuadWire?
			"Quad wire" : "Single wire");

	snd_iprintf(buffer, "--- Status:\n");

	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
		    (status & HDSPM_AES32_wcLock) ? "Sync   " : "No Lock",
		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));

	for (x = 0; x < 8; x++) {
		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
			    x+1,
			    (status2 & (HDSPM_LockAES >> x)) ?
			    "Sync   " : "No Lock",
			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
	}

	switch (hdspm_autosync_ref(hdspm)) {
	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
		autosync_ref = "None"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
		autosync_ref = "Word Clock"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
		autosync_ref = "AES1"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
		autosync_ref = "AES2"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
		autosync_ref = "AES3"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
		autosync_ref = "AES4"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
		autosync_ref = "AES5"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
		autosync_ref = "AES6"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
		autosync_ref = "AES7"; break;
	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
		autosync_ref = "AES8"; break;
	default:
		autosync_ref = "---"; break;
	}
	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);

	snd_iprintf(buffer, "\n");
}

static void
snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
			 struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;
	unsigned int status1, status2, status3, control, i;
	unsigned int lock, sync;

	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */

	control = hdspm->control_register;

	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);


	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");

	snd_iprintf(buffer, "Clock mode      : %s\n",
		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
	snd_iprintf(buffer, "System frequency: %d Hz\n",
		hdspm_get_system_sample_rate(hdspm));

	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");

	lock = 0x1;
	sync = 0x100;

	for (i = 0; i < 8; i++) {
		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
				i,
				(status1 & lock) ? 1 : 0,
				(status1 & sync) ? 1 : 0,
				texts_freq[(status2 >> (i * 4)) & 0xF]);

		lock = lock<<1;
		sync = sync<<1;
	}

	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
			(status1 & 0x1000000) ? 1 : 0,
			(status1 & 0x2000000) ? 1 : 0,
			texts_freq[(status1 >> 16) & 0xF]);

	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
			(status1 & 0x4000000) ? 1 : 0,
			(status1 & 0x8000000) ? 1 : 0,
			texts_freq[(status1 >> 20) & 0xF]);

	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
			(status3 & 0x400) ? 1 : 0,
			(status3 & 0x800) ? 1 : 0,
			texts_freq[(status2 >> 12) & 0xF]);

}

#ifdef CONFIG_SND_DEBUG
static void
snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
			  struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;

	int j,i;

	for (i = 0; i < 256 /* 1024*64 */; i += j) {
		snd_iprintf(buffer, "0x%08X: ", i);
		for (j = 0; j < 16; j += 4)
			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
		snd_iprintf(buffer, "\n");
	}
}
#endif


static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
			  struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;
	int i;

	snd_iprintf(buffer, "# generated by hdspm\n");

	for (i = 0; i < hdspm->max_channels_in; i++) {
		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
	}
}

static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
			  struct snd_info_buffer *buffer)
{
	struct hdspm *hdspm = entry->private_data;
	int i;

	snd_iprintf(buffer, "# generated by hdspm\n");

	for (i = 0; i < hdspm->max_channels_out; i++) {
		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
	}
}


static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm)
{
	struct snd_info_entry *entry;

	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
		switch (hdspm->io_type) {
		case AES32:
			snd_info_set_text_ops(entry, hdspm,
					snd_hdspm_proc_read_aes32);
			break;
		case MADI:
			snd_info_set_text_ops(entry, hdspm,
					snd_hdspm_proc_read_madi);
			break;
		case MADIface:
			/* snd_info_set_text_ops(entry, hdspm,
			 snd_hdspm_proc_read_madiface); */
			break;
		case RayDAT:
			snd_info_set_text_ops(entry, hdspm,
					snd_hdspm_proc_read_raydat);
			break;
		case AIO:
			break;
		}
	}

	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
	}

	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
	}

#ifdef CONFIG_SND_DEBUG
	/* debug file to read all hdspm registers */
	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
		snd_info_set_text_ops(entry, hdspm,
				snd_hdspm_proc_read_debug);
#endif
}

/*------------------------------------------------------------
   hdspm intitialize
 ------------------------------------------------------------*/

static int snd_hdspm_set_defaults(struct hdspm * hdspm)
{
	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
	   hold it (e.g. during module initialization).
	   */

	/* set defaults:       */

	hdspm->settings_register = 0;

	switch (hdspm->io_type) {
	case MADI:
	case MADIface:
		hdspm->control_register =
			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
		break;

	case RayDAT:
	case AIO:
		hdspm->settings_register = 0x1 + 0x1000;
		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
		 * line_out */
		hdspm->control_register =
			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
		break;

	case AES32:
		hdspm->control_register =
			HDSPM_ClockModeMaster |	/* Master Cloack Mode on */
			hdspm_encode_latency(7) | /* latency max=8192samples */
			HDSPM_SyncRef0 |	/* AES1 is syncclock */
			HDSPM_LineOut |	/* Analog output in */
			HDSPM_Professional;  /* Professional mode */
		break;
	}

	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	if (AES32 == hdspm->io_type) {
		/* No control2 register for AES32 */
#ifdef SNDRV_BIG_ENDIAN
		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
#else
		hdspm->control2_register = 0;
#endif

		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
	}
	hdspm_compute_period_size(hdspm);

	/* silence everything */

	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);

	if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
	}

	/* set a default rate so that the channel map is set up. */
	hdspm_set_rate(hdspm, 48000, 1);

	return 0;
}


/*------------------------------------------------------------
   interrupt
 ------------------------------------------------------------*/

static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
{
	struct hdspm *hdspm = (struct hdspm *) dev_id;
	unsigned int status;
	int i, audio, midi, schedule = 0;
	/* cycles_t now; */

	status = hdspm_read(hdspm, HDSPM_statusRegister);

	audio = status & HDSPM_audioIRQPending;
	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);

	/* now = get_cycles(); */
	/**
	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
	 *          6       4096   ~256053425     ~514672358
	 *          5       2048   ~128024983     ~257373821
	 *          4       1024    ~64023706     ~128718089
	 *          3        512    ~32005945      ~64385999
	 *          2        256    ~16003039      ~32260176
	 *          1        128     ~7998738      ~16194507
	 *          0         64     ~3998231       ~8191558
	 **/
	/*
	   snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
	   now-hdspm->last_interrupt, status & 0xFFC0);
	   hdspm->last_interrupt = now;
	*/

	if (!audio && !midi)
		return IRQ_NONE;

	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
	hdspm->irq_count++;


	if (audio) {
		if (hdspm->capture_substream)
			snd_pcm_period_elapsed(hdspm->capture_substream);

		if (hdspm->playback_substream)
			snd_pcm_period_elapsed(hdspm->playback_substream);
	}

	if (midi) {
		i = 0;
		while (i < hdspm->midiPorts) {
			if ((hdspm_read(hdspm,
				hdspm->midi[i].statusIn) & 0xff) &&
					(status & hdspm->midi[i].irq)) {
				/* we disable interrupts for this input until
				 * processing is done
				 */
				hdspm->control_register &= ~hdspm->midi[i].ie;
				hdspm_write(hdspm, HDSPM_controlRegister,
						hdspm->control_register);
				hdspm->midi[i].pending = 1;
				schedule = 1;
			}

			i++;
		}

		if (schedule)
			tasklet_hi_schedule(&hdspm->midi_tasklet);
	}

	return IRQ_HANDLED;
}

/*------------------------------------------------------------
   pcm interface
  ------------------------------------------------------------*/


static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
					      *substream)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	return hdspm_hw_pointer(hdspm);
}


static int snd_hdspm_reset(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	struct snd_pcm_substream *other;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		other = hdspm->capture_substream;
	else
		other = hdspm->playback_substream;

	if (hdspm->running)
		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
	else
		runtime->status->hw_ptr = 0;
	if (other) {
		struct snd_pcm_substream *s;
		struct snd_pcm_runtime *oruntime = other->runtime;
		snd_pcm_group_for_each_entry(s, substream) {
			if (s == other) {
				oruntime->status->hw_ptr =
					runtime->status->hw_ptr;
				break;
			}
		}
	}
	return 0;
}

static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
			       struct snd_pcm_hw_params *params)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	int err;
	int i;
	pid_t this_pid;
	pid_t other_pid;

	spin_lock_irq(&hdspm->lock);

	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		this_pid = hdspm->playback_pid;
		other_pid = hdspm->capture_pid;
	} else {
		this_pid = hdspm->capture_pid;
		other_pid = hdspm->playback_pid;
	}

	if (other_pid > 0 && this_pid != other_pid) {

		/* The other stream is open, and not by the same
		   task as this one. Make sure that the parameters
		   that matter are the same.
		   */

		if (params_rate(params) != hdspm->system_sample_rate) {
			spin_unlock_irq(&hdspm->lock);
			_snd_pcm_hw_param_setempty(params,
					SNDRV_PCM_HW_PARAM_RATE);
			return -EBUSY;
		}

		if (params_period_size(params) != hdspm->period_bytes / 4) {
			spin_unlock_irq(&hdspm->lock);
			_snd_pcm_hw_param_setempty(params,
					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
			return -EBUSY;
		}

	}
	/* We're fine. */
	spin_unlock_irq(&hdspm->lock);

	/* how to make sure that the rate matches an externally-set one ?   */

	spin_lock_irq(&hdspm->lock);
	err = hdspm_set_rate(hdspm, params_rate(params), 0);
	if (err < 0) {
		snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
		spin_unlock_irq(&hdspm->lock);
		_snd_pcm_hw_param_setempty(params,
				SNDRV_PCM_HW_PARAM_RATE);
		return err;
	}
	spin_unlock_irq(&hdspm->lock);

	err = hdspm_set_interrupt_interval(hdspm,
			params_period_size(params));
	if (err < 0) {
		snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
		_snd_pcm_hw_param_setempty(params,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
		return err;
	}

	/* Memory allocation, takashi's method, dont know if we should
	 * spinlock
	 */
	/* malloc all buffer even if not enabled to get sure */
	/* Update for MADI rev 204: we need to allocate for all channels,
	 * otherwise it doesn't work at 96kHz */

	err =
		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
	if (err < 0) {
		snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
		return err;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {

		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
				params_channels(params));

		for (i = 0; i < params_channels(params); ++i)
			snd_hdspm_enable_out(hdspm, i, 1);

		hdspm->playback_buffer =
			(unsigned char *) substream->runtime->dma_area;
		snd_printdd("Allocated sample buffer for playback at %p\n",
				hdspm->playback_buffer);
	} else {
		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
				params_channels(params));

		for (i = 0; i < params_channels(params); ++i)
			snd_hdspm_enable_in(hdspm, i, 1);

		hdspm->capture_buffer =
			(unsigned char *) substream->runtime->dma_area;
		snd_printdd("Allocated sample buffer for capture at %p\n",
				hdspm->capture_buffer);
	}

	/*
	   snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
	   "playback" : "capture",
	   snd_pcm_sgbuf_get_addr(substream, 0));
	   */
	/*
	   snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
	   "playback" : "capture",
	   params_rate(params), params_channels(params),
	   params_buffer_size(params));
	   */


	/* Switch to native float format if requested */
	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");

		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");

		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
	}
	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);

	return 0;
}

static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
{
	int i;
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {

		/* params_channels(params) should be enough,
		   but to get sure in case of error */
		for (i = 0; i < hdspm->max_channels_out; ++i)
			snd_hdspm_enable_out(hdspm, i, 0);

		hdspm->playback_buffer = NULL;
	} else {
		for (i = 0; i < hdspm->max_channels_in; ++i)
			snd_hdspm_enable_in(hdspm, i, 0);

		hdspm->capture_buffer = NULL;

	}

	snd_pcm_lib_free_pages(substream);

	return 0;
}


static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
		struct snd_pcm_channel_info *info)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
			return -EINVAL;
		}

		if (hdspm->channel_map_out[info->channel] < 0) {
			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
			return -EINVAL;
		}

		info->offset = hdspm->channel_map_out[info->channel] *
			HDSPM_CHANNEL_BUFFER_BYTES;
	} else {
		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
			return -EINVAL;
		}

		if (hdspm->channel_map_in[info->channel] < 0) {
			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
			return -EINVAL;
		}

		info->offset = hdspm->channel_map_in[info->channel] *
			HDSPM_CHANNEL_BUFFER_BYTES;
	}

	info->first = 0;
	info->step = 32;
	return 0;
}


static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
		unsigned int cmd, void *arg)
{
	switch (cmd) {
	case SNDRV_PCM_IOCTL1_RESET:
		return snd_hdspm_reset(substream);

	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
		{
			struct snd_pcm_channel_info *info = arg;
			return snd_hdspm_channel_info(substream, info);
		}
	default:
		break;
	}

	return snd_pcm_lib_ioctl(substream, cmd, arg);
}

static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	struct snd_pcm_substream *other;
	int running;

	spin_lock(&hdspm->lock);
	running = hdspm->running;
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		running |= 1 << substream->stream;
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		running &= ~(1 << substream->stream);
		break;
	default:
		snd_BUG();
		spin_unlock(&hdspm->lock);
		return -EINVAL;
	}
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		other = hdspm->capture_substream;
	else
		other = hdspm->playback_substream;

	if (other) {
		struct snd_pcm_substream *s;
		snd_pcm_group_for_each_entry(s, substream) {
			if (s == other) {
				snd_pcm_trigger_done(s, substream);
				if (cmd == SNDRV_PCM_TRIGGER_START)
					running |= 1 << s->stream;
				else
					running &= ~(1 << s->stream);
				goto _ok;
			}
		}
		if (cmd == SNDRV_PCM_TRIGGER_START) {
			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
					&& substream->stream ==
					SNDRV_PCM_STREAM_CAPTURE)
				hdspm_silence_playback(hdspm);
		} else {
			if (running &&
				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
				hdspm_silence_playback(hdspm);
		}
	} else {
		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
			hdspm_silence_playback(hdspm);
	}
_ok:
	snd_pcm_trigger_done(substream, substream);
	if (!hdspm->running && running)
		hdspm_start_audio(hdspm);
	else if (hdspm->running && !running)
		hdspm_stop_audio(hdspm);
	hdspm->running = running;
	spin_unlock(&hdspm->lock);

	return 0;
}

static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
{
	return 0;
}

static unsigned int period_sizes_old[] = {
	64, 128, 256, 512, 1024, 2048, 4096
};

static unsigned int period_sizes_new[] = {
	32, 64, 128, 256, 512, 1024, 2048, 4096
};

/* RayDAT and AIO always have a buffer of 16384 samples per channel */
static unsigned int raydat_aio_buffer_sizes[] = {
	16384
};

static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
	.info = (SNDRV_PCM_INFO_MMAP |
		 SNDRV_PCM_INFO_MMAP_VALID |
		 SNDRV_PCM_INFO_NONINTERLEAVED |
		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
	.formats = SNDRV_PCM_FMTBIT_S32_LE,
	.rates = (SNDRV_PCM_RATE_32000 |
		  SNDRV_PCM_RATE_44100 |
		  SNDRV_PCM_RATE_48000 |
		  SNDRV_PCM_RATE_64000 |
		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
	.rate_min = 32000,
	.rate_max = 192000,
	.channels_min = 1,
	.channels_max = HDSPM_MAX_CHANNELS,
	.buffer_bytes_max =
	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
	.period_bytes_min = (64 * 4),
	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
	.periods_min = 2,
	.periods_max = 512,
	.fifo_size = 0
};

static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
	.info = (SNDRV_PCM_INFO_MMAP |
		 SNDRV_PCM_INFO_MMAP_VALID |
		 SNDRV_PCM_INFO_NONINTERLEAVED |
		 SNDRV_PCM_INFO_SYNC_START),
	.formats = SNDRV_PCM_FMTBIT_S32_LE,
	.rates = (SNDRV_PCM_RATE_32000 |
		  SNDRV_PCM_RATE_44100 |
		  SNDRV_PCM_RATE_48000 |
		  SNDRV_PCM_RATE_64000 |
		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
	.rate_min = 32000,
	.rate_max = 192000,
	.channels_min = 1,
	.channels_max = HDSPM_MAX_CHANNELS,
	.buffer_bytes_max =
	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
	.period_bytes_min = (64 * 4),
	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
	.periods_min = 2,
	.periods_max = 512,
	.fifo_size = 0
};

static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_old = {
	.count = ARRAY_SIZE(period_sizes_old),
	.list = period_sizes_old,
	.mask = 0
};

static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_new = {
	.count = ARRAY_SIZE(period_sizes_new),
	.list = period_sizes_new,
	.mask = 0
};

static struct snd_pcm_hw_constraint_list hw_constraints_raydat_io_buffer = {
	.count = ARRAY_SIZE(raydat_aio_buffer_sizes),
	.list = raydat_aio_buffer_sizes,
	.mask = 0
};

static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
					   struct snd_pcm_hw_rule *rule)
{
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
	struct snd_interval *r =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);

	if (r->min > 96000 && r->max <= 192000) {
		struct snd_interval t = {
			.min = hdspm->qs_in_channels,
			.max = hdspm->qs_in_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	} else if (r->min > 48000 && r->max <= 96000) {
		struct snd_interval t = {
			.min = hdspm->ds_in_channels,
			.max = hdspm->ds_in_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	} else if (r->max < 64000) {
		struct snd_interval t = {
			.min = hdspm->ss_in_channels,
			.max = hdspm->ss_in_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	}

	return 0;
}

static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
					   struct snd_pcm_hw_rule * rule)
{
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
	struct snd_interval *r =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);

	if (r->min > 96000 && r->max <= 192000) {
		struct snd_interval t = {
			.min = hdspm->qs_out_channels,
			.max = hdspm->qs_out_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	} else if (r->min > 48000 && r->max <= 96000) {
		struct snd_interval t = {
			.min = hdspm->ds_out_channels,
			.max = hdspm->ds_out_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	} else if (r->max < 64000) {
		struct snd_interval t = {
			.min = hdspm->ss_out_channels,
			.max = hdspm->ss_out_channels,
			.integer = 1,
		};
		return snd_interval_refine(c, &t);
	} else {
	}
	return 0;
}

static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
					   struct snd_pcm_hw_rule * rule)
{
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
	struct snd_interval *r =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);

	if (c->min >= hdspm->ss_in_channels) {
		struct snd_interval t = {
			.min = 32000,
			.max = 48000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	} else if (c->max <= hdspm->qs_in_channels) {
		struct snd_interval t = {
			.min = 128000,
			.max = 192000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	} else if (c->max <= hdspm->ds_in_channels) {
		struct snd_interval t = {
			.min = 64000,
			.max = 96000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	}

	return 0;
}
static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
					   struct snd_pcm_hw_rule *rule)
{
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
	struct snd_interval *r =
	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);

	if (c->min >= hdspm->ss_out_channels) {
		struct snd_interval t = {
			.min = 32000,
			.max = 48000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	} else if (c->max <= hdspm->qs_out_channels) {
		struct snd_interval t = {
			.min = 128000,
			.max = 192000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	} else if (c->max <= hdspm->ds_out_channels) {
		struct snd_interval t = {
			.min = 64000,
			.max = 96000,
			.integer = 1,
		};
		return snd_interval_refine(r, &t);
	}

	return 0;
}

static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
				      struct snd_pcm_hw_rule *rule)
{
	unsigned int list[3];
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c = hw_param_interval(params,
			SNDRV_PCM_HW_PARAM_CHANNELS);

	list[0] = hdspm->qs_in_channels;
	list[1] = hdspm->ds_in_channels;
	list[2] = hdspm->ss_in_channels;
	return snd_interval_list(c, 3, list, 0);
}

static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
				      struct snd_pcm_hw_rule *rule)
{
	unsigned int list[3];
	struct hdspm *hdspm = rule->private;
	struct snd_interval *c = hw_param_interval(params,
			SNDRV_PCM_HW_PARAM_CHANNELS);

	list[0] = hdspm->qs_out_channels;
	list[1] = hdspm->ds_out_channels;
	list[2] = hdspm->ss_out_channels;
	return snd_interval_list(c, 3, list, 0);
}


static unsigned int hdspm_aes32_sample_rates[] = {
	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
};

static struct snd_pcm_hw_constraint_list
hdspm_hw_constraints_aes32_sample_rates = {
	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
	.list = hdspm_aes32_sample_rates,
	.mask = 0
};

static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	spin_lock_irq(&hdspm->lock);

	snd_pcm_set_sync(substream);


	runtime->hw = snd_hdspm_playback_subinfo;

	if (hdspm->capture_substream == NULL)
		hdspm_stop_audio(hdspm);

	hdspm->playback_pid = current->pid;
	hdspm->playback_substream = substream;

	spin_unlock_irq(&hdspm->lock);

	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);

	switch (hdspm->io_type) {
	case AIO:
	case RayDAT:
		snd_pcm_hw_constraint_list(runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				&hw_constraints_period_sizes_new);
		snd_pcm_hw_constraint_list(runtime, 0,
				SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
				&hw_constraints_raydat_io_buffer);

		break;

	default:
		snd_pcm_hw_constraint_list(runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				&hw_constraints_period_sizes_old);
	}

	if (AES32 == hdspm->io_type) {
		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				&hdspm_hw_constraints_aes32_sample_rates);
	} else {
		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				snd_hdspm_hw_rule_rate_out_channels, hdspm,
				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
	}

	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
			snd_hdspm_hw_rule_out_channels, hdspm,
			SNDRV_PCM_HW_PARAM_CHANNELS, -1);

	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
			snd_hdspm_hw_rule_out_channels_rate, hdspm,
			SNDRV_PCM_HW_PARAM_RATE, -1);

	return 0;
}

static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);

	spin_lock_irq(&hdspm->lock);

	hdspm->playback_pid = -1;
	hdspm->playback_substream = NULL;

	spin_unlock_irq(&hdspm->lock);

	return 0;
}


static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	spin_lock_irq(&hdspm->lock);
	snd_pcm_set_sync(substream);
	runtime->hw = snd_hdspm_capture_subinfo;

	if (hdspm->playback_substream == NULL)
		hdspm_stop_audio(hdspm);

	hdspm->capture_pid = current->pid;
	hdspm->capture_substream = substream;

	spin_unlock_irq(&hdspm->lock);

	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	switch (hdspm->io_type) {
	case AIO:
	case RayDAT:
	  snd_pcm_hw_constraint_list(runtime, 0,
				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				     &hw_constraints_period_sizes_new);
	  snd_pcm_hw_constraint_list(runtime, 0,
				     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
				     &hw_constraints_raydat_io_buffer);
	  break;

	default:
	  snd_pcm_hw_constraint_list(runtime, 0,
				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				     &hw_constraints_period_sizes_old);
	}

	if (AES32 == hdspm->io_type) {
		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				&hdspm_hw_constraints_aes32_sample_rates);
	} else {
		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				snd_hdspm_hw_rule_rate_in_channels, hdspm,
				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
	}

	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
			snd_hdspm_hw_rule_in_channels, hdspm,
			SNDRV_PCM_HW_PARAM_CHANNELS, -1);

	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
			snd_hdspm_hw_rule_in_channels_rate, hdspm,
			SNDRV_PCM_HW_PARAM_RATE, -1);

	return 0;
}

static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
{
	struct hdspm *hdspm = snd_pcm_substream_chip(substream);

	spin_lock_irq(&hdspm->lock);

	hdspm->capture_pid = -1;
	hdspm->capture_substream = NULL;

	spin_unlock_irq(&hdspm->lock);
	return 0;
}

static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
{
	/* we have nothing to initialize but the call is required */
	return 0;
}

static inline int copy_u32_le(void __user *dest, void __iomem *src)
{
	u32 val = readl(src);
	return copy_to_user(dest, &val, 4);
}

static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
		unsigned int cmd, unsigned long __user arg)
{
	void __user *argp = (void __user *)arg;
	struct hdspm *hdspm = hw->private_data;
	struct hdspm_mixer_ioctl mixer;
	struct hdspm_config info;
	struct hdspm_status status;
	struct hdspm_version hdspm_version;
	struct hdspm_peak_rms *levels;
	struct hdspm_ltc ltc;
	unsigned int statusregister;
	long unsigned int s;
	int i = 0;

	switch (cmd) {

	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
		levels = &hdspm->peak_rms;
		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
			levels->input_peaks[i] =
				readl(hdspm->iobase +
						HDSPM_MADI_INPUT_PEAK + i*4);
			levels->playback_peaks[i] =
				readl(hdspm->iobase +
						HDSPM_MADI_PLAYBACK_PEAK + i*4);
			levels->output_peaks[i] =
				readl(hdspm->iobase +
						HDSPM_MADI_OUTPUT_PEAK + i*4);

			levels->input_rms[i] =
				((uint64_t) readl(hdspm->iobase +
					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
				(uint64_t) readl(hdspm->iobase +
						HDSPM_MADI_INPUT_RMS_L + i*4);
			levels->playback_rms[i] =
				((uint64_t)readl(hdspm->iobase +
					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
				(uint64_t)readl(hdspm->iobase +
					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
			levels->output_rms[i] =
				((uint64_t)readl(hdspm->iobase +
					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
				(uint64_t)readl(hdspm->iobase +
						HDSPM_MADI_OUTPUT_RMS_L + i*4);
		}

		if (hdspm->system_sample_rate > 96000) {
			levels->speed = qs;
		} else if (hdspm->system_sample_rate > 48000) {
			levels->speed = ds;
		} else {
			levels->speed = ss;
		}
		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);

		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
		if (0 != s) {
			/* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
			 */
			return -EFAULT;
		}
		break;

	case SNDRV_HDSPM_IOCTL_GET_LTC:
		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
		if (i & HDSPM_TCO1_LTC_Input_valid) {
			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
				HDSPM_TCO1_LTC_Format_MSB)) {
			case 0:
				ltc.format = fps_24;
				break;
			case HDSPM_TCO1_LTC_Format_LSB:
				ltc.format = fps_25;
				break;
			case HDSPM_TCO1_LTC_Format_MSB:
				ltc.format = fps_2997;
				break;
			default:
				ltc.format = 30;
				break;
			}
			if (i & HDSPM_TCO1_set_drop_frame_flag) {
				ltc.frame = drop_frame;
			} else {
				ltc.frame = full_frame;
			}
		} else {
			ltc.format = format_invalid;
			ltc.frame = frame_invalid;
		}
		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
			ltc.input_format = ntsc;
		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
			ltc.input_format = pal;
		} else {
			ltc.input_format = no_video;
		}

		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
		if (0 != s) {
			/*
			 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
			return -EFAULT;
		}

		break;

	case SNDRV_HDSPM_IOCTL_GET_CONFIG:

		spin_lock_irq(&hdspm->lock);
		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);

		info.system_sample_rate = hdspm->system_sample_rate;
		info.autosync_sample_rate =
			hdspm_external_sample_rate(hdspm);
		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
		info.clock_source = hdspm_clock_source(hdspm);
		info.autosync_ref = hdspm_autosync_ref(hdspm);
		info.line_out = hdspm_line_out(hdspm);
		info.passthru = 0;
		spin_unlock_irq(&hdspm->lock);
		if (copy_to_user((void __user *) arg, &info, sizeof(info)))
			return -EFAULT;
		break;

	case SNDRV_HDSPM_IOCTL_GET_STATUS:
		status.card_type = hdspm->io_type;

		status.autosync_source = hdspm_autosync_ref(hdspm);

		status.card_clock = 110069313433624ULL;
		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);

		switch (hdspm->io_type) {
		case MADI:
		case MADIface:
			status.card_specific.madi.sync_wc =
				hdspm_wc_sync_check(hdspm);
			status.card_specific.madi.sync_madi =
				hdspm_madi_sync_check(hdspm);
			status.card_specific.madi.sync_tco =
				hdspm_tco_sync_check(hdspm);
			status.card_specific.madi.sync_in =
				hdspm_sync_in_sync_check(hdspm);

			statusregister =
				hdspm_read(hdspm, HDSPM_statusRegister);
			status.card_specific.madi.madi_input =
				(statusregister & HDSPM_AB_int) ? 1 : 0;
			status.card_specific.madi.channel_format =
				(statusregister & HDSPM_TX_64ch) ? 1 : 0;
			/* TODO: Mac driver sets it when f_s>48kHz */
			status.card_specific.madi.frame_format = 0;

		default:
			break;
		}

		if (copy_to_user((void __user *) arg, &status, sizeof(status)))
			return -EFAULT;


		break;

	case SNDRV_HDSPM_IOCTL_GET_VERSION:
		hdspm_version.card_type = hdspm->io_type;
		strncpy(hdspm_version.cardname, hdspm->card_name,
				sizeof(hdspm_version.cardname));
		hdspm_version.serial = (hdspm_read(hdspm,
					HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
		hdspm_version.firmware_rev = hdspm->firmware_rev;
		hdspm_version.addons = 0;
		if (hdspm->tco)
			hdspm_version.addons |= HDSPM_ADDON_TCO;

		if (copy_to_user((void __user *) arg, &hdspm_version,
					sizeof(hdspm_version)))
			return -EFAULT;
		break;

	case SNDRV_HDSPM_IOCTL_GET_MIXER:
		if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer)))
			return -EFAULT;
		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
					sizeof(struct hdspm_mixer)))
			return -EFAULT;
		break;

	default:
		return -EINVAL;
	}
	return 0;
}

static struct snd_pcm_ops snd_hdspm_playback_ops = {
	.open = snd_hdspm_playback_open,
	.close = snd_hdspm_playback_release,
	.ioctl = snd_hdspm_ioctl,
	.hw_params = snd_hdspm_hw_params,
	.hw_free = snd_hdspm_hw_free,
	.prepare = snd_hdspm_prepare,
	.trigger = snd_hdspm_trigger,
	.pointer = snd_hdspm_hw_pointer,
	.page = snd_pcm_sgbuf_ops_page,
};

static struct snd_pcm_ops snd_hdspm_capture_ops = {
	.open = snd_hdspm_capture_open,
	.close = snd_hdspm_capture_release,
	.ioctl = snd_hdspm_ioctl,
	.hw_params = snd_hdspm_hw_params,
	.hw_free = snd_hdspm_hw_free,
	.prepare = snd_hdspm_prepare,
	.trigger = snd_hdspm_trigger,
	.pointer = snd_hdspm_hw_pointer,
	.page = snd_pcm_sgbuf_ops_page,
};

static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
					    struct hdspm * hdspm)
{
	struct snd_hwdep *hw;
	int err;

	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
	if (err < 0)
		return err;

	hdspm->hwdep = hw;
	hw->private_data = hdspm;
	strcpy(hw->name, "HDSPM hwdep interface");

	hw->ops.open = snd_hdspm_hwdep_dummy_op;
	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
	hw->ops.release = snd_hdspm_hwdep_dummy_op;

	return 0;
}


/*------------------------------------------------------------
   memory interface
 ------------------------------------------------------------*/
static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm)
{
	int err;
	struct snd_pcm *pcm;
	size_t wanted;

	pcm = hdspm->pcm;

	wanted = HDSPM_DMA_AREA_BYTES;

	err =
	     snd_pcm_lib_preallocate_pages_for_all(pcm,
						   SNDRV_DMA_TYPE_DEV_SG,
						   snd_dma_pci_data(hdspm->pci),
						   wanted,
						   wanted);
	if (err < 0) {
		snd_printdd("Could not preallocate %zd Bytes\n", wanted);

		return err;
	} else
		snd_printdd(" Preallocated %zd Bytes\n", wanted);

	return 0;
}


static void hdspm_set_sgbuf(struct hdspm *hdspm,
			    struct snd_pcm_substream *substream,
			     unsigned int reg, int channels)
{
	int i;

	/* continuous memory segment */
	for (i = 0; i < (channels * 16); i++)
		hdspm_write(hdspm, reg + 4 * i,
				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
}


/* ------------- ALSA Devices ---------------------------- */
static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
					  struct hdspm *hdspm)
{
	struct snd_pcm *pcm;
	int err;

	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
	if (err < 0)
		return err;

	hdspm->pcm = pcm;
	pcm->private_data = hdspm;
	strcpy(pcm->name, hdspm->card_name);

	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
			&snd_hdspm_playback_ops);
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
			&snd_hdspm_capture_ops);

	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;

	err = snd_hdspm_preallocate_memory(hdspm);
	if (err < 0)
		return err;

	return 0;
}

static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
{
	snd_hdspm_flush_midi_input(hdspm, 0);
	snd_hdspm_flush_midi_input(hdspm, 1);
}

static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
						   struct hdspm * hdspm)
{
	int err, i;

	snd_printdd("Create card...\n");
	err = snd_hdspm_create_pcm(card, hdspm);
	if (err < 0)
		return err;

	i = 0;
	while (i < hdspm->midiPorts) {
		err = snd_hdspm_create_midi(card, hdspm, i);
		if (err < 0) {
			return err;
		}
		i++;
	}

	err = snd_hdspm_create_controls(card, hdspm);
	if (err < 0)
		return err;

	err = snd_hdspm_create_hwdep(card, hdspm);
	if (err < 0)
		return err;

	snd_printdd("proc init...\n");
	snd_hdspm_proc_init(hdspm);

	hdspm->system_sample_rate = -1;
	hdspm->last_external_sample_rate = -1;
	hdspm->last_internal_sample_rate = -1;
	hdspm->playback_pid = -1;
	hdspm->capture_pid = -1;
	hdspm->capture_substream = NULL;
	hdspm->playback_substream = NULL;

	snd_printdd("Set defaults...\n");
	err = snd_hdspm_set_defaults(hdspm);
	if (err < 0)
		return err;

	snd_printdd("Update mixer controls...\n");
	hdspm_update_simple_mixer_controls(hdspm);

	snd_printdd("Initializeing complete ???\n");

	err = snd_card_register(card);
	if (err < 0) {
		snd_printk(KERN_ERR "HDSPM: error registering card\n");
		return err;
	}

	snd_printdd("... yes now\n");

	return 0;
}

static int __devinit snd_hdspm_create(struct snd_card *card,
		struct hdspm *hdspm) {

	struct pci_dev *pci = hdspm->pci;
	int err;
	unsigned long io_extent;

	hdspm->irq = -1;
	hdspm->card = card;

	spin_lock_init(&hdspm->lock);

	pci_read_config_word(hdspm->pci,
			PCI_CLASS_REVISION, &hdspm->firmware_rev);

	strcpy(card->mixername, "Xilinx FPGA");
	strcpy(card->driver, "HDSPM");

	switch (hdspm->firmware_rev) {
	case HDSPM_MADI_REV:
		hdspm->io_type = MADI;
		hdspm->card_name = "RME MADI";
		hdspm->midiPorts = 3;
		break;
	case HDSPM_RAYDAT_REV:
		hdspm->io_type = RayDAT;
		hdspm->card_name = "RME RayDAT";
		hdspm->midiPorts = 2;
		break;
	case HDSPM_AIO_REV:
		hdspm->io_type = AIO;
		hdspm->card_name = "RME AIO";
		hdspm->midiPorts = 1;
		break;
	case HDSPM_MADIFACE_REV:
		hdspm->io_type = MADIface;
		hdspm->card_name = "RME MADIface";
		hdspm->midiPorts = 1;
		break;
	case HDSPM_AES_REV:
		hdspm->io_type = AES32;
		hdspm->card_name = "RME AES32";
		hdspm->midiPorts = 2;
		break;
	}

	err = pci_enable_device(pci);
	if (err < 0)
		return err;

	pci_set_master(hdspm->pci);

	err = pci_request_regions(pci, "hdspm");
	if (err < 0)
		return err;

	hdspm->port = pci_resource_start(pci, 0);
	io_extent = pci_resource_len(pci, 0);

	snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
			hdspm->port, hdspm->port + io_extent - 1);

	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
	if (!hdspm->iobase) {
		snd_printk(KERN_ERR "HDSPM: "
				"unable to remap region 0x%lx-0x%lx\n",
				hdspm->port, hdspm->port + io_extent - 1);
		return -EBUSY;
	}
	snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
			(unsigned long)hdspm->iobase, hdspm->port,
			hdspm->port + io_extent - 1);

	if (request_irq(pci->irq, snd_hdspm_interrupt,
				IRQF_SHARED, "hdspm", hdspm)) {
		snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
		return -EBUSY;
	}

	snd_printdd("use IRQ %d\n", pci->irq);

	hdspm->irq = pci->irq;

	snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
			sizeof(struct hdspm_mixer));
	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
	if (!hdspm->mixer) {
		snd_printk(KERN_ERR "HDSPM: "
				"unable to kmalloc Mixer memory of %d Bytes\n",
				(int)sizeof(struct hdspm_mixer));
		return err;
	}

	hdspm->port_names_in = NULL;
	hdspm->port_names_out = NULL;

	switch (hdspm->io_type) {
	case AES32:
		hdspm->ss_in_channels = hdspm->ss_out_channels = 16;
		hdspm->ds_in_channels = hdspm->ds_out_channels = 16;
		hdspm->qs_in_channels = hdspm->qs_out_channels = 16;

		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
			channel_map_aes32;
		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
			channel_map_aes32;
		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
			channel_map_aes32;
		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
			texts_ports_aes32;
		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
			texts_ports_aes32;
		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
			texts_ports_aes32;

		hdspm->max_channels_out = hdspm->max_channels_in = 16;
		hdspm->port_names_in = hdspm->port_names_out =
			texts_ports_aes32;
		hdspm->channel_map_in = hdspm->channel_map_out =
			channel_map_aes32;

		break;

	case MADI:
	case MADIface:
		hdspm->ss_in_channels = hdspm->ss_out_channels =
			MADI_SS_CHANNELS;
		hdspm->ds_in_channels = hdspm->ds_out_channels =
			MADI_DS_CHANNELS;
		hdspm->qs_in_channels = hdspm->qs_out_channels =
			MADI_QS_CHANNELS;

		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
			channel_map_unity_ss;
		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
			channel_map_unity_ss;
		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
			channel_map_unity_ss;

		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
			texts_ports_madi;
		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
			texts_ports_madi;
		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
			texts_ports_madi;
		break;

	case AIO:
		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
			snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
		}

		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;

		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
		hdspm->channel_map_out_qs = channel_map_aio_out_qs;

		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
		hdspm->channel_map_in_qs = channel_map_aio_in_qs;

		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
		hdspm->port_names_out_qs = texts_ports_aio_out_qs;

		break;

	case RayDAT:
		hdspm->ss_in_channels = hdspm->ss_out_channels =
			RAYDAT_SS_CHANNELS;
		hdspm->ds_in_channels = hdspm->ds_out_channels =
			RAYDAT_DS_CHANNELS;
		hdspm->qs_in_channels = hdspm->qs_out_channels =
			RAYDAT_QS_CHANNELS;

		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;

		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
			channel_map_raydat_ss;
		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
			channel_map_raydat_ds;
		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
			channel_map_raydat_qs;
		hdspm->channel_map_in = hdspm->channel_map_out =
			channel_map_raydat_ss;

		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
			texts_ports_raydat_ss;
		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
			texts_ports_raydat_ds;
		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
			texts_ports_raydat_qs;


		break;

	}

	/* TCO detection */
	switch (hdspm->io_type) {
	case AIO:
	case RayDAT:
		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
				HDSPM_s2_tco_detect) {
			hdspm->midiPorts++;
			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
					GFP_KERNEL);
			if (NULL != hdspm->tco) {
				hdspm_tco_write(hdspm);
			}
			snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
		} else {
			hdspm->tco = NULL;
		}
		break;

	case MADI:
		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
			hdspm->midiPorts++;
			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
					GFP_KERNEL);
			if (NULL != hdspm->tco) {
				hdspm_tco_write(hdspm);
			}
			snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
		} else {
			hdspm->tco = NULL;
		}
		break;

	default:
		hdspm->tco = NULL;
	}

	/* texts */
	switch (hdspm->io_type) {
	case AES32:
		if (hdspm->tco) {
			hdspm->texts_autosync = texts_autosync_aes_tco;
			hdspm->texts_autosync_items = 10;
		} else {
			hdspm->texts_autosync = texts_autosync_aes;
			hdspm->texts_autosync_items = 9;
		}
		break;

	case MADI:
		if (hdspm->tco) {
			hdspm->texts_autosync = texts_autosync_madi_tco;
			hdspm->texts_autosync_items = 4;
		} else {
			hdspm->texts_autosync = texts_autosync_madi;
			hdspm->texts_autosync_items = 3;
		}
		break;

	case MADIface:

		break;

	case RayDAT:
		if (hdspm->tco) {
			hdspm->texts_autosync = texts_autosync_raydat_tco;
			hdspm->texts_autosync_items = 9;
		} else {
			hdspm->texts_autosync = texts_autosync_raydat;
			hdspm->texts_autosync_items = 8;
		}
		break;

	case AIO:
		if (hdspm->tco) {
			hdspm->texts_autosync = texts_autosync_aio_tco;
			hdspm->texts_autosync_items = 6;
		} else {
			hdspm->texts_autosync = texts_autosync_aio;
			hdspm->texts_autosync_items = 5;
		}
		break;

	}

	tasklet_init(&hdspm->midi_tasklet,
			hdspm_midi_tasklet, (unsigned long) hdspm);

	snd_printdd("create alsa devices.\n");
	err = snd_hdspm_create_alsa_devices(card, hdspm);
	if (err < 0)
		return err;

	snd_hdspm_initialize_midi_flush(hdspm);

	return 0;
}


static int snd_hdspm_free(struct hdspm * hdspm)
{

	if (hdspm->port) {

		/* stop th audio, and cancel all interrupts */
		hdspm->control_register &=
		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
		hdspm_write(hdspm, HDSPM_controlRegister,
			    hdspm->control_register);
	}

	if (hdspm->irq >= 0)
		free_irq(hdspm->irq, (void *) hdspm);

	kfree(hdspm->mixer);

	if (hdspm->iobase)
		iounmap(hdspm->iobase);

	if (hdspm->port)
		pci_release_regions(hdspm->pci);

	pci_disable_device(hdspm->pci);
	return 0;
}


static void snd_hdspm_card_free(struct snd_card *card)
{
	struct hdspm *hdspm = card->private_data;

	if (hdspm)
		snd_hdspm_free(hdspm);
}


static int __devinit snd_hdspm_probe(struct pci_dev *pci,
				     const struct pci_device_id *pci_id)
{
	static int dev;
	struct hdspm *hdspm;
	struct snd_card *card;
	int err;

	if (dev >= SNDRV_CARDS)
		return -ENODEV;
	if (!enable[dev]) {
		dev++;
		return -ENOENT;
	}

	err = snd_card_create(index[dev], id[dev],
			THIS_MODULE, sizeof(struct hdspm), &card);
	if (err < 0)
		return err;

	hdspm = card->private_data;
	card->private_free = snd_hdspm_card_free;
	hdspm->dev = dev;
	hdspm->pci = pci;

	snd_card_set_dev(card, &pci->dev);

	err = snd_hdspm_create(card, hdspm);
	if (err < 0) {
		snd_card_free(card);
		return err;
	}

	if (hdspm->io_type != MADIface) {
		sprintf(card->shortname, "%s_%x",
			hdspm->card_name,
			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
			hdspm->card_name,
			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF,
			hdspm->port, hdspm->irq);
	} else {
		sprintf(card->shortname, "%s", hdspm->card_name);
		sprintf(card->longname, "%s at 0x%lx, irq %d",
				hdspm->card_name, hdspm->port, hdspm->irq);
	}

	err = snd_card_register(card);
	if (err < 0) {
		snd_card_free(card);
		return err;
	}

	pci_set_drvdata(pci, card);

	dev++;
	return 0;
}

static void __devexit snd_hdspm_remove(struct pci_dev *pci)
{
	snd_card_free(pci_get_drvdata(pci));
	pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
	.name = "RME Hammerfall DSP MADI",
	.id_table = snd_hdspm_ids,
	.probe = snd_hdspm_probe,
	.remove = __devexit_p(snd_hdspm_remove),
};


static int __init alsa_card_hdspm_init(void)
{
	return pci_register_driver(&driver);
}

static void __exit alsa_card_hdspm_exit(void)
{
	pci_unregister_driver(&driver);
}

module_init(alsa_card_hdspm_init)
module_exit(alsa_card_hdspm_exit)