aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/common_64.c
blob: 7b8cc72feb40e3ed8bfd02437fe3b6324b024f67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kgdb.h>
#include <linux/topology.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/msr.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/mtrr.h>
#include <asm/mce.h>
#include <asm/pat.h>
#include <asm/numa.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/mpspec.h>
#include <asm/apic.h>
#include <mach_apic.h>
#endif
#include <asm/pda.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/atomic.h>
#include <asm/proto.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/genapic.h>

#include "cpu.h"

/* We need valid kernel segments for data and code in long mode too
 * IRET will check the segment types  kkeil 2000/10/28
 * Also sysret mandates a special GDT layout
 */
/* The TLS descriptors are currently at a different place compared to i386.
   Hopefully nobody expects them at a fixed place (Wine?) */
DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
	[GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
	[GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);

__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;

/* Current gdt points %fs at the "master" per-cpu area: after this,
 * it's on the real one. */
void switch_to_new_gdt(void)
{
	struct desc_ptr gdt_descr;

	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
	gdt_descr.size = GDT_SIZE - 1;
	load_gdt(&gdt_descr);
}

struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};

static void __cpuinit default_init(struct cpuinfo_x86 *c)
{
	display_cacheinfo(c);
}

static struct cpu_dev __cpuinitdata default_cpu = {
	.c_init	= default_init,
	.c_vendor = "Unknown",
};
static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;

int __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
	unsigned int *v;

	if (c->extended_cpuid_level < 0x80000004)
		return 0;

	v = (unsigned int *) c->x86_model_id;
	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
	c->x86_model_id[48] = 0;
	return 1;
}


void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
	unsigned int n, dummy, ebx, ecx, edx;

	n = c->extended_cpuid_level;

	if (n >= 0x80000005) {
		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
		       "D cache %dK (%d bytes/line)\n",
		       edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
		c->x86_cache_size = (ecx>>24) + (edx>>24);
		/* On K8 L1 TLB is inclusive, so don't count it */
		c->x86_tlbsize = 0;
	}

	if (n >= 0x80000006) {
		cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
		ecx = cpuid_ecx(0x80000006);
		c->x86_cache_size = ecx >> 16;
		c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);

		printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
		c->x86_cache_size, ecx & 0xFF);
	}
}

void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
	u32 eax, ebx, ecx, edx;
	int index_msb, core_bits;

	cpuid(1, &eax, &ebx, &ecx, &edx);


	if (!cpu_has(c, X86_FEATURE_HT))
		return;
	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
		goto out;

	smp_num_siblings = (ebx & 0xff0000) >> 16;

	if (smp_num_siblings == 1) {
		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
	} else if (smp_num_siblings > 1) {

		if (smp_num_siblings > NR_CPUS) {
			printk(KERN_WARNING "CPU: Unsupported number of "
			       "siblings %d", smp_num_siblings);
			smp_num_siblings = 1;
			return;
		}

		index_msb = get_count_order(smp_num_siblings);
		c->phys_proc_id = phys_pkg_id(index_msb);

		smp_num_siblings = smp_num_siblings / c->x86_max_cores;

		index_msb = get_count_order(smp_num_siblings);

		core_bits = get_count_order(c->x86_max_cores);

		c->cpu_core_id = phys_pkg_id(index_msb) &
					       ((1 << core_bits) - 1);
	}
out:
	if ((c->x86_max_cores * smp_num_siblings) > 1) {
		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
		       c->phys_proc_id);
		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
		       c->cpu_core_id);
	}

#endif
}

static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
	char *v = c->x86_vendor_id;
	int i;
	static int printed;

	for (i = 0; i < X86_VENDOR_NUM; i++) {
		if (cpu_devs[i]) {
			if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
			    (cpu_devs[i]->c_ident[1] &&
			    !strcmp(v, cpu_devs[i]->c_ident[1]))) {
				c->x86_vendor = i;
				this_cpu = cpu_devs[i];
				return;
			}
		}
	}
	if (!printed) {
		printed++;
		printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
		printk(KERN_ERR "CPU: Your system may be unstable.\n");
	}
	c->x86_vendor = X86_VENDOR_UNKNOWN;
}

static void __init early_cpu_support_print(void)
{
	int i,j;
	struct cpu_dev *cpu_devx;

	printk("KERNEL supported cpus:\n");
	for (i = 0; i < X86_VENDOR_NUM; i++) {
		cpu_devx = cpu_devs[i];
		if (!cpu_devx)
			continue;
		for (j = 0; j < 2; j++) {
			if (!cpu_devx->c_ident[j])
				continue;
			printk("  %s %s\n", cpu_devx->c_vendor,
				cpu_devx->c_ident[j]);
		}
	}
}

static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);

void __init early_cpu_init(void)
{
        struct cpu_vendor_dev *cvdev;

        for (cvdev = __x86cpuvendor_start ;
             cvdev < __x86cpuvendor_end   ;
             cvdev++)
                cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
	early_cpu_support_print();
	early_identify_cpu(&boot_cpu_data);
}

/* Do some early cpuid on the boot CPU to get some parameter that are
   needed before check_bugs. Everything advanced is in identify_cpu
   below. */
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
{
	u32 tfms, xlvl;

	c->loops_per_jiffy = loops_per_jiffy;
	c->x86_cache_size = -1;
	c->x86_vendor = X86_VENDOR_UNKNOWN;
	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
	c->x86_vendor_id[0] = '\0'; /* Unset */
	c->x86_model_id[0] = '\0';  /* Unset */
	c->x86_clflush_size = 64;
	c->x86_cache_alignment = c->x86_clflush_size;
	c->x86_max_cores = 1;
	c->x86_coreid_bits = 0;
	c->extended_cpuid_level = 0;
	memset(&c->x86_capability, 0, sizeof c->x86_capability);

	/* Get vendor name */
	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
	      (unsigned int *)&c->x86_vendor_id[0],
	      (unsigned int *)&c->x86_vendor_id[8],
	      (unsigned int *)&c->x86_vendor_id[4]);

	get_cpu_vendor(c);

	/* Initialize the standard set of capabilities */
	/* Note that the vendor-specific code below might override */

	/* Intel-defined flags: level 0x00000001 */
	if (c->cpuid_level >= 0x00000001) {
		__u32 misc;
		cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
		      &c->x86_capability[0]);
		c->x86 = (tfms >> 8) & 0xf;
		c->x86_model = (tfms >> 4) & 0xf;
		c->x86_mask = tfms & 0xf;
		if (c->x86 == 0xf)
			c->x86 += (tfms >> 20) & 0xff;
		if (c->x86 >= 0x6)
			c->x86_model += ((tfms >> 16) & 0xF) << 4;
		if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
	} else {
		/* Have CPUID level 0 only - unheard of */
		c->x86 = 4;
	}

	c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff;
#ifdef CONFIG_SMP
	c->phys_proc_id = c->initial_apicid;
#endif
	/* AMD-defined flags: level 0x80000001 */
	xlvl = cpuid_eax(0x80000000);
	c->extended_cpuid_level = xlvl;
	if ((xlvl & 0xffff0000) == 0x80000000) {
		if (xlvl >= 0x80000001) {
			c->x86_capability[1] = cpuid_edx(0x80000001);
			c->x86_capability[6] = cpuid_ecx(0x80000001);
		}
		if (xlvl >= 0x80000004)
			get_model_name(c); /* Default name */
	}

	/* Transmeta-defined flags: level 0x80860001 */
	xlvl = cpuid_eax(0x80860000);
	if ((xlvl & 0xffff0000) == 0x80860000) {
		/* Don't set x86_cpuid_level here for now to not confuse. */
		if (xlvl >= 0x80860001)
			c->x86_capability[2] = cpuid_edx(0x80860001);
	}

	c->extended_cpuid_level = cpuid_eax(0x80000000);
	if (c->extended_cpuid_level >= 0x80000007)
		c->x86_power = cpuid_edx(0x80000007);

	if (c->extended_cpuid_level >= 0x80000008) {
		u32 eax = cpuid_eax(0x80000008);

		c->x86_virt_bits = (eax >> 8) & 0xff;
		c->x86_phys_bits = eax & 0xff;
	}

	/* Assume all 64-bit CPUs support 32-bit syscall */
	set_cpu_cap(c, X86_FEATURE_SYSCALL32);

	if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
	    cpu_devs[c->x86_vendor]->c_early_init)
		cpu_devs[c->x86_vendor]->c_early_init(c);

	validate_pat_support(c);

	/* early_param could clear that, but recall get it set again */
	if (disable_apic)
		clear_cpu_cap(c, X86_FEATURE_APIC);
}

/*
 * This does the hard work of actually picking apart the CPU stuff...
 */
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
	int i;

	early_identify_cpu(c);

	init_scattered_cpuid_features(c);

	c->apicid = phys_pkg_id(0);

	/*
	 * Vendor-specific initialization.  In this section we
	 * canonicalize the feature flags, meaning if there are
	 * features a certain CPU supports which CPUID doesn't
	 * tell us, CPUID claiming incorrect flags, or other bugs,
	 * we handle them here.
	 *
	 * At the end of this section, c->x86_capability better
	 * indicate the features this CPU genuinely supports!
	 */
	if (this_cpu->c_init)
		this_cpu->c_init(c);

	detect_ht(c);

	/*
	 * On SMP, boot_cpu_data holds the common feature set between
	 * all CPUs; so make sure that we indicate which features are
	 * common between the CPUs.  The first time this routine gets
	 * executed, c == &boot_cpu_data.
	 */
	if (c != &boot_cpu_data) {
		/* AND the already accumulated flags with these */
		for (i = 0; i < NCAPINTS; i++)
			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
	}

	/* Clear all flags overriden by options */
	for (i = 0; i < NCAPINTS; i++)
		c->x86_capability[i] &= ~cleared_cpu_caps[i];

#ifdef CONFIG_X86_MCE
	mcheck_init(c);
#endif
	select_idle_routine(c);

#ifdef CONFIG_NUMA
	numa_add_cpu(smp_processor_id());
#endif

}

void __cpuinit identify_boot_cpu(void)
{
	identify_cpu(&boot_cpu_data);
}

void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
{
	BUG_ON(c == &boot_cpu_data);
	identify_cpu(c);
	mtrr_ap_init();
}

static __init int setup_noclflush(char *arg)
{
	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
	return 1;
}
__setup("noclflush", setup_noclflush);

void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
	if (c->x86_model_id[0])
		printk(KERN_CONT "%s", c->x86_model_id);

	if (c->x86_mask || c->cpuid_level >= 0)
		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
	else
		printk(KERN_CONT "\n");
}

static __init int setup_disablecpuid(char *arg)
{
	int bit;
	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
		setup_clear_cpu_cap(bit);
	else
		return 0;
	return 1;
}
__setup("clearcpuid=", setup_disablecpuid);

cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;

struct x8664_pda **_cpu_pda __read_mostly;
EXPORT_SYMBOL(_cpu_pda);

struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };

char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;

unsigned long __supported_pte_mask __read_mostly = ~0UL;
EXPORT_SYMBOL_GPL(__supported_pte_mask);

static int do_not_nx __cpuinitdata;

/* noexec=on|off
Control non executable mappings for 64bit processes.

on	Enable(default)
off	Disable
*/
static int __init nonx_setup(char *str)
{
	if (!str)
		return -EINVAL;
	if (!strncmp(str, "on", 2)) {
		__supported_pte_mask |= _PAGE_NX;
		do_not_nx = 0;
	} else if (!strncmp(str, "off", 3)) {
		do_not_nx = 1;
		__supported_pte_mask &= ~_PAGE_NX;
	}
	return 0;
}
early_param("noexec", nonx_setup);

int force_personality32;

/* noexec32=on|off
Control non executable heap for 32bit processes.
To control the stack too use noexec=off

on	PROT_READ does not imply PROT_EXEC for 32bit processes (default)
off	PROT_READ implies PROT_EXEC
*/
static int __init nonx32_setup(char *str)
{
	if (!strcmp(str, "on"))
		force_personality32 &= ~READ_IMPLIES_EXEC;
	else if (!strcmp(str, "off"))
		force_personality32 |= READ_IMPLIES_EXEC;
	return 1;
}
__setup("noexec32=", nonx32_setup);

void pda_init(int cpu)
{
	struct x8664_pda *pda = cpu_pda(cpu);

	/* Setup up data that may be needed in __get_free_pages early */
	loadsegment(fs, 0);
	loadsegment(gs, 0);
	/* Memory clobbers used to order PDA accessed */
	mb();
	wrmsrl(MSR_GS_BASE, pda);
	mb();

	pda->cpunumber = cpu;
	pda->irqcount = -1;
	pda->kernelstack = (unsigned long)stack_thread_info() -
				 PDA_STACKOFFSET + THREAD_SIZE;
	pda->active_mm = &init_mm;
	pda->mmu_state = 0;

	if (cpu == 0) {
		/* others are initialized in smpboot.c */
		pda->pcurrent = &init_task;
		pda->irqstackptr = boot_cpu_stack;
	} else {
		pda->irqstackptr = (char *)
			__get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
		if (!pda->irqstackptr)
			panic("cannot allocate irqstack for cpu %d", cpu);

		if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
			pda->nodenumber = cpu_to_node(cpu);
	}

	pda->irqstackptr += IRQSTACKSIZE-64;
}

char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
			   DEBUG_STKSZ]
__attribute__((section(".bss.page_aligned")));

extern asmlinkage void ignore_sysret(void);

/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
	/*
	 * LSTAR and STAR live in a bit strange symbiosis.
	 * They both write to the same internal register. STAR allows to
	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
	 */
	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
	wrmsrl(MSR_LSTAR, system_call);
	wrmsrl(MSR_CSTAR, ignore_sysret);

#ifdef CONFIG_IA32_EMULATION
	syscall32_cpu_init();
#endif

	/* Flags to clear on syscall */
	wrmsrl(MSR_SYSCALL_MASK,
	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
}

void __cpuinit check_efer(void)
{
	unsigned long efer;

	rdmsrl(MSR_EFER, efer);
	if (!(efer & EFER_NX) || do_not_nx)
		__supported_pte_mask &= ~_PAGE_NX;
}

unsigned long kernel_eflags;

/*
 * Copies of the original ist values from the tss are only accessed during
 * debugging, no special alignment required.
 */
DEFINE_PER_CPU(struct orig_ist, orig_ist);

/*
 * cpu_init() initializes state that is per-CPU. Some data is already
 * initialized (naturally) in the bootstrap process, such as the GDT
 * and IDT. We reload them nevertheless, this function acts as a
 * 'CPU state barrier', nothing should get across.
 * A lot of state is already set up in PDA init.
 */
void __cpuinit cpu_init(void)
{
	int cpu = stack_smp_processor_id();
	struct tss_struct *t = &per_cpu(init_tss, cpu);
	struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
	unsigned long v;
	char *estacks = NULL;
	struct task_struct *me;
	int i;

	/* CPU 0 is initialised in head64.c */
	if (cpu != 0)
		pda_init(cpu);
	else
		estacks = boot_exception_stacks;

	me = current;

	if (cpu_test_and_set(cpu, cpu_initialized))
		panic("CPU#%d already initialized!\n", cpu);

	printk(KERN_INFO "Initializing CPU#%d\n", cpu);

	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

	/*
	 * Initialize the per-CPU GDT with the boot GDT,
	 * and set up the GDT descriptor:
	 */

	switch_to_new_gdt();
	load_idt((const struct desc_ptr *)&idt_descr);

	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
	syscall_init();

	wrmsrl(MSR_FS_BASE, 0);
	wrmsrl(MSR_KERNEL_GS_BASE, 0);
	barrier();

	check_efer();

	/*
	 * set up and load the per-CPU TSS
	 */
	for (v = 0; v < N_EXCEPTION_STACKS; v++) {
		static const unsigned int order[N_EXCEPTION_STACKS] = {
			[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
			[DEBUG_STACK - 1] = DEBUG_STACK_ORDER
		};
		if (cpu) {
			estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
			if (!estacks)
				panic("Cannot allocate exception stack %ld %d\n",
				      v, cpu);
		}
		estacks += PAGE_SIZE << order[v];
		orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks;
	}

	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
	/*
	 * <= is required because the CPU will access up to
	 * 8 bits beyond the end of the IO permission bitmap.
	 */
	for (i = 0; i <= IO_BITMAP_LONGS; i++)
		t->io_bitmap[i] = ~0UL;

	atomic_inc(&init_mm.mm_count);
	me->active_mm = &init_mm;
	if (me->mm)
		BUG();
	enter_lazy_tlb(&init_mm, me);

	load_sp0(t, &current->thread);
	set_tss_desc(cpu, t);
	load_TR_desc();
	load_LDT(&init_mm.context);

#ifdef CONFIG_KGDB
	/*
	 * If the kgdb is connected no debug regs should be altered.  This
	 * is only applicable when KGDB and a KGDB I/O module are built
	 * into the kernel and you are using early debugging with
	 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
	 */
	if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
		arch_kgdb_ops.correct_hw_break();
	else {
#endif
	/*
	 * Clear all 6 debug registers:
	 */

	set_debugreg(0UL, 0);
	set_debugreg(0UL, 1);
	set_debugreg(0UL, 2);
	set_debugreg(0UL, 3);
	set_debugreg(0UL, 6);
	set_debugreg(0UL, 7);
#ifdef CONFIG_KGDB
	/* If the kgdb is connected no debug regs should be altered. */
	}
#endif

	fpu_init();

	raw_local_save_flags(kernel_eflags);

	if (is_uv_system())
		uv_cpu_init();
}