1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*
* OMAP2PLUS cpufreq driver
*
* CPU frequency scaling for OMAP using OPP information
*
* Copyright (C) 2005 Nokia Corporation
* Written by Tony Lindgren <tony@atomide.com>
*
* Based on cpu-sa1110.c, Copyright (C) 2001 Russell King
*
* Copyright (C) 2007-2011 Texas Instruments, Inc.
* Updated to support OMAP3
* Rajendra Nayak <rnayak@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/opp.h>
#include <linux/cpu.h>
#include <linux/platform_device.h>
#include <asm/system.h>
#include <asm/smp_plat.h>
#include <asm/cpu.h>
#include <plat/clock.h>
#include <plat/omap-pm.h>
#include <plat/common.h>
#include <mach/hardware.h>
#include "dvfs.h"
#ifdef CONFIG_SMP
struct lpj_info {
unsigned long ref;
unsigned int freq;
};
static DEFINE_PER_CPU(struct lpj_info, lpj_ref);
static struct lpj_info global_lpj_ref;
#endif
static struct cpufreq_frequency_table *freq_table;
static atomic_t freq_table_users = ATOMIC_INIT(0);
static struct clk *mpu_clk;
static char *mpu_clk_name;
static struct device *mpu_dev;
static DEFINE_MUTEX(omap_cpufreq_lock);
static unsigned int max_thermal;
static unsigned int max_freq;
static unsigned int current_target_freq;
static bool omap_cpufreq_ready;
static bool omap_cpufreq_suspended;
static unsigned int omap_getspeed(unsigned int cpu)
{
unsigned long rate;
if (cpu >= NR_CPUS)
return 0;
rate = clk_get_rate(mpu_clk) / 1000;
return rate;
}
static int omap_cpufreq_scale(unsigned int target_freq, unsigned int cur_freq)
{
unsigned int i;
int ret;
struct cpufreq_freqs freqs;
freqs.new = target_freq;
freqs.old = omap_getspeed(0);
/*
* If the new frequency is more than the thermal max allowed
* frequency, go ahead and scale the mpu device to proper frequency.
*/
if (freqs.new > max_thermal)
freqs.new = max_thermal;
if ((freqs.old == freqs.new) && (cur_freq = freqs.new))
return 0;
get_online_cpus();
/* notifiers */
for_each_online_cpu(freqs.cpu)
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
#ifdef CONFIG_CPU_FREQ_DEBUG
pr_info("cpufreq-omap: transition: %u --> %u\n", freqs.old, freqs.new);
#endif
ret = omap_device_scale(mpu_dev, mpu_dev, freqs.new * 1000);
freqs.new = omap_getspeed(0);
#ifdef CONFIG_SMP
/*
* Note that loops_per_jiffy is not updated on SMP systems in
* cpufreq driver. So, update the per-CPU loops_per_jiffy value
* on frequency transition. We need to update all dependent CPUs.
*/
for_each_possible_cpu(i) {
struct lpj_info *lpj = &per_cpu(lpj_ref, i);
if (!lpj->freq) {
lpj->ref = per_cpu(cpu_data, i).loops_per_jiffy;
lpj->freq = freqs.old;
}
per_cpu(cpu_data, i).loops_per_jiffy =
cpufreq_scale(lpj->ref, lpj->freq, freqs.new);
}
/* And don't forget to adjust the global one */
if (!global_lpj_ref.freq) {
global_lpj_ref.ref = loops_per_jiffy;
global_lpj_ref.freq = freqs.old;
}
loops_per_jiffy = cpufreq_scale(global_lpj_ref.ref, global_lpj_ref.freq,
freqs.new);
#endif
/* notifiers */
for_each_online_cpu(freqs.cpu)
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
put_online_cpus();
return ret;
}
static unsigned int omap_thermal_lower_speed(void)
{
unsigned int max = 0;
unsigned int curr;
int i;
curr = max_thermal;
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
if (freq_table[i].frequency > max &&
freq_table[i].frequency < curr)
max = freq_table[i].frequency;
if (!max)
return curr;
return max;
}
void omap_thermal_throttle(void)
{
unsigned int cur;
if (!omap_cpufreq_ready) {
pr_warn_once("%s: Thermal throttle prior to CPUFREQ ready\n",
__func__);
return;
}
mutex_lock(&omap_cpufreq_lock);
max_thermal = omap_thermal_lower_speed();
pr_warn("%s: temperature too high, cpu throttle at max %u\n",
__func__, max_thermal);
if (!omap_cpufreq_suspended) {
cur = omap_getspeed(0);
if (cur > max_thermal)
omap_cpufreq_scale(max_thermal, cur);
}
mutex_unlock(&omap_cpufreq_lock);
}
void omap_thermal_unthrottle(void)
{
unsigned int cur;
if (!omap_cpufreq_ready)
return;
mutex_lock(&omap_cpufreq_lock);
if (max_thermal == max_freq) {
pr_warn("%s: not throttling\n", __func__);
goto out;
}
max_thermal = max_freq;
pr_warn("%s: temperature reduced, ending cpu throttling\n", __func__);
if (!omap_cpufreq_suspended) {
cur = omap_getspeed(0);
omap_cpufreq_scale(current_target_freq, cur);
}
out:
mutex_unlock(&omap_cpufreq_lock);
}
static int omap_verify_speed(struct cpufreq_policy *policy)
{
if (!freq_table)
return -EINVAL;
return cpufreq_frequency_table_verify(policy, freq_table);
}
static int omap_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int i;
int ret = 0;
if (!freq_table) {
dev_err(mpu_dev, "%s: cpu%d: no freq table!\n", __func__,
policy->cpu);
return -EINVAL;
}
ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
relation, &i);
if (ret) {
dev_dbg(mpu_dev, "%s: cpu%d: no freq match for %d(ret=%d)\n",
__func__, policy->cpu, target_freq, ret);
return ret;
}
mutex_lock(&omap_cpufreq_lock);
current_target_freq = freq_table[i].frequency;
if (!omap_cpufreq_suspended)
ret = omap_cpufreq_scale(current_target_freq, policy->cur);
mutex_unlock(&omap_cpufreq_lock);
return ret;
}
static inline void freq_table_free(void)
{
if (atomic_dec_and_test(&freq_table_users))
opp_free_cpufreq_table(mpu_dev, &freq_table);
}
static int __cpuinit omap_cpu_init(struct cpufreq_policy *policy)
{
int result = 0;
int i;
mpu_clk = clk_get(NULL, mpu_clk_name);
if (IS_ERR(mpu_clk))
return PTR_ERR(mpu_clk);
if (policy->cpu >= NR_CPUS) {
result = -EINVAL;
goto fail_ck;
}
policy->cur = policy->min = policy->max = omap_getspeed(policy->cpu);
if (atomic_inc_return(&freq_table_users) == 1)
result = opp_init_cpufreq_table(mpu_dev, &freq_table);
if (result) {
dev_err(mpu_dev, "%s: cpu%d: failed creating freq table[%d]\n",
__func__, policy->cpu, result);
goto fail_ck;
}
result = cpufreq_frequency_table_cpuinfo(policy, freq_table);
if (result)
goto fail_table;
cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
policy->cur = omap_getspeed(policy->cpu);
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
max_freq = max(freq_table[i].frequency, max_freq);
max_thermal = max_freq;
/*
* On OMAP SMP configuartion, both processors share the voltage
* and clock. So both CPUs needs to be scaled together and hence
* needs software co-ordination. Use cpufreq affected_cpus
* interface to handle this scenario. Additional is_smp() check
* is to keep SMP_ON_UP build working.
*/
if (is_smp()) {
policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
cpumask_setall(policy->cpus);
}
/* FIXME: what's the actual transition time? */
policy->cpuinfo.transition_latency = 300 * 1000;
return 0;
fail_table:
freq_table_free();
fail_ck:
clk_put(mpu_clk);
return result;
}
static int omap_cpu_exit(struct cpufreq_policy *policy)
{
freq_table_free();
clk_put(mpu_clk);
return 0;
}
static struct freq_attr *omap_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver omap_driver = {
.flags = CPUFREQ_STICKY,
.verify = omap_verify_speed,
.target = omap_target,
.get = omap_getspeed,
.init = omap_cpu_init,
.exit = omap_cpu_exit,
.name = "omap2plus",
.attr = omap_cpufreq_attr,
};
static int omap_cpufreq_suspend_noirq(struct device *dev)
{
mutex_lock(&omap_cpufreq_lock);
omap_cpufreq_suspended = true;
mutex_unlock(&omap_cpufreq_lock);
return 0;
}
static int omap_cpufreq_resume_noirq(struct device *dev)
{
unsigned int cur;
mutex_lock(&omap_cpufreq_lock);
cur = omap_getspeed(0);
if (cur != current_target_freq)
omap_cpufreq_scale(current_target_freq, cur);
omap_cpufreq_suspended = false;
mutex_unlock(&omap_cpufreq_lock);
return 0;
}
static struct dev_pm_ops omap_cpufreq_driver_pm_ops = {
.suspend_noirq = omap_cpufreq_suspend_noirq,
.resume_noirq = omap_cpufreq_resume_noirq,
};
static struct platform_driver omap_cpufreq_platform_driver = {
.driver.name = "omap_cpufreq",
.driver.pm = &omap_cpufreq_driver_pm_ops,
};
static struct platform_device omap_cpufreq_device = {
.name = "omap_cpufreq",
};
static int __init omap_cpufreq_init(void)
{
int ret;
if (cpu_is_omap24xx())
mpu_clk_name = "virt_prcm_set";
else if (cpu_is_omap34xx())
mpu_clk_name = "dpll1_ck";
else if (cpu_is_omap443x())
mpu_clk_name = "dpll_mpu_ck";
else if (cpu_is_omap446x())
mpu_clk_name = "virt_dpll_mpu_ck";
if (!mpu_clk_name) {
pr_err("%s: unsupported Silicon?\n", __func__);
return -EINVAL;
}
mpu_dev = omap2_get_mpuss_device();
if (!mpu_dev) {
pr_warning("%s: unable to get the mpu device\n", __func__);
return -EINVAL;
}
ret = cpufreq_register_driver(&omap_driver);
omap_cpufreq_ready = !ret;
if (!ret) {
int t;
t = platform_device_register(&omap_cpufreq_device);
if (t)
pr_warn("%s_init: platform_device_register failed\n",
__func__);
t = platform_driver_register(&omap_cpufreq_platform_driver);
if (t)
pr_warn("%s_init: platform_driver_register failed\n",
__func__);
}
return ret;
}
static void __exit omap_cpufreq_exit(void)
{
cpufreq_unregister_driver(&omap_driver);
platform_driver_unregister(&omap_cpufreq_platform_driver);
platform_device_unregister(&omap_cpufreq_device);
}
MODULE_DESCRIPTION("cpufreq driver for OMAP2PLUS SOCs");
MODULE_LICENSE("GPL");
late_initcall(omap_cpufreq_init);
module_exit(omap_cpufreq_exit);
|