aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2010-09-07 10:38:22 -0700
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2011-05-26 09:42:23 -0700
commit23b5c8fa01b723c70a20d6e4ef4ff54c7656d6e1 (patch)
treed03faad5e19848b35a019793b9a1cbc0bb68a708 /kernel
parent4305ce7894dd38b0633bfc8978437320119223bd (diff)
downloadkernel_samsung_tuna-23b5c8fa01b723c70a20d6e4ef4ff54c7656d6e1.zip
kernel_samsung_tuna-23b5c8fa01b723c70a20d6e4ef4ff54c7656d6e1.tar.gz
kernel_samsung_tuna-23b5c8fa01b723c70a20d6e4ef4ff54c7656d6e1.tar.bz2
rcu: Decrease memory-barrier usage based on semi-formal proof
(Note: this was reverted, and is now being re-applied in pieces, with this being the fifth and final piece. See below for the reason that it is now felt to be safe to re-apply this.) Commit d09b62d fixed grace-period synchronization, but left some smp_mb() invocations in rcu_process_callbacks() that are no longer needed, but sheer paranoia prevented them from being removed. This commit removes them and provides a proof of correctness in their absence. It also adds a memory barrier to rcu_report_qs_rsp() immediately before the update to rsp->completed in order to handle the theoretical possibility that the compiler or CPU might move massive quantities of code into a lock-based critical section. This also proves that the sheer paranoia was not entirely unjustified, at least from a theoretical point of view. In addition, the old dyntick-idle synchronization depended on the fact that grace periods were many milliseconds in duration, so that it could be assumed that no dyntick-idle CPU could reorder a memory reference across an entire grace period. Unfortunately for this design, the addition of expedited grace periods breaks this assumption, which has the unfortunate side-effect of requiring atomic operations in the functions that track dyntick-idle state for RCU. (There is some hope that the algorithms used in user-level RCU might be applied here, but some work is required to handle the NMIs that user-space applications can happily ignore. For the short term, better safe than sorry.) This proof assumes that neither compiler nor CPU will allow a lock acquisition and release to be reordered, as doing so can result in deadlock. The proof is as follows: 1. A given CPU declares a quiescent state under the protection of its leaf rcu_node's lock. 2. If there is more than one level of rcu_node hierarchy, the last CPU to declare a quiescent state will also acquire the ->lock of the next rcu_node up in the hierarchy, but only after releasing the lower level's lock. The acquisition of this lock clearly cannot occur prior to the acquisition of the leaf node's lock. 3. Step 2 repeats until we reach the root rcu_node structure. Please note again that only one lock is held at a time through this process. The acquisition of the root rcu_node's ->lock must occur after the release of that of the leaf rcu_node. 4. At this point, we set the ->completed field in the rcu_state structure in rcu_report_qs_rsp(). However, if the rcu_node hierarchy contains only one rcu_node, then in theory the code preceding the quiescent state could leak into the critical section. We therefore precede the update of ->completed with a memory barrier. All CPUs will therefore agree that any updates preceding any report of a quiescent state will have happened before the update of ->completed. 5. Regardless of whether a new grace period is needed, rcu_start_gp() will propagate the new value of ->completed to all of the leaf rcu_node structures, under the protection of each rcu_node's ->lock. If a new grace period is needed immediately, this propagation will occur in the same critical section that ->completed was set in, but courtesy of the memory barrier in #4 above, is still seen to follow any pre-quiescent-state activity. 6. When a given CPU invokes __rcu_process_gp_end(), it becomes aware of the end of the old grace period and therefore makes any RCU callbacks that were waiting on that grace period eligible for invocation. If this CPU is the same one that detected the end of the grace period, and if there is but a single rcu_node in the hierarchy, we will still be in the single critical section. In this case, the memory barrier in step #4 guarantees that all callbacks will be seen to execute after each CPU's quiescent state. On the other hand, if this is a different CPU, it will acquire the leaf rcu_node's ->lock, and will again be serialized after each CPU's quiescent state for the old grace period. On the strength of this proof, this commit therefore removes the memory barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp(). The effect is to reduce the number of memory barriers by one and to reduce the frequency of execution from about once per scheduling tick per CPU to once per grace period. This was reverted do to hangs found during testing by Yinghai Lu and Ingo Molnar. Frederic Weisbecker supplied Yinghai with tracing that located the underlying problem, and Frederic also provided the fix. The underlying problem was that the HARDIRQ_ENTER() macro from lib/locking-selftest.c invoked irq_enter(), which in turn invokes rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which does not invoke rcu_irq_exit(). This situation resulted in calls to rcu_irq_enter() that were not balanced by the required calls to rcu_irq_exit(). Therefore, after these locking selftests completed, RCU's dyntick-idle nesting count was a large number (for example, 72), which caused RCU to to conclude that the affected CPU was not in dyntick-idle mode when in fact it was. RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting in hangs. In contrast, with Frederic's patch, which replaces the irq_enter() in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU running the test is already marked as not being in dyntick-idle mode. This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU then has no problem working out which CPUs are in dyntick-idle mode and which are not. The reason that the imbalance was not noticed before the barrier patch was applied is that the old implementation of rcu_enter_nohz() ignored the nesting depth. This could still result in delays, but much shorter ones. Whenever there was a delay, RCU would IPI the CPU with the unbalanced nesting level, which would eventually result in rcu_enter_nohz() being called, which in turn would force RCU to see that the CPU was in dyntick-idle mode. The reason that very few people noticed the problem is that the mismatched irq_enter() vs. __irq_exit() occured only when the kernel was built with CONFIG_DEBUG_LOCKING_API_SELFTESTS. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Diffstat (limited to 'kernel')
-rw-r--r--kernel/rcutree.c111
-rw-r--r--kernel/rcutree.h9
-rw-r--r--kernel/rcutree_plugin.h7
-rw-r--r--kernel/rcutree_trace.c12
4 files changed, 62 insertions, 77 deletions
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 99c6038..5616b17 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -162,7 +162,7 @@ EXPORT_SYMBOL_GPL(rcu_note_context_switch);
#ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = 1,
- .dynticks = 1,
+ .dynticks = ATOMIC_INIT(1),
};
#endif /* #ifdef CONFIG_NO_HZ */
@@ -321,13 +321,25 @@ void rcu_enter_nohz(void)
unsigned long flags;
struct rcu_dynticks *rdtp;
- smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
- if (--rdtp->dynticks_nesting == 0)
- rdtp->dynticks++;
- WARN_ON_ONCE(rdtp->dynticks & 0x1);
+ if (--rdtp->dynticks_nesting) {
+ local_irq_restore(flags);
+ return;
+ }
+ /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
+ smp_mb__before_atomic_inc(); /* See above. */
+ atomic_inc(&rdtp->dynticks);
+ smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
+ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
local_irq_restore(flags);
+
+ /* If the interrupt queued a callback, get out of dyntick mode. */
+ if (in_irq() &&
+ (__get_cpu_var(rcu_sched_data).nxtlist ||
+ __get_cpu_var(rcu_bh_data).nxtlist ||
+ rcu_preempt_needs_cpu(smp_processor_id())))
+ set_need_resched();
}
/*
@@ -343,11 +355,16 @@ void rcu_exit_nohz(void)
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
- rdtp->dynticks++;
- rdtp->dynticks_nesting++;
- WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
+ if (rdtp->dynticks_nesting++) {
+ local_irq_restore(flags);
+ return;
+ }
+ smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
+ atomic_inc(&rdtp->dynticks);
+ /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
+ smp_mb__after_atomic_inc(); /* See above. */
+ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
local_irq_restore(flags);
- smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}
/**
@@ -361,11 +378,15 @@ void rcu_nmi_enter(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
- if (rdtp->dynticks & 0x1)
+ if (rdtp->dynticks_nmi_nesting == 0 &&
+ (atomic_read(&rdtp->dynticks) & 0x1))
return;
- rdtp->dynticks_nmi++;
- WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
- smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
+ rdtp->dynticks_nmi_nesting++;
+ smp_mb__before_atomic_inc(); /* Force delay from prior write. */
+ atomic_inc(&rdtp->dynticks);
+ /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
+ smp_mb__after_atomic_inc(); /* See above. */
+ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
}
/**
@@ -379,11 +400,14 @@ void rcu_nmi_exit(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
- if (rdtp->dynticks & 0x1)
+ if (rdtp->dynticks_nmi_nesting == 0 ||
+ --rdtp->dynticks_nmi_nesting != 0)
return;
- smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
- rdtp->dynticks_nmi++;
- WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
+ /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
+ smp_mb__before_atomic_inc(); /* See above. */
+ atomic_inc(&rdtp->dynticks);
+ smp_mb__after_atomic_inc(); /* Force delay to next write. */
+ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
}
/**
@@ -394,13 +418,7 @@ void rcu_nmi_exit(void)
*/
void rcu_irq_enter(void)
{
- struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
-
- if (rdtp->dynticks_nesting++)
- return;
- rdtp->dynticks++;
- WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
- smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
+ rcu_exit_nohz();
}
/**
@@ -412,19 +430,7 @@ void rcu_irq_enter(void)
*/
void rcu_irq_exit(void)
{
- struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
-
- if (--rdtp->dynticks_nesting)
- return;
- smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
- rdtp->dynticks++;
- WARN_ON_ONCE(rdtp->dynticks & 0x1);
-
- /* If the interrupt queued a callback, get out of dyntick mode. */
- if (in_irq() &&
- (__this_cpu_read(rcu_sched_data.nxtlist) ||
- __this_cpu_read(rcu_bh_data.nxtlist)))
- set_need_resched();
+ rcu_enter_nohz();
}
#ifdef CONFIG_SMP
@@ -436,19 +442,8 @@ void rcu_irq_exit(void)
*/
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
- int ret;
- int snap;
- int snap_nmi;
-
- snap = rdp->dynticks->dynticks;
- snap_nmi = rdp->dynticks->dynticks_nmi;
- smp_mb(); /* Order sampling of snap with end of grace period. */
- rdp->dynticks_snap = snap;
- rdp->dynticks_nmi_snap = snap_nmi;
- ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
- if (ret)
- rdp->dynticks_fqs++;
- return ret;
+ rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
+ return 0;
}
/*
@@ -459,16 +454,11 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp)
*/
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
- long curr;
- long curr_nmi;
- long snap;
- long snap_nmi;
+ unsigned long curr;
+ unsigned long snap;
- curr = rdp->dynticks->dynticks;
- snap = rdp->dynticks_snap;
- curr_nmi = rdp->dynticks->dynticks_nmi;
- snap_nmi = rdp->dynticks_nmi_snap;
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
+ curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
+ snap = (unsigned long)rdp->dynticks_snap;
/*
* If the CPU passed through or entered a dynticks idle phase with
@@ -478,8 +468,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
* read-side critical section that started before the beginning
* of the current RCU grace period.
*/
- if ((curr != snap || (curr & 0x1) == 0) &&
- (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
+ if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
rdp->dynticks_fqs++;
return 1;
}
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index 2576648..93d4a1c 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -84,11 +84,9 @@
* Dynticks per-CPU state.
*/
struct rcu_dynticks {
- int dynticks_nesting; /* Track nesting level, sort of. */
- int dynticks; /* Even value for dynticks-idle, else odd. */
- int dynticks_nmi; /* Even value for either dynticks-idle or */
- /* not in nmi handler, else odd. So this */
- /* remains even for nmi from irq handler. */
+ int dynticks_nesting; /* Track irq/process nesting level. */
+ int dynticks_nmi_nesting; /* Track NMI nesting level. */
+ atomic_t dynticks; /* Even value for dynticks-idle, else odd. */
};
/* RCU's kthread states for tracing. */
@@ -284,7 +282,6 @@ struct rcu_data {
/* 3) dynticks interface. */
struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */
int dynticks_snap; /* Per-GP tracking for dynticks. */
- int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */
#endif /* #ifdef CONFIG_NO_HZ */
/* 4) reasons this CPU needed to be kicked by force_quiescent_state */
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 3f6559a..ed339702 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -1520,7 +1520,6 @@ int rcu_needs_cpu(int cpu)
{
int c = 0;
int snap;
- int snap_nmi;
int thatcpu;
/* Check for being in the holdoff period. */
@@ -1531,10 +1530,10 @@ int rcu_needs_cpu(int cpu)
for_each_online_cpu(thatcpu) {
if (thatcpu == cpu)
continue;
- snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
- snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
+ snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
+ thatcpu).dynticks);
smp_mb(); /* Order sampling of snap with end of grace period. */
- if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
+ if ((snap & 0x1) != 0) {
per_cpu(rcu_dyntick_drain, cpu) = 0;
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
return rcu_needs_cpu_quick_check(cpu);
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index aa0fd72..9678cc3 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -69,10 +69,10 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
rdp->passed_quiesc, rdp->passed_quiesc_completed,
rdp->qs_pending);
#ifdef CONFIG_NO_HZ
- seq_printf(m, " dt=%d/%d dn=%d df=%lu",
- rdp->dynticks->dynticks,
+ seq_printf(m, " dt=%d/%d/%d df=%lu",
+ atomic_read(&rdp->dynticks->dynticks),
rdp->dynticks->dynticks_nesting,
- rdp->dynticks->dynticks_nmi,
+ rdp->dynticks->dynticks_nmi_nesting,
rdp->dynticks_fqs);
#endif /* #ifdef CONFIG_NO_HZ */
seq_printf(m, " of=%lu ri=%lu", rdp->offline_fqs, rdp->resched_ipi);
@@ -141,9 +141,9 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp)
rdp->qs_pending);
#ifdef CONFIG_NO_HZ
seq_printf(m, ",%d,%d,%d,%lu",
- rdp->dynticks->dynticks,
+ atomic_read(&rdp->dynticks->dynticks),
rdp->dynticks->dynticks_nesting,
- rdp->dynticks->dynticks_nmi,
+ rdp->dynticks->dynticks_nmi_nesting,
rdp->dynticks_fqs);
#endif /* #ifdef CONFIG_NO_HZ */
seq_printf(m, ",%lu,%lu", rdp->offline_fqs, rdp->resched_ipi);
@@ -167,7 +167,7 @@ static int show_rcudata_csv(struct seq_file *m, void *unused)
{
seq_puts(m, "\"CPU\",\"Online?\",\"c\",\"g\",\"pq\",\"pqc\",\"pq\",");
#ifdef CONFIG_NO_HZ
- seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\",");
+ seq_puts(m, "\"dt\",\"dt nesting\",\"dt NMI nesting\",\"df\",");
#endif /* #ifdef CONFIG_NO_HZ */
seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\",\"ci\",\"co\",\"ca\"\n");
#ifdef CONFIG_TREE_PREEMPT_RCU