aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-omap2/smartreflex-class1p5.c
blob: 2090884b4db134545a15e1c64284abc3841bd7e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
 * Smart reflex Class 1.5 specific implementations
 *
 * Copyright (C) 2010-2011 Texas Instruments, Inc.
 * Nishanth Menon <nm@ti.com>
 *
 * Smart reflex class 1.5 is also called periodic SW Calibration
 * Some of the highlights are as follows:
 * – Host CPU triggers OPP calibration when transitioning to non calibrated
 *   OPP
 * – SR-AVS + VP modules are used to perform calibration
 * – Once completed, the SmartReflex-AVS module can be disabled
 * – Enables savings based on process, supply DC accuracy and aging
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/kobject.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/opp.h>

#include "smartreflex.h"
#include "voltage.h"
#include "dvfs.h"

#define MAX_VDDS		3
#define SR1P5_SAMPLING_DELAY_MS	1
#define SR1P5_STABLE_SAMPLES	10
#define SR1P5_MAX_TRIGGERS	5

/*
 * We expect events in 10uS, if we don't receive it in twice as long,
 * we stop waiting for the event and use the current value
 */
#define MAX_CHECK_VPTRANS_US	20

/**
 * struct sr_class1p5_work_data - data meant to be used by calibration work
 * @work:	calibration work
 * @voltdm:		voltage domain for which we are triggering
 * @vdata:	voltage data we are calibrating
 * @num_calib_triggers:	number of triggers from calibration loop
 * @num_osc_samples:	number of samples collected by isr
 * @u_volt_samples:	private data for collecting voltage samples in
 *			case oscillations. filled by the notifier and
 *			consumed by the work item.
 * @work_active:	have we scheduled a work item?
 */
struct sr_class1p5_work_data {
	struct delayed_work work;
	struct voltagedomain *voltdm;
	struct omap_volt_data *vdata;
	u8 num_calib_triggers;
	u8 num_osc_samples;
	unsigned long u_volt_samples[SR1P5_STABLE_SAMPLES];
	bool work_active;
};

#if CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY
/* recal_work:	recalibration calibration work */
static struct delayed_work recal_work;
#endif

/**
 * sr_class1p5_notify() - isr notifier for status events
 * @voltdm:	voltage domain for which we were triggered
 * @voltdm_cdata: voltage domain specific private class data
 * @status:	notifier event to use
 *
 * This basically collects data for the work to use.
 */
static int sr_class1p5_notify(struct voltagedomain *voltdm,
			      void *voltdm_cdata,
			      u32 status)
{
	struct sr_class1p5_work_data *work_data;
	int idx = 0;

	if (IS_ERR_OR_NULL(voltdm)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	work_data = (struct sr_class1p5_work_data *)voltdm_cdata;
	if (IS_ERR_OR_NULL(work_data)) {
		pr_err("%s:%s no work data!!\n", __func__, voltdm->name);
		return -EINVAL;
	}

	/* Wait for transdone so that we know the voltage to read */
	do {
		if (omap_vp_is_transdone(voltdm))
			break;
		idx++;
		/* get some constant delay */
		udelay(1);
	} while (idx < MAX_CHECK_VPTRANS_US);

	/*
	 * NOTE:
	 * If we timeout, we still read the data,
	 * if we are oscillating+irq latencies are too high, we could
	 * have scenarios where we miss transdone event. since
	 * we waited long enough, it is still safe to read the voltage
	 * as we would have waited long enough - Dont warn for this.
	 */
	idx = (work_data->num_osc_samples) % SR1P5_STABLE_SAMPLES;
	work_data->u_volt_samples[idx] = omap_vp_get_curr_volt(voltdm);
	work_data->num_osc_samples++;

	omap_vp_clear_transdone(voltdm);


	return 0;
}

/**
 * sr_class1p5_calib_work() - work which actually does the calibration
 * @work: pointer to the work
 *
 * calibration routine uses the following logic:
 * on the first trigger, we start the isr to collect sr voltages
 * wait for stabilization delay (reschdule self instead of sleeping)
 * after the delay, see if we collected any isr events
 * if none, we have calibrated voltage.
 * if there are any, we retry untill we giveup.
 * on retry timeout, select a voltage to use as safe voltage.
 */
static void sr_class1p5_calib_work(struct work_struct *work)
{
	struct sr_class1p5_work_data *work_data =
	    container_of(work, struct sr_class1p5_work_data, work.work);
	unsigned long u_volt_safe = 0, u_volt_current = 0, u_volt_margin = 0;
	struct omap_volt_data *volt_data;
	struct voltagedomain *voltdm;
	int idx = 0;

	if (!work) {
		pr_err("%s: ooops.. null work_data?\n", __func__);
		return;
	}

	/*
	 * Handle the case where we might have just been scheduled AND
	 * 1.5 disable was called.
	 */
	if (!mutex_trylock(&omap_dvfs_lock)) {
		schedule_delayed_work(&work_data->work,
				      msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS *
						       SR1P5_STABLE_SAMPLES));
		return;
	}

	voltdm = work_data->voltdm;
	/*
	 * In the unlikely case that we did get through when unplanned,
	 * flag and return.
	 */
	if (unlikely(!work_data->work_active)) {
		pr_err("%s:%s unplanned work invocation!\n", __func__,
		       voltdm->name);
		mutex_unlock(&omap_dvfs_lock);
		return;
	}

	volt_data = work_data->vdata;

	work_data->num_calib_triggers++;
	/* if we are triggered first time, we need to start isr to sample */
	if (work_data->num_calib_triggers == 1) {
		/* We could be interrupted many times, so, only for debug */
		pr_debug("%s: %s: Calibration start: Voltage Nominal=%d\n",
			 __func__, voltdm->name, volt_data->volt_nominal);
		goto start_sampling;
	}

	/* Stop isr from interrupting our measurements :) */
	sr_notifier_control(voltdm, false);

	/*
	 * Quit sampling
	 * a) if we have oscillations
	 * b) if we have nominal voltage as the voltage
	 */
	if (work_data->num_calib_triggers == SR1P5_MAX_TRIGGERS)
		goto stop_sampling;

	/* if there are no samples captured.. SR is silent, aka stability! */
	if (!work_data->num_osc_samples) {
		/* Did we interrupt too early? */
		u_volt_current = omap_vp_get_curr_volt(voltdm);
		if (u_volt_current >= volt_data->volt_nominal)
			goto start_sampling;
		u_volt_safe = u_volt_current;
		goto done_calib;
	}

	/* we have potential oscillations/first sample */
start_sampling:
	work_data->num_osc_samples = 0;

	/* Clear transdone events so that we can go on. */
	do {
		if (!omap_vp_is_transdone(voltdm))
			break;
		idx++;
		/* get some constant delay */
		udelay(1);
		omap_vp_clear_transdone(voltdm);
	} while (idx < MAX_CHECK_VPTRANS_US);
	if (idx >= MAX_CHECK_VPTRANS_US)
		pr_warning("%s: timed out waiting for transdone clear!!\n",
			   __func__);

	/* Clear pending events */
	sr_notifier_control(voltdm, false);
	/* trigger sampling */
	sr_notifier_control(voltdm, true);
	schedule_delayed_work(&work_data->work,
			      msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS *
					       SR1P5_STABLE_SAMPLES));
	mutex_unlock(&omap_dvfs_lock);
	return;

stop_sampling:
	/*
	 * We are here for Oscillations due to two scenarios:
	 * a) SR is attempting to adjust voltage lower than VLIMITO
	 *    which VP will ignore, but SR will re-attempt
	 * b) actual oscillations
	 * NOTE: For debugging, enable debug to see the samples.
	 */
	pr_warning("%s: %s Stop sampling: Voltage Nominal=%d samples=%d\n",
		   __func__, work_data->voltdm->name,
		   volt_data->volt_nominal, work_data->num_osc_samples);

	/* pick up current voltage */
	u_volt_current = omap_vp_get_curr_volt(voltdm);

	/* Just in case we got more interrupts than our tiny buffer */
	if (work_data->num_osc_samples > SR1P5_STABLE_SAMPLES)
		idx = SR1P5_STABLE_SAMPLES;
	else
		idx = work_data->num_osc_samples;
	/* Index at 0 */
	idx -= 1;
	u_volt_safe = u_volt_current;
	/* Grab the max of the samples as the stable voltage */
	for (; idx >= 0; idx--) {
		pr_debug("%s: osc_v[%d]=%ld, safe_v=%ld\n", __func__, idx,
			work_data->u_volt_samples[idx], u_volt_safe);
		if (work_data->u_volt_samples[idx] > u_volt_safe)
			u_volt_safe = work_data->u_volt_samples[idx];
	}

	/* Fall through to close up common stuff */
done_calib:
	sr_disable_errgen(voltdm);
	omap_vp_disable(voltdm);
	sr_disable(voltdm);

	/* Add margin if needed */
	if (volt_data->volt_margin) {
		struct omap_voltdm_pmic *pmic = voltdm->pmic;
		/* Convert to rounded to PMIC step level if available */
		if (pmic && pmic->vsel_to_uv && pmic->uv_to_vsel) {
			/*
			 * To ensure conversion works:
			 * use a proper base voltage - we use the current volt
			 * then convert it with pmic routine to vsel and back
			 * to voltage, and finally remove the base voltage
			 */
			u_volt_margin = u_volt_current + volt_data->volt_margin;
			u_volt_margin = pmic->uv_to_vsel(u_volt_margin);
			u_volt_margin = pmic->vsel_to_uv(u_volt_margin);
			u_volt_margin -= u_volt_current;
		} else {
			u_volt_margin = volt_data->volt_margin;
		}

		u_volt_safe += u_volt_margin;
	}

	if (u_volt_safe > volt_data->volt_nominal) {
		pr_warning("%s: %s Vsafe %ld > Vnom %d. %ld[%d] margin on"
			"vnom %d curr_v=%ld\n", __func__, voltdm->name,
			u_volt_safe, volt_data->volt_nominal, u_volt_margin,
			volt_data->volt_margin, volt_data->volt_nominal,
			u_volt_current);
	}

	volt_data->volt_calibrated = u_volt_safe;
	/* Setup my dynamic voltage for the next calibration for this opp */
	volt_data->volt_dynamic_nominal = omap_get_dyn_nominal(volt_data);

	/*
	 * if the voltage we decided as safe is not the current voltage,
	 * switch
	 */
	if (volt_data->volt_calibrated != u_volt_current) {
		pr_debug("%s: %s reconfiguring to voltage %d\n",
			 __func__, voltdm->name, volt_data->volt_calibrated);
		voltdm_scale(voltdm, volt_data);
	}

	pr_info("%s: %s: Calibration complete: Voltage:Nominal=%d,"
		"Calib=%d,margin=%d\n",
		 __func__, voltdm->name, volt_data->volt_nominal,
		 volt_data->volt_calibrated, volt_data->volt_margin);
	/*
	 * TODO: Setup my wakeup voltage to allow immediate going to OFF and
	 * on - Pending twl and voltage layer cleanups.
	 * This is necessary, as this is not done as part of regular
	 * Dvfs flow.
	 * vc_setup_on_voltage(voltdm, volt_data->volt_calibrated);
	 */
	work_data->work_active = false;
	mutex_unlock(&omap_dvfs_lock);
}

#if CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY

/**
 * sr_class1p5_voltdm_recal() - Helper routine to reset calibration.
 * @voltdm:	Voltage domain to reset calibration for
 * @user:	unused
 *
 * NOTE: Appropriate locks must be held by calling path to ensure mutual
 * exclusivity
 */
static int sr_class1p5_voltdm_recal(struct voltagedomain *voltdm,
		void *user)
{
	struct omap_volt_data *vdata;

	/*
	 * we need to go no further if sr is not enabled for this domain or
	 * voltage processor is not present for this voltage domain
	 * (example vdd_wakeup). Class 1.5 requires Voltage processor
	 * to function.
	 */
	if (!voltdm->vp || !is_sr_enabled(voltdm))
		return 0;

	vdata = omap_voltage_get_curr_vdata(voltdm);
	if (!vdata) {
		pr_err("%s: unable to find current voltage for vdd_%s\n",
			__func__, voltdm->name);
		return -ENXIO;
	}

	omap_sr_disable(voltdm);
	omap_voltage_calib_reset(voltdm);
	voltdm_reset(voltdm);
	omap_sr_enable(voltdm, vdata);
	pr_info("%s: %s: calibration reset\n", __func__, voltdm->name);

	return 0;
}

/**
 * sr_class1p5_recal_work() - work which actually does the calibration
 * @work: pointer to the work
 *
 * on a periodic basis, we come and reset our calibration setup
 * so that a recalibration of the OPPs take place. This takes
 * care of aging factor in the system.
 */
static void sr_class1p5_recal_work(struct work_struct *work)
{
	mutex_lock(&omap_dvfs_lock);
	if (voltdm_for_each(sr_class1p5_voltdm_recal, NULL))
		pr_err("%s: Recalibration failed\n", __func__);
	mutex_unlock(&omap_dvfs_lock);
	/* We come back again after time the usual delay */
	schedule_delayed_work(&recal_work,
			      msecs_to_jiffies
			      (CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY));
}
#endif			/* CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY */

/**
 * sr_class1p5_enable() - class 1.5 mode of enable for a voltage domain
 * @voltdm:		voltage domain to enable SR for
 * @voltdm_cdata:	voltage domain specific private class data
 * @volt_data:		voltdata for the current OPP being transitioned to
 *
 * when this gets called, we use the h/w loop to setup our voltages
 * to an calibrated voltage, detect any oscillations, recover from the same
 * and finally store the optimized voltage as the calibrated voltage in the
 * system.
 *
 * NOTE: Appropriate locks must be held by calling path to ensure mutual
 * exclusivity
 */
static int sr_class1p5_enable(struct voltagedomain *voltdm,
			      void *voltdm_cdata,
			      struct omap_volt_data *volt_data)
{
	int r;
	struct sr_class1p5_work_data *work_data;

	if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(volt_data)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	/* If already calibrated, nothing to do here.. */
	if (volt_data->volt_calibrated)
		return 0;

	work_data = (struct sr_class1p5_work_data *)voltdm_cdata;
	if (IS_ERR_OR_NULL(work_data)) {
		pr_err("%s: bad work data??\n", __func__);
		return -EINVAL;
	}

	if (work_data->work_active)
		return 0;

	omap_vp_enable(voltdm);
	r = sr_enable(voltdm, volt_data);
	if (r) {
		pr_err("%s: sr[%s] failed\n", __func__, voltdm->name);
		sr_disable_errgen(voltdm);
		omap_vp_disable(voltdm);
		return r;
	}
	work_data->vdata = volt_data;
	work_data->work_active = true;
	work_data->num_calib_triggers = 0;
	/* program the workqueue and leave it to calibrate offline.. */
	schedule_delayed_work(&work_data->work,
			      msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS *
					       SR1P5_STABLE_SAMPLES));

	return 0;
}

/**
 * sr_class1p5_disable() - disable 1.5 mode for a voltage domain
 * @voltdm: voltage domain for the sr which needs disabling
 * @volt_data:	voltage data for current OPP to disable
 * @voltdm_cdata: voltage domain specific private class data
 * @is_volt_reset: reset the voltage?
 *
 * This function has the necessity to either disable SR alone OR disable SR
 * and reset voltage to appropriate level depending on is_volt_reset parameter.
 *
 * Disabling SR H/w loop:
 * If calibration is complete or not yet triggered, we have no need to disable
 * SR h/w loop.
 * If calibration is complete, we would have already disabled SR AVS at the end
 * of calibration and h/w loop is inactive when this is called.
 * If it was never calibrated before, H/w loop was never enabled in the first
 * place to disable.
 * If calibration is underway, we cancel the work queue and disable SR. This is
 * to provide priority to DVFS transition as such transitions cannot wait
 * without impacting user experience.
 *
 * Resetting voltage:
 * If we have already completed calibration, then resetting to nominal voltage
 * is not required as we are functioning at safe voltage levels.
 * If we have not started calibration, we would like to reset to nominal voltage
 * If calibration is underway and we are attempting to reset voltage as
 * well, it implies we are in idle/suspend paths where we give priority
 * to calibration activity and a retry will be attempted.
 *
 * NOTE: Appropriate locks must be held by calling path to ensure mutual
 * exclusivity
 */
static int sr_class1p5_disable(struct voltagedomain *voltdm,
			       void *voltdm_cdata,
			       struct omap_volt_data *volt_data,
			       int is_volt_reset)
{
	struct sr_class1p5_work_data *work_data;

	if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(volt_data)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	work_data = (struct sr_class1p5_work_data *)voltdm_cdata;
	if (IS_ERR_OR_NULL(work_data)) {
		pr_err("%s: bad work data??\n", __func__);
		return -EINVAL;
	}
	if (work_data->work_active) {
		/* if volt reset and work is active, we dont allow this */
		if (is_volt_reset)
			return -EBUSY;
		/* flag work is dead and remove the old work */
		work_data->work_active = false;
		cancel_delayed_work_sync(&work_data->work);
		sr_notifier_control(voltdm, false);
		sr_disable_errgen(voltdm);
		omap_vp_disable(voltdm);
		sr_disable(voltdm);
	}

	/* If already calibrated, don't need to reset voltage */
	if (volt_data->volt_calibrated)
		return 0;

	if (is_volt_reset)
		voltdm_reset(voltdm);
	return 0;
}

/**
 * sr_class1p5_configure() - configuration function
 * @voltdm:	configure for which voltage domain
 * @voltdm_cdata: voltage domain specific private class data
 *
 * we dont do much here other than setup some registers for
 * the sr module involved.
 */
static int sr_class1p5_configure(struct voltagedomain *voltdm,
				 void *voltdm_cdata)
{
	if (IS_ERR_OR_NULL(voltdm)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	return sr_configure_errgen(voltdm);
}

/**
 * sr_class1p5_init() - class 1p5 init
 * @voltdm:		sr voltage domain
 * @voltdm_cdata:	voltage domain specific private class data
 *			allocated by class init with work item data
 *			freed by deinit.
 * @class_priv_data:	private data for the class (unused)
 *
 * we do class specific initialization like creating sysfs/debugfs entries
 * needed, spawning of a kthread if needed etc.
 */
static int sr_class1p5_init(struct voltagedomain *voltdm,
			    void **voltdm_cdata, void *class_priv_data)
{
	struct sr_class1p5_work_data *work_data;

	if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(voltdm_cdata)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	if (!IS_ERR_OR_NULL(*voltdm_cdata)) {
		pr_err("%s: ooopps.. class already initialized for %s! bug??\n",
		       __func__, voltdm->name);
		return -EINVAL;
	}
	/* setup our work params */
	work_data = kzalloc(sizeof(struct sr_class1p5_work_data), GFP_KERNEL);
	if (!work_data) {
		pr_err("%s: no memory to allocate work data on domain %s\n",
			__func__, voltdm->name);
		return -ENOMEM;
	}

	work_data->voltdm = voltdm;
	INIT_DELAYED_WORK_DEFERRABLE(&work_data->work, sr_class1p5_calib_work);
	*voltdm_cdata = (void *)work_data;

	return 0;
}

/**
 * sr_class1p5_deinit() - class 1p5 deinitialization
 * @voltdm:	voltage domain for which to do this.
 * @voltdm_cdata: voltage domain specific private class data
 *		allocated by class init with work item data
 *		freed by deinit.
 * @class_priv_data: class private data for deinitialiation (unused)
 *
 * currently only resets the calibrated voltage forcing DVFS voltages
 * to be used in the system
 *
 * NOTE: Appropriate locks must be held by calling path to ensure mutual
 * exclusivity
 */
static int sr_class1p5_deinit(struct voltagedomain *voltdm,
			      void **voltdm_cdata, void *class_priv_data)
{
	struct sr_class1p5_work_data *work_data;

	if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(voltdm_cdata)) {
		pr_err("%s: bad parameters!\n", __func__);
		return -EINVAL;
	}

	if (IS_ERR_OR_NULL(*voltdm_cdata)) {
		pr_err("%s: ooopps.. class not initialized for %s! bug??\n",
		       __func__, voltdm->name);
		return -EINVAL;
	}

	work_data = (struct sr_class1p5_work_data *) *voltdm_cdata;

	/*
	 * we dont have SR periodic calib anymore.. so reset calibs
	 * we are already protected by appropriate locks, so no lock needed
	 * here.
	 */
	if (work_data->work_active)
		sr_class1p5_disable(voltdm, work_data, work_data->vdata, 0);

	/* Ensure worker canceled. */
	cancel_delayed_work_sync(&work_data->work);
	omap_voltage_calib_reset(voltdm);
	voltdm_reset(voltdm);

	*voltdm_cdata = NULL;
	kfree(work_data);

	return 0;
}

/* SR class1p5 structure */
static struct omap_sr_class_data class1p5_data = {
	.enable = sr_class1p5_enable,
	.disable = sr_class1p5_disable,
	.configure = sr_class1p5_configure,
	.class_type = SR_CLASS1P5,
	.init = sr_class1p5_init,
	.deinit = sr_class1p5_deinit,
	.notify = sr_class1p5_notify,
	/*
	 * trigger for bound - this tells VP that SR has a voltage
	 * change. we should try and ensure transdone is set before reading
	 * vp voltage.
	 */
	.notify_flags = SR_NOTIFY_MCUBOUND,
};

/**
 * sr_class1p5_driver_init() - register class 1p5 as default
 *
 * board files call this function to use class 1p5, we register with the
 * smartreflex subsystem
 */
static int __init sr_class1p5_driver_init(void)
{
	int r;

	/* Enable this class only for OMAP3630 and OMAP4 */
	if (!(cpu_is_omap3630() || cpu_is_omap44xx()))
		return -EINVAL;

	r = sr_register_class(&class1p5_data);
	if (r) {
		pr_err("SmartReflex class 1.5 driver: "
		       "failed to register with %d\n", r);
	} else {
#if CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY
		INIT_DELAYED_WORK_DEFERRABLE(&recal_work,
					     sr_class1p5_recal_work);
		schedule_delayed_work(&recal_work,
			      msecs_to_jiffies
			      (CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY));
#endif
		pr_info("SmartReflex class 1.5 driver: initialized (%dms)\n",
			CONFIG_OMAP_SR_CLASS1P5_RECALIBRATION_DELAY);
	}
	return r;
}
late_initcall(sr_class1p5_driver_init);