1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
|
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <plat/cpu.h>
#include "voltage.h"
#include "vc.h"
#include "prm-regbits-34xx.h"
#include "prm-regbits-44xx.h"
#include "prm44xx.h"
#define OMAP_VC_I2C_ACK_DELAY 3
/**
* struct omap_vc_channel_cfg - describe the cfg_channel bitfield
* @sa: bit for slave address
* @rav: bit for voltage configuration register
* @rac: bit for command configuration register
* @racen: enable bit for RAC
* @cmd: bit for command value set selection
*
* Channel configuration bits, common for OMAP3+
* OMAP3 register: PRM_VC_CH_CONF
* OMAP4 register: PRM_VC_CFG_CHANNEL
* OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
*/
struct omap_vc_channel_cfg {
u8 sa;
u8 rav;
u8 rac;
u8 racen;
u8 cmd;
};
static struct omap_vc_channel_cfg vc_default_channel_cfg = {
.sa = BIT(0),
.rav = BIT(1),
.rac = BIT(2),
.racen = BIT(3),
.cmd = BIT(4),
};
/*
* On OMAP3+, all VC channels have the above default bitfield
* configuration, except the OMAP4 MPU channel. This appears
* to be a freak accident as every other VC channel has the
* default configuration, thus creating a mutant channel config.
*/
static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
.sa = BIT(0),
.rav = BIT(2),
.rac = BIT(3),
.racen = BIT(4),
.cmd = BIT(1),
};
static struct omap_vc_channel_cfg *vc_cfg_bits;
#define CFG_CHANNEL_MASK 0x1f
/**
* omap_vc_config_channel - configure VC channel to PMIC mappings
* @voltdm: pointer to voltagdomain defining the desired VC channel
*
* Configures the VC channel to PMIC mappings for the following
* PMIC settings
* - i2c slave address (SA)
* - voltage configuration address (RAV)
* - command configuration address (RAC) and enable bit (RACEN)
* - command values for ON, ONLP, RET and OFF (CMD)
*
* This function currently only allows flexible configuration of the
* non-default channel. Starting with OMAP4, there are more than 2
* channels, with one defined as the default (on OMAP4, it's MPU.)
* Only the non-default channel can be configured.
*/
static int omap_vc_config_channel(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
/*
* For default channel, the only configurable bit is RACEN.
* All others must stay at zero (see function comment above.)
*/
if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
vc->cfg_channel &= vc_cfg_bits->racen;
voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
vc->cfg_channel << vc->cfg_channel_sa_shift,
vc->common->cfg_channel_reg);
return 0;
}
/* Voltage scale and accessory APIs */
int omap_vc_pre_scale(struct voltagedomain *voltdm,
unsigned long target_volt,
struct omap_volt_data *target_v,
u8 *target_vsel, u8 *current_vsel)
{
struct omap_vc_channel *vc = voltdm->vc;
u32 vc_cmdval;
/* Check if sufficient pmic info is available for this vdd */
if (!voltdm->pmic) {
pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
__func__, voltdm->name);
return -EINVAL;
}
if (!voltdm->pmic->uv_to_vsel) {
pr_err("%s: PMIC function to convert voltage in uV to"
"vsel not registered. Hence unable to scale voltage"
"for vdd_%s\n", __func__, voltdm->name);
return -ENODATA;
}
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return -EINVAL;
}
*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
*current_vsel = voltdm->read(voltdm->vp->voltage);
/* Setting the ON voltage to the new target voltage */
vc_cmdval = voltdm->read(vc->cmdval_reg);
vc_cmdval &= ~vc->common->cmd_on_mask;
vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
voltdm->write(vc_cmdval, vc->cmdval_reg);
omap_vp_update_errorgain(voltdm, target_v);
return 0;
}
/**
* omap_vc_set_auto_trans() - set auto transition parameters for a domain
* @voltdm: voltage domain we are interested in
* @flag: which state should we program this to
*/
int omap_vc_set_auto_trans(struct voltagedomain *voltdm, u8 flag)
{
struct omap_vc_channel *vc;
const struct omap_vc_auto_trans *auto_trans;
u8 val = OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED;
if (!voltdm) {
pr_err("%s: NULL Voltage domain!\n", __func__);
return -ENOENT;
}
vc = voltdm->vc;
if (!vc) {
pr_err("%s: NULL VC Voltage domain %s!\n", __func__,
voltdm->name);
return -ENOENT;
}
auto_trans = vc->auto_trans;
if (!auto_trans) {
pr_debug("%s: No auto trans %s!\n", __func__, voltdm->name);
return 0;
}
/* Handle value and masks per silicon data */
switch (flag) {
case OMAP_VC_CHANNEL_AUTO_TRANSITION_DISABLE:
val = 0x0;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_SLEEP:
val = auto_trans->sleep_val;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_RETENTION:
val = auto_trans->retention_val;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_OFF:
val = auto_trans->off_val;
break;
default:
pr_err("%s: Voltdm %s invalid flag %d\n", __func__,
voltdm->name, flag);
return -EINVAL;
}
if (val == OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED) {
pr_err("%s: transition to %d on %s is NOT supported\n",
__func__, flag, voltdm->name);
return -EINVAL;
}
/* All ready - set it and move on.. */
voltdm->rmw(vc->auto_trans_mask, val << __ffs(vc->auto_trans_mask),
auto_trans->reg);
return 0;
}
void omap_vc_post_scale(struct voltagedomain *voltdm,
unsigned long target_volt,
struct omap_volt_data *target_vdata,
u8 target_vsel, u8 current_vsel)
{
struct omap_vc_channel *vc;
u32 smps_steps = 0, smps_delay = 0;
u8 on_vsel, onlp_vsel;
u32 val;
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return;
}
smps_steps = abs(target_vsel - current_vsel);
/* SMPS slew rate / step size. 2us added as buffer. */
smps_delay = ((smps_steps * voltdm->pmic->step_size) /
voltdm->pmic->slew_rate) + 2;
udelay(smps_delay);
voltdm->curr_volt = target_vdata;
/* Set up the on voltage for wakeup from lp and OFF */
on_vsel = voltdm->pmic->uv_to_vsel(target_volt);
onlp_vsel = voltdm->pmic->uv_to_vsel(target_volt);
val = (on_vsel << vc->common->cmd_on_shift) |
(onlp_vsel << vc->common->cmd_onlp_shift) |
vc->setup_voltage_common;
voltdm->write(val, vc->cmdval_reg);
}
static int omap_vc_bypass_send_value(struct voltagedomain *voltdm,
struct omap_vc_channel *vc, u8 sa, u8 reg, u32 data)
{
u32 loop_cnt = 0, retries_cnt = 0;
u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
if (IS_ERR_OR_NULL(vc->common)) {
pr_err("%s voldm=%s bad value for vc->common\n",
__func__, voltdm->name);
return -EINVAL;
}
vc_valid = vc->common->valid;
vc_bypass_val_reg = vc->common->bypass_val_reg;
vc_bypass_value = (data << vc->common->data_shift) |
(reg << vc->common->regaddr_shift) |
(sa << vc->common->slaveaddr_shift);
voltdm->write(vc_bypass_value, vc_bypass_val_reg);
voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
/*
* Loop till the bypass command is acknowledged from the SMPS.
* NOTE: This is legacy code. The loop count and retry count needs
* to be revisited.
*/
while (vc_bypass_value & vc_valid) {
loop_cnt++;
if (retries_cnt > 10) {
pr_warning("%s: Retry count exceeded\n", __func__);
return -ETIMEDOUT;
}
if (loop_cnt > 50) {
retries_cnt++;
loop_cnt = 0;
udelay(10);
}
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
}
return 0;
}
/* vc_bypass_scale_voltage - VC bypass method of voltage scaling */
int omap_vc_bypass_scale_voltage(struct voltagedomain *voltdm,
struct omap_volt_data *target_v)
{
struct omap_vc_channel *vc;
u8 target_vsel, current_vsel;
int ret;
unsigned long target_volt = omap_get_operation_voltage(target_v);
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return -EINVAL;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return -EINVAL;
}
ret = omap_vc_pre_scale(voltdm, target_volt, target_v, &target_vsel,
¤t_vsel);
if (ret)
return ret;
ret = omap_vc_bypass_send_value(voltdm, vc, vc->i2c_slave_addr,
vc->volt_reg_addr, target_vsel);
if (ret)
return ret;
omap_vc_post_scale(voltdm, target_volt, target_v, target_vsel,
current_vsel);
return 0;
}
/**
* omap_vc_bypass_send_i2c_msg() - Function to control PMIC registers over SRI2C
* @voltdm: voltage domain
* @slave_addr: slave address of the device.
* @reg_addr: register address to access
* @data: what do we want to write there
*
* Many simpler PMICs with a single I2C interface still have configuration
* registers that may need population. Typical being slew rate configurations
* thermal shutdown configuration etc. When these PMICs are hooked on I2C_SR,
* this function allows these configuration registers to be accessed.
*
* WARNING: Though this could be used for voltage register configurations over
* I2C_SR, DONOT use it for that purpose, all the Voltage controller's internal
* information is bypassed using this function and must be used judiciously.
*/
int omap_vc_bypass_send_i2c_msg(struct voltagedomain *voltdm, u8 slave_addr,
u8 reg_addr, u8 data)
{
struct omap_vc_channel *vc;
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return -EINVAL;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return -EINVAL;
}
return omap_vc_bypass_send_value(voltdm, vc, slave_addr,
reg_addr, data);
}
static void __init omap3_vfsm_init(struct voltagedomain *voltdm)
{
/*
* Voltage Manager FSM parameters init
* XXX This data should be passed in from the board file
*/
voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET);
voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET);
voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET);
}
static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
{
static bool is_initialized;
if (is_initialized)
return;
omap3_vfsm_init(voltdm);
is_initialized = true;
}
/* OMAP4 specific voltage init functions */
static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
{
static bool is_initialized;
struct omap_voltdm_pmic *pmic = voltdm->pmic;
u32 vc_val = 0;
if (is_initialized)
return;
if (pmic->i2c_high_speed) {
vc_val |= pmic->i2c_hscll_low << OMAP4430_HSCLL_SHIFT;
vc_val |= pmic->i2c_hscll_high << OMAP4430_HSCLH_SHIFT;
}
vc_val |= pmic->i2c_scll_low << OMAP4430_SCLL_SHIFT;
vc_val |= pmic->i2c_scll_high << OMAP4430_SCLH_SHIFT;
if (vc_val)
voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
is_initialized = true;
}
/**
* omap_vc_i2c_init - initialize I2C interface to PMIC
* @voltdm: voltage domain containing VC data
*
* Use PMIC supplied seetings for I2C high-speed mode and
* master code (if set) and program the VC I2C configuration
* register.
*
* The VC I2C configuration is common to all VC channels,
* so this function only configures I2C for the first VC
* channel registers. All other VC channels will use the
* same configuration.
*/
static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
static bool initialized;
static bool i2c_high_speed;
u8 mcode;
if (initialized) {
if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
pr_warn("%s: I2C config for all channels must match.",
__func__);
return;
}
i2c_high_speed = voltdm->pmic->i2c_high_speed;
if (i2c_high_speed)
voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
vc->common->i2c_cfg_hsen_mask,
vc->common->i2c_cfg_reg);
mcode = voltdm->pmic->i2c_mcode;
if (mcode)
voltdm->rmw(vc->common->i2c_mcode_mask,
mcode << __ffs(vc->common->i2c_mcode_mask),
vc->common->i2c_cfg_reg);
initialized = true;
}
/**
* omap_vc_setup_lp_time() - configure the voltage ramp time for low states.
* @voltdm: voltagedomain we are interested in.
* @is_retention: Are we interested in retention or OFF?
*
* The ramp times are calculated based on the worst case voltage drop,
* which is the difference of on_volt and the ret_volt. This time is used
* for computing the duration necessary for low power states such as retention.
*/
static int __init omap_vc_setup_lp_time(struct voltagedomain *voltdm,
bool is_retention)
{
u32 volt_drop = 0, volt_ramptime = 0, volt_rampcount;
u32 sys_clk_mhz = 0, sysclk_cycles = 0, max_latency_for_prescaler = 0;
struct clk *sys_ck;
u8 pre_scaler = 0;
struct omap_voltdm_pmic *pmic = voltdm->pmic;
struct omap_vc_channel *vc = voltdm->vc;
const struct setup_time_ramp_params *params;
params = vc->common->setup_time_params;
/* If the VC data does not have params for us, return PMIC's value */
if (!params)
return pmic->volt_setup_time;
if (!params->pre_scaler_to_sysclk_cycles_count)
return pmic->volt_setup_time;
/* No of sys_clk cycles for pre_scaler 0 */
sysclk_cycles = params->pre_scaler_to_sysclk_cycles[0];
sys_ck = clk_get(NULL, "sys_clkin_ck");
if (IS_ERR_OR_NULL(sys_ck)) {
WARN_ONCE(1, "%s: unable to get sys_clkin_ck (voldm %s)\n",
__func__, voltdm->name);
return pmic->volt_setup_time;
}
sys_clk_mhz = clk_get_rate(sys_ck) / 1000000;
clk_put(sys_ck);
/*
* If we chose prescaler 0x0, then we have a limit on the maximum
* latency for which we can chose a correct count. This is because,
* the count field is limited to 6 bits and max value can be 63 and
* for prescaler 0, ramp up/down counter is incremented every
* 64 system clock cycles.
* for eg, max latency for prescaler for 38.4Mhz sys clk would be
* 105 = (63 * 64) / 38.4
*/
max_latency_for_prescaler = (63 * sysclk_cycles) / sys_clk_mhz;
if (is_retention)
volt_drop = pmic->on_volt - pmic->ret_volt;
else
volt_drop = pmic->on_volt;
volt_ramptime = DIV_ROUND_UP(volt_drop, pmic->slew_rate);
volt_ramptime += OMAP_VC_I2C_ACK_DELAY;
/* many PMICs need additional time to switch back on */
if (!is_retention)
volt_ramptime += pmic->switch_on_time;
if (volt_ramptime < max_latency_for_prescaler)
pre_scaler = 0x0;
else
pre_scaler = 0x1;
/*
* IF we mess up values, then try to have some form of recovery using
* PMIC's value.
*/
if (pre_scaler > params->pre_scaler_to_sysclk_cycles_count) {
pr_err("%s: prescaler idx %d > available %d on domain %s\n",
__func__, pre_scaler,
params->pre_scaler_to_sysclk_cycles_count, voltdm->name);
return pmic->volt_setup_time;
}
sysclk_cycles = params->pre_scaler_to_sysclk_cycles[pre_scaler];
volt_rampcount = ((volt_ramptime * sys_clk_mhz) / sysclk_cycles) + 1;
return (pre_scaler << OMAP4430_RAMP_DOWN_PRESCAL_SHIFT) |
(pre_scaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
(volt_rampcount << OMAP4430_RAMP_DOWN_COUNT_SHIFT) |
(volt_rampcount << OMAP4430_RAMP_UP_COUNT_SHIFT);
}
void __init omap_vc_init_channel(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
u32 val;
if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
pr_err("%s: PMIC info requried to configure vc for"
"vdd_%s not populated.Hence cannot initialize vc\n",
__func__, voltdm->name);
return;
}
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return;
}
vc->cfg_channel = 0;
if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
vc_cfg_bits = &vc_mutant_channel_cfg;
else
vc_cfg_bits = &vc_default_channel_cfg;
/* get PMIC/board specific settings */
vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
/* Calculate the RET voltage setup time and update volt_setup_time */
vc->setup_time = omap_vc_setup_lp_time(voltdm, true);
if ((vc->flags & OMAP_VC_CHANNEL_DEFAULT) &&
((vc->i2c_slave_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
(vc->cmd_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
(vc->volt_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM))) {
pr_err("%s: voltdm %s: default channel "
"bad config-sa=%2x vol=%2x, cmd=%2x?\n", __func__,
voltdm->name, vc->i2c_slave_addr, vc->volt_reg_addr,
vc->cmd_reg_addr);
return;
}
/* Configure the i2c slave address for this VC */
if (vc->i2c_slave_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_sa_mask,
vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
vc->common->smps_sa_reg);
vc->cfg_channel |= vc_cfg_bits->sa;
}
/*
* Configure the PMIC register addresses.
*/
if (vc->volt_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_volra_mask,
vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
vc->common->smps_volra_reg);
vc->cfg_channel |= vc_cfg_bits->rav;
}
if (vc->cmd_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_cmdra_mask,
vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
vc->common->smps_cmdra_reg);
vc->cfg_channel |= vc_cfg_bits->rac;
}
/* If voltage and cmd regs are same, we can use cmdra register */
if (vc->volt_reg_addr == vc->cmd_reg_addr)
vc->cfg_channel |= vc_cfg_bits->racen;
/* Set up the on, inactive, retention and off voltage */
on_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->on_volt);
onlp_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->onlp_volt);
ret_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->ret_volt);
off_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->off_volt);
vc->setup_voltage_common =
(ret_vsel << vc->common->cmd_ret_shift) |
(off_vsel << vc->common->cmd_off_shift);
val = (on_vsel << vc->common->cmd_on_shift) |
(onlp_vsel << vc->common->cmd_onlp_shift) |
vc->setup_voltage_common;
voltdm->write(val, vc->cmdval_reg);
vc->cfg_channel |= vc_cfg_bits->cmd;
/* Channel configuration */
omap_vc_config_channel(voltdm);
/* Configure the setup times */
voltdm->rmw(voltdm->vfsm->voltsetup_mask,
vc->setup_time << __ffs(voltdm->vfsm->voltsetup_mask),
voltdm->vfsm->voltsetup_reg);
voltdm->rmw(voltdm->vfsm->voltsetup_mask,
omap_vc_setup_lp_time(voltdm, false) <<
ffs(voltdm->vfsm->voltsetup_mask),
voltdm->vfsm->voltsetupoff_reg);
omap_vc_i2c_init(voltdm);
if (cpu_is_omap34xx())
omap3_vc_init_channel(voltdm);
else if (cpu_is_omap44xx())
omap4_vc_init_channel(voltdm);
}
|