1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
|
/*
* Budget Fair Queueing (BFQ) disk scheduler.
*
* Based on ideas and code from CFQ:
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
*
* Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
* Paolo Valente <paolo.valente@unimore.it>
*
* Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
*
* Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
* file.
*
* BFQ is a proportional-share storage-I/O scheduling algorithm based on
* the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
* measured in number of sectors, to processes instead of time slices. The
* device is not granted to the in-service process for a given time slice,
* but until it has exhausted its assigned budget. This change from the time
* to the service domain allows BFQ to distribute the device throughput
* among processes as desired, without any distortion due to ZBR, workload
* fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
* called B-WF2Q+, to schedule processes according to their budgets. More
* precisely, BFQ schedules queues associated to processes. Thanks to the
* accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
* I/O-bound processes issuing sequential requests (to boost the
* throughput), and yet guarantee a low latency to interactive and soft
* real-time applications.
*
* BFQ is described in [1], where also a reference to the initial, more
* theoretical paper on BFQ can be found. The interested reader can find
* in the latter paper full details on the main algorithm, as well as
* formulas of the guarantees and formal proofs of all the properties.
* With respect to the version of BFQ presented in these papers, this
* implementation adds a few more heuristics, such as the one that
* guarantees a low latency to soft real-time applications, and a
* hierarchical extension based on H-WF2Q+.
*
* B-WF2Q+ is based on WF2Q+, that is described in [2], together with
* H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
* complexity derives from the one introduced with EEVDF in [3].
*
* [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
* with the BFQ Disk I/O Scheduler'',
* Proceedings of the 5th Annual International Systems and Storage
* Conference (SYSTOR '12), June 2012.
*
* http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
*
* [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
* Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
* Oct 1997.
*
* http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
*
* [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
* First: A Flexible and Accurate Mechanism for Proportional Share
* Resource Allocation,'' technical report.
*
* http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/cgroup.h>
#include <linux/elevator.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/ioprio.h>
#include "bfq.h"
#include "blk.h"
/* Expiration time of sync (0) and async (1) requests, in jiffies. */
static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
/* Maximum backwards seek, in KiB. */
static const int bfq_back_max = 16 * 1024;
/* Penalty of a backwards seek, in number of sectors. */
static const int bfq_back_penalty = 2;
/* Idling period duration, in jiffies. */
static int bfq_slice_idle = HZ / 125;
/* Default maximum budget values, in sectors and number of requests. */
static const int bfq_default_max_budget = 16 * 1024;
static const int bfq_max_budget_async_rq = 4;
/*
* Async to sync throughput distribution is controlled as follows:
* when an async request is served, the entity is charged the number
* of sectors of the request, multiplied by the factor below
*/
static const int bfq_async_charge_factor = 10;
/* Default timeout values, in jiffies, approximating CFQ defaults. */
static const int bfq_timeout_sync = HZ / 8;
static int bfq_timeout_async = HZ / 25;
struct kmem_cache *bfq_pool;
/* Below this threshold (in ms), we consider thinktime immediate. */
#define BFQ_MIN_TT 2
/* hw_tag detection: parallel requests threshold and min samples needed. */
#define BFQ_HW_QUEUE_THRESHOLD 4
#define BFQ_HW_QUEUE_SAMPLES 32
#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
/* Min samples used for peak rate estimation (for autotuning). */
#define BFQ_PEAK_RATE_SAMPLES 32
/* Shift used for peak rate fixed precision calculations. */
#define BFQ_RATE_SHIFT 16
/*
* By default, BFQ computes the duration of the weight raising for
* interactive applications automatically, using the following formula:
* duration = (R / r) * T, where r is the peak rate of the device, and
* R and T are two reference parameters.
* In particular, R is the peak rate of the reference device (see below),
* and T is a reference time: given the systems that are likely to be
* installed on the reference device according to its speed class, T is
* about the maximum time needed, under BFQ and while reading two files in
* parallel, to load typical large applications on these systems.
* In practice, the slower/faster the device at hand is, the more/less it
* takes to load applications with respect to the reference device.
* Accordingly, the longer/shorter BFQ grants weight raising to interactive
* applications.
*
* BFQ uses four different reference pairs (R, T), depending on:
* . whether the device is rotational or non-rotational;
* . whether the device is slow, such as old or portable HDDs, as well as
* SD cards, or fast, such as newer HDDs and SSDs.
*
* The device's speed class is dynamically (re)detected in
* bfq_update_peak_rate() every time the estimated peak rate is updated.
*
* In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
* are the reference values for a slow/fast rotational device, whereas
* R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
* a slow/fast non-rotational device. Finally, device_speed_thresh are the
* thresholds used to switch between speed classes.
* Both the reference peak rates and the thresholds are measured in
* sectors/usec, left-shifted by BFQ_RATE_SHIFT.
*/
static int R_slow[2] = {1536, 10752};
static int R_fast[2] = {17415, 34791};
/*
* To improve readability, a conversion function is used to initialize the
* following arrays, which entails that they can be initialized only in a
* function.
*/
static int T_slow[2];
static int T_fast[2];
static int device_speed_thresh[2];
#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
static inline void bfq_schedule_dispatch(struct bfq_data *bfqd);
#include "bfq-ioc.c"
#include "bfq-sched.c"
#include "bfq-cgroup.c"
#define bfq_class_idle(bfqq) ((bfqq)->entity.ioprio_class ==\
IOPRIO_CLASS_IDLE)
#define bfq_class_rt(bfqq) ((bfqq)->entity.ioprio_class ==\
IOPRIO_CLASS_RT)
#define bfq_sample_valid(samples) ((samples) > 80)
/*
* The following macro groups conditions that need to be evaluated when
* checking if existing queues and groups form a symmetric scenario
* and therefore idling can be reduced or disabled for some of the
* queues. See the comment to the function bfq_bfqq_must_not_expire()
* for further details.
*/
#ifdef CONFIG_CGROUP_BFQIO
#define symmetric_scenario (!bfqd->active_numerous_groups && \
!bfq_differentiated_weights(bfqd))
#else
#define symmetric_scenario (!bfq_differentiated_weights(bfqd))
#endif
/*
* We regard a request as SYNC, if either it's a read or has the SYNC bit
* set (in which case it could also be a direct WRITE).
*/
static inline int bfq_bio_sync(struct bio *bio)
{
if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
return 1;
return 0;
}
/*
* Scheduler run of queue, if there are requests pending and no one in the
* driver that will restart queueing.
*/
static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
{
if (bfqd->queued != 0) {
bfq_log(bfqd, "schedule dispatch");
kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
}
}
/*
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
* We choose the request that is closesr to the head right now. Distance
* behind the head is penalized and only allowed to a certain extent.
*/
static struct request *bfq_choose_req(struct bfq_data *bfqd,
struct request *rq1,
struct request *rq2,
sector_t last)
{
sector_t s1, s2, d1 = 0, d2 = 0;
unsigned long back_max;
#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
if (rq1 == NULL || rq1 == rq2)
return rq2;
if (rq2 == NULL)
return rq1;
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
return rq1;
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
return rq2;
if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
return rq1;
else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
return rq2;
s1 = blk_rq_pos(rq1);
s2 = blk_rq_pos(rq2);
/*
* By definition, 1KiB is 2 sectors.
*/
back_max = bfqd->bfq_back_max * 2;
/*
* Strict one way elevator _except_ in the case where we allow
* short backward seeks which are biased as twice the cost of a
* similar forward seek.
*/
if (s1 >= last)
d1 = s1 - last;
else if (s1 + back_max >= last)
d1 = (last - s1) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ1_WRAP;
if (s2 >= last)
d2 = s2 - last;
else if (s2 + back_max >= last)
d2 = (last - s2) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ2_WRAP;
/* Found required data */
/*
* By doing switch() on the bit mask "wrap" we avoid having to
* check two variables for all permutations: --> faster!
*/
switch (wrap) {
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
if (d1 < d2)
return rq1;
else if (d2 < d1)
return rq2;
else {
if (s1 >= s2)
return rq1;
else
return rq2;
}
case BFQ_RQ2_WRAP:
return rq1;
case BFQ_RQ1_WRAP:
return rq2;
case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
default:
/*
* Since both rqs are wrapped,
* start with the one that's further behind head
* (--> only *one* back seek required),
* since back seek takes more time than forward.
*/
if (s1 <= s2)
return rq1;
else
return rq2;
}
}
static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
sector_t sector, struct rb_node **ret_parent,
struct rb_node ***rb_link)
{
struct rb_node **p, *parent;
struct bfq_queue *bfqq = NULL;
parent = NULL;
p = &root->rb_node;
while (*p) {
struct rb_node **n;
parent = *p;
bfqq = rb_entry(parent, struct bfq_queue, pos_node);
/*
* Sort strictly based on sector. Smallest to the left,
* largest to the right.
*/
if (sector > blk_rq_pos(bfqq->next_rq))
n = &(*p)->rb_right;
else if (sector < blk_rq_pos(bfqq->next_rq))
n = &(*p)->rb_left;
else
break;
p = n;
bfqq = NULL;
}
*ret_parent = parent;
if (rb_link)
*rb_link = p;
bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
(long long unsigned)sector,
bfqq != NULL ? bfqq->pid : 0);
return bfqq;
}
static void bfq_rq_pos_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
struct rb_node **p, *parent;
struct bfq_queue *__bfqq;
if (bfqq->pos_root != NULL) {
rb_erase(&bfqq->pos_node, bfqq->pos_root);
bfqq->pos_root = NULL;
}
if (bfq_class_idle(bfqq))
return;
if (!bfqq->next_rq)
return;
bfqq->pos_root = &bfqd->rq_pos_tree;
__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
blk_rq_pos(bfqq->next_rq), &parent, &p);
if (__bfqq == NULL) {
rb_link_node(&bfqq->pos_node, parent, p);
rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
} else
bfqq->pos_root = NULL;
}
/*
* Tell whether there are active queues or groups with differentiated weights.
*/
static inline bool bfq_differentiated_weights(struct bfq_data *bfqd)
{
/*
* For weights to differ, at least one of the trees must contain
* at least two nodes.
*/
return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
(bfqd->queue_weights_tree.rb_node->rb_left ||
bfqd->queue_weights_tree.rb_node->rb_right)
#ifdef CONFIG_CGROUP_BFQIO
) ||
(!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
(bfqd->group_weights_tree.rb_node->rb_left ||
bfqd->group_weights_tree.rb_node->rb_right)
#endif
);
}
/*
* If the weight-counter tree passed as input contains no counter for
* the weight of the input entity, then add that counter; otherwise just
* increment the existing counter.
*
* Note that weight-counter trees contain few nodes in mostly symmetric
* scenarios. For example, if all queues have the same weight, then the
* weight-counter tree for the queues may contain at most one node.
* This holds even if low_latency is on, because weight-raised queues
* are not inserted in the tree.
* In most scenarios, the rate at which nodes are created/destroyed
* should be low too.
*/
static void bfq_weights_tree_add(struct bfq_data *bfqd,
struct bfq_entity *entity,
struct rb_root *root)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
/*
* Do not insert if the entity is already associated with a
* counter, which happens if:
* 1) the entity is associated with a queue,
* 2) a request arrival has caused the queue to become both
* non-weight-raised, and hence change its weight, and
* backlogged; in this respect, each of the two events
* causes an invocation of this function,
* 3) this is the invocation of this function caused by the
* second event. This second invocation is actually useless,
* and we handle this fact by exiting immediately. More
* efficient or clearer solutions might possibly be adopted.
*/
if (entity->weight_counter)
return;
while (*new) {
struct bfq_weight_counter *__counter = container_of(*new,
struct bfq_weight_counter,
weights_node);
parent = *new;
if (entity->weight == __counter->weight) {
entity->weight_counter = __counter;
goto inc_counter;
}
if (entity->weight < __counter->weight)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
GFP_ATOMIC);
entity->weight_counter->weight = entity->weight;
rb_link_node(&entity->weight_counter->weights_node, parent, new);
rb_insert_color(&entity->weight_counter->weights_node, root);
inc_counter:
entity->weight_counter->num_active++;
}
/*
* Decrement the weight counter associated with the entity, and, if the
* counter reaches 0, remove the counter from the tree.
* See the comments to the function bfq_weights_tree_add() for considerations
* about overhead.
*/
static void bfq_weights_tree_remove(struct bfq_data *bfqd,
struct bfq_entity *entity,
struct rb_root *root)
{
if (!entity->weight_counter)
return;
BUG_ON(RB_EMPTY_ROOT(root));
BUG_ON(entity->weight_counter->weight != entity->weight);
BUG_ON(!entity->weight_counter->num_active);
entity->weight_counter->num_active--;
if (entity->weight_counter->num_active > 0)
goto reset_entity_pointer;
rb_erase(&entity->weight_counter->weights_node, root);
kfree(entity->weight_counter);
reset_entity_pointer:
entity->weight_counter = NULL;
}
static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *last)
{
struct rb_node *rbnext = rb_next(&last->rb_node);
struct rb_node *rbprev = rb_prev(&last->rb_node);
struct request *next = NULL, *prev = NULL;
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
if (rbprev != NULL)
prev = rb_entry_rq(rbprev);
if (rbnext != NULL)
next = rb_entry_rq(rbnext);
else {
rbnext = rb_first(&bfqq->sort_list);
if (rbnext && rbnext != &last->rb_node)
next = rb_entry_rq(rbnext);
}
return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
}
/* see the definition of bfq_async_charge_factor for details */
static inline unsigned long bfq_serv_to_charge(struct request *rq,
struct bfq_queue *bfqq)
{
return blk_rq_sectors(rq) *
(1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
bfq_async_charge_factor));
}
/**
* bfq_updated_next_req - update the queue after a new next_rq selection.
* @bfqd: the device data the queue belongs to.
* @bfqq: the queue to update.
*
* If the first request of a queue changes we make sure that the queue
* has enough budget to serve at least its first request (if the
* request has grown). We do this because if the queue has not enough
* budget for its first request, it has to go through two dispatch
* rounds to actually get it dispatched.
*/
static void bfq_updated_next_req(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
struct request *next_rq = bfqq->next_rq;
unsigned long new_budget;
if (next_rq == NULL)
return;
if (bfqq == bfqd->in_service_queue)
/*
* In order not to break guarantees, budgets cannot be
* changed after an entity has been selected.
*/
return;
BUG_ON(entity->tree != &st->active);
BUG_ON(entity == entity->sched_data->in_service_entity);
new_budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
if (entity->budget != new_budget) {
entity->budget = new_budget;
bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
new_budget);
bfq_activate_bfqq(bfqd, bfqq);
}
}
static inline unsigned int bfq_wr_duration(struct bfq_data *bfqd)
{
u64 dur;
if (bfqd->bfq_wr_max_time > 0)
return bfqd->bfq_wr_max_time;
dur = bfqd->RT_prod;
do_div(dur, bfqd->peak_rate);
return dur;
}
static inline unsigned
bfq_bfqq_cooperations(struct bfq_queue *bfqq)
{
return bfqq->bic ? bfqq->bic->cooperations : 0;
}
static inline void
bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
{
if (bic->saved_idle_window)
bfq_mark_bfqq_idle_window(bfqq);
else
bfq_clear_bfqq_idle_window(bfqq);
if (bic->saved_IO_bound)
bfq_mark_bfqq_IO_bound(bfqq);
else
bfq_clear_bfqq_IO_bound(bfqq);
/* Assuming that the flag in_large_burst is already correctly set */
if (bic->wr_time_left && bfqq->bfqd->low_latency &&
!bfq_bfqq_in_large_burst(bfqq) &&
bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
/*
* Start a weight raising period with the duration given by
* the raising_time_left snapshot.
*/
if (bfq_bfqq_busy(bfqq))
bfqq->bfqd->wr_busy_queues++;
bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
bfqq->wr_cur_max_time = bic->wr_time_left;
bfqq->last_wr_start_finish = jiffies;
bfqq->entity.ioprio_changed = 1;
}
/*
* Clear wr_time_left to prevent bfq_bfqq_save_state() from
* getting confused about the queue's need of a weight-raising
* period.
*/
bic->wr_time_left = 0;
}
/* Must be called with the queue_lock held. */
static int bfqq_process_refs(struct bfq_queue *bfqq)
{
int process_refs, io_refs;
io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
BUG_ON(process_refs < 0);
return process_refs;
}
/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
static inline void bfq_reset_burst_list(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_queue *item;
struct hlist_node *pos, *n;
hlist_for_each_entry_safe(item, pos, n,
&bfqd->burst_list, burst_list_node)
hlist_del_init(&item->burst_list_node);
hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
bfqd->burst_size = 1;
}
/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
/* Increment burst size to take into account also bfqq */
bfqd->burst_size++;
if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
struct bfq_queue *pos, *bfqq_item;
struct hlist_node *p, *n;
/*
* Enough queues have been activated shortly after each
* other to consider this burst as large.
*/
bfqd->large_burst = true;
/*
* We can now mark all queues in the burst list as
* belonging to a large burst.
*/
hlist_for_each_entry(bfqq_item, n, &bfqd->burst_list,
burst_list_node)
bfq_mark_bfqq_in_large_burst(bfqq_item);
bfq_mark_bfqq_in_large_burst(bfqq);
/*
* From now on, and until the current burst finishes, any
* new queue being activated shortly after the last queue
* was inserted in the burst can be immediately marked as
* belonging to a large burst. So the burst list is not
* needed any more. Remove it.
*/
hlist_for_each_entry_safe(pos, p, n, &bfqd->burst_list,
burst_list_node)
hlist_del_init(&pos->burst_list_node);
} else /* burst not yet large: add bfqq to the burst list */
hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
}
/*
* If many queues happen to become active shortly after each other, then,
* to help the processes associated to these queues get their job done as
* soon as possible, it is usually better to not grant either weight-raising
* or device idling to these queues. In this comment we describe, firstly,
* the reasons why this fact holds, and, secondly, the next function, which
* implements the main steps needed to properly mark these queues so that
* they can then be treated in a different way.
*
* As for the terminology, we say that a queue becomes active, i.e.,
* switches from idle to backlogged, either when it is created (as a
* consequence of the arrival of an I/O request), or, if already existing,
* when a new request for the queue arrives while the queue is idle.
* Bursts of activations, i.e., activations of different queues occurring
* shortly after each other, are typically caused by services or applications
* that spawn or reactivate many parallel threads/processes. Examples are
* systemd during boot or git grep.
*
* These services or applications benefit mostly from a high throughput:
* the quicker the requests of the activated queues are cumulatively served,
* the sooner the target job of these queues gets completed. As a consequence,
* weight-raising any of these queues, which also implies idling the device
* for it, is almost always counterproductive: in most cases it just lowers
* throughput.
*
* On the other hand, a burst of activations may be also caused by the start
* of an application that does not consist in a lot of parallel I/O-bound
* threads. In fact, with a complex application, the burst may be just a
* consequence of the fact that several processes need to be executed to
* start-up the application. To start an application as quickly as possible,
* the best thing to do is to privilege the I/O related to the application
* with respect to all other I/O. Therefore, the best strategy to start as
* quickly as possible an application that causes a burst of activations is
* to weight-raise all the queues activated during the burst. This is the
* exact opposite of the best strategy for the other type of bursts.
*
* In the end, to take the best action for each of the two cases, the two
* types of bursts need to be distinguished. Fortunately, this seems
* relatively easy to do, by looking at the sizes of the bursts. In
* particular, we found a threshold such that bursts with a larger size
* than that threshold are apparently caused only by services or commands
* such as systemd or git grep. For brevity, hereafter we call just 'large'
* these bursts. BFQ *does not* weight-raise queues whose activations occur
* in a large burst. In addition, for each of these queues BFQ performs or
* does not perform idling depending on which choice boosts the throughput
* most. The exact choice depends on the device and request pattern at
* hand.
*
* Turning back to the next function, it implements all the steps needed
* to detect the occurrence of a large burst and to properly mark all the
* queues belonging to it (so that they can then be treated in a different
* way). This goal is achieved by maintaining a special "burst list" that
* holds, temporarily, the queues that belong to the burst in progress. The
* list is then used to mark these queues as belonging to a large burst if
* the burst does become large. The main steps are the following.
*
* . when the very first queue is activated, the queue is inserted into the
* list (as it could be the first queue in a possible burst)
*
* . if the current burst has not yet become large, and a queue Q that does
* not yet belong to the burst is activated shortly after the last time
* at which a new queue entered the burst list, then the function appends
* Q to the burst list
*
* . if, as a consequence of the previous step, the burst size reaches
* the large-burst threshold, then
*
* . all the queues in the burst list are marked as belonging to a
* large burst
*
* . the burst list is deleted; in fact, the burst list already served
* its purpose (keeping temporarily track of the queues in a burst,
* so as to be able to mark them as belonging to a large burst in the
* previous sub-step), and now is not needed any more
*
* . the device enters a large-burst mode
*
* . if a queue Q that does not belong to the burst is activated while
* the device is in large-burst mode and shortly after the last time
* at which a queue either entered the burst list or was marked as
* belonging to the current large burst, then Q is immediately marked
* as belonging to a large burst.
*
* . if a queue Q that does not belong to the burst is activated a while
* later, i.e., not shortly after, than the last time at which a queue
* either entered the burst list or was marked as belonging to the
* current large burst, then the current burst is deemed as finished and:
*
* . the large-burst mode is reset if set
*
* . the burst list is emptied
*
* . Q is inserted in the burst list, as Q may be the first queue
* in a possible new burst (then the burst list contains just Q
* after this step).
*/
static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bool idle_for_long_time)
{
/*
* If bfqq happened to be activated in a burst, but has been idle
* for at least as long as an interactive queue, then we assume
* that, in the overall I/O initiated in the burst, the I/O
* associated to bfqq is finished. So bfqq does not need to be
* treated as a queue belonging to a burst anymore. Accordingly,
* we reset bfqq's in_large_burst flag if set, and remove bfqq
* from the burst list if it's there. We do not decrement instead
* burst_size, because the fact that bfqq does not need to belong
* to the burst list any more does not invalidate the fact that
* bfqq may have been activated during the current burst.
*/
if (idle_for_long_time) {
hlist_del_init(&bfqq->burst_list_node);
bfq_clear_bfqq_in_large_burst(bfqq);
}
/*
* If bfqq is already in the burst list or is part of a large
* burst, then there is nothing else to do.
*/
if (!hlist_unhashed(&bfqq->burst_list_node) ||
bfq_bfqq_in_large_burst(bfqq))
return;
/*
* If bfqq's activation happens late enough, then the current
* burst is finished, and related data structures must be reset.
*
* In this respect, consider the special case where bfqq is the very
* first queue being activated. In this case, last_ins_in_burst is
* not yet significant when we get here. But it is easy to verify
* that, whether or not the following condition is true, bfqq will
* end up being inserted into the burst list. In particular the
* list will happen to contain only bfqq. And this is exactly what
* has to happen, as bfqq may be the first queue in a possible
* burst.
*/
if (time_is_before_jiffies(bfqd->last_ins_in_burst +
bfqd->bfq_burst_interval)) {
bfqd->large_burst = false;
bfq_reset_burst_list(bfqd, bfqq);
return;
}
/*
* If we get here, then bfqq is being activated shortly after the
* last queue. So, if the current burst is also large, we can mark
* bfqq as belonging to this large burst immediately.
*/
if (bfqd->large_burst) {
bfq_mark_bfqq_in_large_burst(bfqq);
return;
}
/*
* If we get here, then a large-burst state has not yet been
* reached, but bfqq is being activated shortly after the last
* queue. Then we add bfqq to the burst.
*/
bfq_add_to_burst(bfqd, bfqq);
}
static void bfq_add_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_entity *entity = &bfqq->entity;
struct bfq_data *bfqd = bfqq->bfqd;
struct request *next_rq, *prev;
unsigned long old_wr_coeff = bfqq->wr_coeff;
bool interactive = false;
bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
bfqq->queued[rq_is_sync(rq)]++;
bfqd->queued++;
elv_rb_add(&bfqq->sort_list, rq);
/*
* Check if this request is a better next-serve candidate.
*/
prev = bfqq->next_rq;
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
BUG_ON(next_rq == NULL);
bfqq->next_rq = next_rq;
/*
* Adjust priority tree position, if next_rq changes.
*/
if (prev != bfqq->next_rq)
bfq_rq_pos_tree_add(bfqd, bfqq);
if (!bfq_bfqq_busy(bfqq)) {
bool soft_rt, coop_or_in_burst,
idle_for_long_time = time_is_before_jiffies(
bfqq->budget_timeout +
bfqd->bfq_wr_min_idle_time);
if (bfq_bfqq_sync(bfqq)) {
bool already_in_burst =
!hlist_unhashed(&bfqq->burst_list_node) ||
bfq_bfqq_in_large_burst(bfqq);
bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
/*
* If bfqq was not already in the current burst,
* then, at this point, bfqq either has been
* added to the current burst or has caused the
* current burst to terminate. In particular, in
* the second case, bfqq has become the first
* queue in a possible new burst.
* In both cases last_ins_in_burst needs to be
* moved forward.
*/
if (!already_in_burst)
bfqd->last_ins_in_burst = jiffies;
}
coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
!coop_or_in_burst &&
time_is_before_jiffies(bfqq->soft_rt_next_start);
interactive = !coop_or_in_burst && idle_for_long_time;
entity->budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
if (!bfq_bfqq_IO_bound(bfqq)) {
if (time_before(jiffies,
RQ_BIC(rq)->ttime.last_end_request +
bfqd->bfq_slice_idle)) {
bfqq->requests_within_timer++;
if (bfqq->requests_within_timer >=
bfqd->bfq_requests_within_timer)
bfq_mark_bfqq_IO_bound(bfqq);
} else
bfqq->requests_within_timer = 0;
}
if (!bfqd->low_latency)
goto add_bfqq_busy;
if (bfq_bfqq_just_split(bfqq))
goto set_ioprio_changed;
/*
* If the queue:
* - is not being boosted,
* - has been idle for enough time,
* - is not a sync queue or is linked to a bfq_io_cq (it is
* shared "for its nature" or it is not shared and its
* requests have not been redirected to a shared queue)
* start a weight-raising period.
*/
if (old_wr_coeff == 1 && (interactive || soft_rt) &&
(!bfq_bfqq_sync(bfqq) || bfqq->bic != NULL)) {
bfqq->wr_coeff = bfqd->bfq_wr_coeff;
if (interactive)
bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
else
bfqq->wr_cur_max_time =
bfqd->bfq_wr_rt_max_time;
bfq_log_bfqq(bfqd, bfqq,
"wrais starting at %lu, rais_max_time %u",
jiffies,
jiffies_to_msecs(bfqq->wr_cur_max_time));
} else if (old_wr_coeff > 1) {
if (interactive)
bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
else if (coop_or_in_burst ||
(bfqq->wr_cur_max_time ==
bfqd->bfq_wr_rt_max_time &&
!soft_rt)) {
bfqq->wr_coeff = 1;
bfq_log_bfqq(bfqd, bfqq,
"wrais ending at %lu, rais_max_time %u",
jiffies,
jiffies_to_msecs(bfqq->
wr_cur_max_time));
} else if (time_before(
bfqq->last_wr_start_finish +
bfqq->wr_cur_max_time,
jiffies +
bfqd->bfq_wr_rt_max_time) &&
soft_rt) {
/*
*
* The remaining weight-raising time is lower
* than bfqd->bfq_wr_rt_max_time, which means
* that the application is enjoying weight
* raising either because deemed soft-rt in
* the near past, or because deemed interactive
* a long ago.
* In both cases, resetting now the current
* remaining weight-raising time for the
* application to the weight-raising duration
* for soft rt applications would not cause any
* latency increase for the application (as the
* new duration would be higher than the
* remaining time).
*
* In addition, the application is now meeting
* the requirements for being deemed soft rt.
* In the end we can correctly and safely
* (re)charge the weight-raising duration for
* the application with the weight-raising
* duration for soft rt applications.
*
* In particular, doing this recharge now, i.e.,
* before the weight-raising period for the
* application finishes, reduces the probability
* of the following negative scenario:
* 1) the weight of a soft rt application is
* raised at startup (as for any newly
* created application),
* 2) since the application is not interactive,
* at a certain time weight-raising is
* stopped for the application,
* 3) at that time the application happens to
* still have pending requests, and hence
* is destined to not have a chance to be
* deemed soft rt before these requests are
* completed (see the comments to the
* function bfq_bfqq_softrt_next_start()
* for details on soft rt detection),
* 4) these pending requests experience a high
* latency because the application is not
* weight-raised while they are pending.
*/
bfqq->last_wr_start_finish = jiffies;
bfqq->wr_cur_max_time =
bfqd->bfq_wr_rt_max_time;
}
}
set_ioprio_changed:
if (old_wr_coeff != bfqq->wr_coeff)
entity->ioprio_changed = 1;
add_bfqq_busy:
bfqq->last_idle_bklogged = jiffies;
bfqq->service_from_backlogged = 0;
bfq_clear_bfqq_softrt_update(bfqq);
bfq_add_bfqq_busy(bfqd, bfqq);
} else {
if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
time_is_before_jiffies(
bfqq->last_wr_start_finish +
bfqd->bfq_wr_min_inter_arr_async)) {
bfqq->wr_coeff = bfqd->bfq_wr_coeff;
bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
bfqd->wr_busy_queues++;
entity->ioprio_changed = 1;
bfq_log_bfqq(bfqd, bfqq,
"non-idle wrais starting at %lu, rais_max_time %u",
jiffies,
jiffies_to_msecs(bfqq->wr_cur_max_time));
}
if (prev != bfqq->next_rq)
bfq_updated_next_req(bfqd, bfqq);
}
if (bfqd->low_latency &&
(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
bfqq->last_wr_start_finish = jiffies;
}
static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
struct bio *bio)
{
struct task_struct *tsk = current;
struct bfq_io_cq *bic;
struct bfq_queue *bfqq;
bic = bfq_bic_lookup(bfqd, tsk->io_context);
if (bic == NULL)
return NULL;
bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
if (bfqq != NULL) {
sector_t sector = bio->bi_sector + bio_sectors(bio);
return elv_rb_find(&bfqq->sort_list, sector);
}
return NULL;
}
static void bfq_activate_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
bfqd->rq_in_driver++;
bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
(long long unsigned)bfqd->last_position);
}
static inline void bfq_deactivate_request(struct request_queue *q,
struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
BUG_ON(bfqd->rq_in_driver == 0);
bfqd->rq_in_driver--;
}
static void bfq_remove_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
const int sync = rq_is_sync(rq);
if (bfqq->next_rq == rq) {
bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
bfq_updated_next_req(bfqd, bfqq);
}
if (rq->queuelist.prev != &rq->queuelist)
list_del_init(&rq->queuelist);
BUG_ON(bfqq->queued[sync] == 0);
bfqq->queued[sync]--;
bfqd->queued--;
elv_rb_del(&bfqq->sort_list, rq);
if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
bfq_del_bfqq_busy(bfqd, bfqq, 1);
/*
* Remove queue from request-position tree as it is empty.
*/
if (bfqq->pos_root != NULL) {
rb_erase(&bfqq->pos_node, bfqq->pos_root);
bfqq->pos_root = NULL;
}
}
if (rq->cmd_flags & REQ_META) {
BUG_ON(bfqq->meta_pending == 0);
bfqq->meta_pending--;
}
}
static int bfq_merge(struct request_queue *q, struct request **req,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct request *__rq;
__rq = bfq_find_rq_fmerge(bfqd, bio);
if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
*req = __rq;
return ELEVATOR_FRONT_MERGE;
}
return ELEVATOR_NO_MERGE;
}
static void bfq_merged_request(struct request_queue *q, struct request *req,
int type)
{
if (type == ELEVATOR_FRONT_MERGE &&
rb_prev(&req->rb_node) &&
blk_rq_pos(req) <
blk_rq_pos(container_of(rb_prev(&req->rb_node),
struct request, rb_node))) {
struct bfq_queue *bfqq = RQ_BFQQ(req);
struct bfq_data *bfqd = bfqq->bfqd;
struct request *prev, *next_rq;
/* Reposition request in its sort_list */
elv_rb_del(&bfqq->sort_list, req);
elv_rb_add(&bfqq->sort_list, req);
/* Choose next request to be served for bfqq */
prev = bfqq->next_rq;
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
bfqd->last_position);
BUG_ON(next_rq == NULL);
bfqq->next_rq = next_rq;
/*
* If next_rq changes, update both the queue's budget to
* fit the new request and the queue's position in its
* rq_pos_tree.
*/
if (prev != bfqq->next_rq) {
bfq_updated_next_req(bfqd, bfqq);
bfq_rq_pos_tree_add(bfqd, bfqq);
}
}
}
static void bfq_merged_requests(struct request_queue *q, struct request *rq,
struct request *next)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
/*
* If next and rq belong to the same bfq_queue and next is older
* than rq, then reposition rq in the fifo (by substituting next
* with rq). Otherwise, if next and rq belong to different
* bfq_queues, never reposition rq: in fact, we would have to
* reposition it with respect to next's position in its own fifo,
* which would most certainly be too expensive with respect to
* the benefits.
*/
if (bfqq == next_bfqq &&
!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
list_del_init(&rq->queuelist);
list_replace_init(&next->queuelist, &rq->queuelist);
rq_set_fifo_time(rq, rq_fifo_time(next));
}
if (bfqq->next_rq == next)
bfqq->next_rq = rq;
bfq_remove_request(next);
}
/* Must be called with bfqq != NULL */
static inline void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
{
BUG_ON(bfqq == NULL);
if (bfq_bfqq_busy(bfqq))
bfqq->bfqd->wr_busy_queues--;
bfqq->wr_coeff = 1;
bfqq->wr_cur_max_time = 0;
/* Trigger a weight change on the next activation of the queue */
bfqq->entity.ioprio_changed = 1;
}
static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
struct bfq_group *bfqg)
{
int i, j;
for (i = 0; i < 2; i++)
for (j = 0; j < IOPRIO_BE_NR; j++)
if (bfqg->async_bfqq[i][j] != NULL)
bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
if (bfqg->async_idle_bfqq != NULL)
bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
}
static void bfq_end_wr(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq;
spin_lock_irq(bfqd->queue->queue_lock);
list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
bfq_bfqq_end_wr(bfqq);
list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
bfq_bfqq_end_wr(bfqq);
bfq_end_wr_async(bfqd);
spin_unlock_irq(bfqd->queue->queue_lock);
}
static inline sector_t bfq_io_struct_pos(void *io_struct, bool request)
{
if (request)
return blk_rq_pos(io_struct);
else
return ((struct bio *)io_struct)->bi_sector;
}
static inline sector_t bfq_dist_from(sector_t pos1,
sector_t pos2)
{
if (pos1 >= pos2)
return pos1 - pos2;
else
return pos2 - pos1;
}
static inline int bfq_rq_close_to_sector(void *io_struct, bool request,
sector_t sector)
{
return bfq_dist_from(bfq_io_struct_pos(io_struct, request), sector) <=
BFQQ_SEEK_THR;
}
static struct bfq_queue *bfqq_close(struct bfq_data *bfqd, sector_t sector)
{
struct rb_root *root = &bfqd->rq_pos_tree;
struct rb_node *parent, *node;
struct bfq_queue *__bfqq;
if (RB_EMPTY_ROOT(root))
return NULL;
/*
* First, if we find a request starting at the end of the last
* request, choose it.
*/
__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
if (__bfqq != NULL)
return __bfqq;
/*
* If the exact sector wasn't found, the parent of the NULL leaf
* will contain the closest sector (rq_pos_tree sorted by
* next_request position).
*/
__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
return __bfqq;
if (blk_rq_pos(__bfqq->next_rq) < sector)
node = rb_next(&__bfqq->pos_node);
else
node = rb_prev(&__bfqq->pos_node);
if (node == NULL)
return NULL;
__bfqq = rb_entry(node, struct bfq_queue, pos_node);
if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
return __bfqq;
return NULL;
}
/*
* bfqd - obvious
* cur_bfqq - passed in so that we don't decide that the current queue
* is closely cooperating with itself
* sector - used as a reference point to search for a close queue
*/
static struct bfq_queue *bfq_close_cooperator(struct bfq_data *bfqd,
struct bfq_queue *cur_bfqq,
sector_t sector)
{
struct bfq_queue *bfqq;
if (bfq_class_idle(cur_bfqq))
return NULL;
if (!bfq_bfqq_sync(cur_bfqq))
return NULL;
if (BFQQ_SEEKY(cur_bfqq))
return NULL;
/* If device has only one backlogged bfq_queue, don't search. */
if (bfqd->busy_queues == 1)
return NULL;
/*
* We should notice if some of the queues are cooperating, e.g.
* working closely on the same area of the disk. In that case,
* we can group them together and don't waste time idling.
*/
bfqq = bfqq_close(bfqd, sector);
if (bfqq == NULL || bfqq == cur_bfqq)
return NULL;
/*
* Do not merge queues from different bfq_groups.
*/
if (bfqq->entity.parent != cur_bfqq->entity.parent)
return NULL;
/*
* It only makes sense to merge sync queues.
*/
if (!bfq_bfqq_sync(bfqq))
return NULL;
if (BFQQ_SEEKY(bfqq))
return NULL;
/*
* Do not merge queues of different priority classes.
*/
if (bfq_class_rt(bfqq) != bfq_class_rt(cur_bfqq))
return NULL;
return bfqq;
}
static struct bfq_queue *
bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
{
int process_refs, new_process_refs;
struct bfq_queue *__bfqq;
/*
* If there are no process references on the new_bfqq, then it is
* unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
* may have dropped their last reference (not just their last process
* reference).
*/
if (!bfqq_process_refs(new_bfqq))
return NULL;
/* Avoid a circular list and skip interim queue merges. */
while ((__bfqq = new_bfqq->new_bfqq)) {
if (__bfqq == bfqq)
return NULL;
new_bfqq = __bfqq;
}
process_refs = bfqq_process_refs(bfqq);
new_process_refs = bfqq_process_refs(new_bfqq);
/*
* If the process for the bfqq has gone away, there is no
* sense in merging the queues.
*/
if (process_refs == 0 || new_process_refs == 0)
return NULL;
bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
new_bfqq->pid);
/*
* Merging is just a redirection: the requests of the process
* owning one of the two queues are redirected to the other queue.
* The latter queue, in its turn, is set as shared if this is the
* first time that the requests of some process are redirected to
* it.
*
* We redirect bfqq to new_bfqq and not the opposite, because we
* are in the context of the process owning bfqq, hence we have
* the io_cq of this process. So we can immediately configure this
* io_cq to redirect the requests of the process to new_bfqq.
*
* NOTE, even if new_bfqq coincides with the in-service queue, the
* io_cq of new_bfqq is not available, because, if the in-service
* queue is shared, bfqd->in_service_bic may not point to the
* io_cq of the in-service queue.
* Redirecting the requests of the process owning bfqq to the
* currently in-service queue is in any case the best option, as
* we feed the in-service queue with new requests close to the
* last request served and, by doing so, hopefully increase the
* throughput.
*/
bfqq->new_bfqq = new_bfqq;
atomic_add(process_refs, &new_bfqq->ref);
return new_bfqq;
}
/*
* Attempt to schedule a merge of bfqq with the currently in-service queue
* or with a close queue among the scheduled queues.
* Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
* structure otherwise.
*
* The OOM queue is not allowed to participate to cooperation: in fact, since
* the requests temporarily redirected to the OOM queue could be redirected
* again to dedicated queues at any time, the state needed to correctly
* handle merging with the OOM queue would be quite complex and expensive
* to maintain. Besides, in such a critical condition as an out of memory,
* the benefits of queue merging may be little relevant, or even negligible.
*/
static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
void *io_struct, bool request)
{
struct bfq_queue *in_service_bfqq, *new_bfqq;
if (bfqq->new_bfqq)
return bfqq->new_bfqq;
if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
return NULL;
in_service_bfqq = bfqd->in_service_queue;
if (in_service_bfqq == NULL || in_service_bfqq == bfqq ||
!bfqd->in_service_bic ||
unlikely(in_service_bfqq == &bfqd->oom_bfqq))
goto check_scheduled;
if (bfq_class_idle(in_service_bfqq) || bfq_class_idle(bfqq))
goto check_scheduled;
if (bfq_class_rt(in_service_bfqq) != bfq_class_rt(bfqq))
goto check_scheduled;
if (in_service_bfqq->entity.parent != bfqq->entity.parent)
goto check_scheduled;
if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
bfq_bfqq_sync(in_service_bfqq) && bfq_bfqq_sync(bfqq)) {
new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
if (new_bfqq != NULL)
return new_bfqq; /* Merge with in-service queue */
}
/*
* Check whether there is a cooperator among currently scheduled
* queues. The only thing we need is that the bio/request is not
* NULL, as we need it to establish whether a cooperator exists.
*/
check_scheduled:
new_bfqq = bfq_close_cooperator(bfqd, bfqq,
bfq_io_struct_pos(io_struct, request));
if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq))
return bfq_setup_merge(bfqq, new_bfqq);
return NULL;
}
static inline void
bfq_bfqq_save_state(struct bfq_queue *bfqq)
{
/*
* If bfqq->bic == NULL, the queue is already shared or its requests
* have already been redirected to a shared queue; both idle window
* and weight raising state have already been saved. Do nothing.
*/
if (bfqq->bic == NULL)
return;
if (bfqq->bic->wr_time_left)
/*
* This is the queue of a just-started process, and would
* deserve weight raising: we set wr_time_left to the full
* weight-raising duration to trigger weight-raising when
* and if the queue is split and the first request of the
* queue is enqueued.
*/
bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
else if (bfqq->wr_coeff > 1) {
unsigned long wr_duration =
jiffies - bfqq->last_wr_start_finish;
/*
* It may happen that a queue's weight raising period lasts
* longer than its wr_cur_max_time, as weight raising is
* handled only when a request is enqueued or dispatched (it
* does not use any timer). If the weight raising period is
* about to end, don't save it.
*/
if (bfqq->wr_cur_max_time <= wr_duration)
bfqq->bic->wr_time_left = 0;
else
bfqq->bic->wr_time_left =
bfqq->wr_cur_max_time - wr_duration;
/*
* The bfq_queue is becoming shared or the requests of the
* process owning the queue are being redirected to a shared
* queue. Stop the weight raising period of the queue, as in
* both cases it should not be owned by an interactive or
* soft real-time application.
*/
bfq_bfqq_end_wr(bfqq);
} else
bfqq->bic->wr_time_left = 0;
bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
bfqq->bic->cooperations++;
bfqq->bic->failed_cooperations = 0;
}
static inline void
bfq_get_bic_reference(struct bfq_queue *bfqq)
{
/*
* If bfqq->bic has a non-NULL value, the bic to which it belongs
* is about to begin using a shared bfq_queue.
*/
if (bfqq->bic)
atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
}
static void
bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
{
bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
(long unsigned)new_bfqq->pid);
/* Save weight raising and idle window of the merged queues */
bfq_bfqq_save_state(bfqq);
bfq_bfqq_save_state(new_bfqq);
if (bfq_bfqq_IO_bound(bfqq))
bfq_mark_bfqq_IO_bound(new_bfqq);
bfq_clear_bfqq_IO_bound(bfqq);
/*
* Grab a reference to the bic, to prevent it from being destroyed
* before being possibly touched by a bfq_split_bfqq().
*/
bfq_get_bic_reference(bfqq);
bfq_get_bic_reference(new_bfqq);
/*
* Merge queues (that is, let bic redirect its requests to new_bfqq)
*/
bic_set_bfqq(bic, new_bfqq, 1);
bfq_mark_bfqq_coop(new_bfqq);
/*
* new_bfqq now belongs to at least two bics (it is a shared queue):
* set new_bfqq->bic to NULL. bfqq either:
* - does not belong to any bic any more, and hence bfqq->bic must
* be set to NULL, or
* - is a queue whose owning bics have already been redirected to a
* different queue, hence the queue is destined to not belong to
* any bic soon and bfqq->bic is already NULL (therefore the next
* assignment causes no harm).
*/
new_bfqq->bic = NULL;
bfqq->bic = NULL;
bfq_put_queue(bfqq);
}
static inline void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
{
struct bfq_io_cq *bic = bfqq->bic;
struct bfq_data *bfqd = bfqq->bfqd;
if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
bic->failed_cooperations++;
if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
bic->cooperations = 0;
}
}
static int bfq_allow_merge(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_io_cq *bic;
struct bfq_queue *bfqq, *new_bfqq;
/*
* Disallow merge of a sync bio into an async request.
*/
if (bfq_bio_sync(bio) && !rq_is_sync(rq))
return 0;
/*
* Lookup the bfqq that this bio will be queued with. Allow
* merge only if rq is queued there.
* Queue lock is held here.
*/
bic = bfq_bic_lookup(bfqd, current->io_context);
if (bic == NULL)
return 0;
bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
/*
* We take advantage of this function to perform an early merge
* of the queues of possible cooperating processes.
*/
if (bfqq != NULL) {
new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
if (new_bfqq != NULL) {
bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
/*
* If we get here, the bio will be queued in the
* shared queue, i.e., new_bfqq, so use new_bfqq
* to decide whether bio and rq can be merged.
*/
bfqq = new_bfqq;
} else
bfq_bfqq_increase_failed_cooperations(bfqq);
}
return bfqq == RQ_BFQQ(rq);
}
static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
if (bfqq != NULL) {
bfq_mark_bfqq_must_alloc(bfqq);
bfq_mark_bfqq_budget_new(bfqq);
bfq_clear_bfqq_fifo_expire(bfqq);
bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
bfq_log_bfqq(bfqd, bfqq,
"set_in_service_queue, cur-budget = %lu",
bfqq->entity.budget);
}
bfqd->in_service_queue = bfqq;
}
/*
* Get and set a new queue for service.
*/
static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
__bfq_set_in_service_queue(bfqd, bfqq);
return bfqq;
}
/*
* If enough samples have been computed, return the current max budget
* stored in bfqd, which is dynamically updated according to the
* estimated disk peak rate; otherwise return the default max budget
*/
static inline unsigned long bfq_max_budget(struct bfq_data *bfqd)
{
if (bfqd->budgets_assigned < 194)
return bfq_default_max_budget;
else
return bfqd->bfq_max_budget;
}
/*
* Return min budget, which is a fraction of the current or default
* max budget (trying with 1/32)
*/
static inline unsigned long bfq_min_budget(struct bfq_data *bfqd)
{
if (bfqd->budgets_assigned < 194)
return bfq_default_max_budget / 32;
else
return bfqd->bfq_max_budget / 32;
}
static void bfq_arm_slice_timer(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->in_service_queue;
struct bfq_io_cq *bic;
unsigned long sl;
BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
/* Processes have exited, don't wait. */
bic = bfqd->in_service_bic;
if (bic == NULL || atomic_read(&bic->icq.ioc->nr_tasks) == 0)
return;
bfq_mark_bfqq_wait_request(bfqq);
/*
* We don't want to idle for seeks, but we do want to allow
* fair distribution of slice time for a process doing back-to-back
* seeks. So allow a little bit of time for him to submit a new rq.
*
* To prevent processes with (partly) seeky workloads from
* being too ill-treated, grant them a small fraction of the
* assigned budget before reducing the waiting time to
* BFQ_MIN_TT. This happened to help reduce latency.
*/
sl = bfqd->bfq_slice_idle;
/*
* Unless the queue is being weight-raised or the scenario is
* asymmetric, grant only minimum idle time if the queue either
* has been seeky for long enough or has already proved to be
* constantly seeky.
*/
if (bfq_sample_valid(bfqq->seek_samples) &&
((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
bfq_max_budget(bfqq->bfqd) / 8) ||
bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
symmetric_scenario)
sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
else if (bfqq->wr_coeff > 1)
sl = sl * 3;
bfqd->last_idling_start = ktime_get();
mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
bfq_log(bfqd, "arm idle: %u/%u ms",
jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
}
/*
* Set the maximum time for the in-service queue to consume its
* budget. This prevents seeky processes from lowering the disk
* throughput (always guaranteed with a time slice scheme as in CFQ).
*/
static void bfq_set_budget_timeout(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->in_service_queue;
unsigned int timeout_coeff;
if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
timeout_coeff = 1;
else
timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
bfqd->last_budget_start = ktime_get();
bfq_clear_bfqq_budget_new(bfqq);
bfqq->budget_timeout = jiffies +
bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
timeout_coeff));
}
/*
* Move request from internal lists to the request queue dispatch list.
*/
static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq = RQ_BFQQ(rq);
/*
* For consistency, the next instruction should have been executed
* after removing the request from the queue and dispatching it.
* We execute instead this instruction before bfq_remove_request()
* (and hence introduce a temporary inconsistency), for efficiency.
* In fact, in a forced_dispatch, this prevents two counters related
* to bfqq->dispatched to risk to be uselessly decremented if bfqq
* is not in service, and then to be incremented again after
* incrementing bfqq->dispatched.
*/
bfqq->dispatched++;
bfq_remove_request(rq);
elv_dispatch_sort(q, rq);
if (bfq_bfqq_sync(bfqq))
bfqd->sync_flight++;
}
/*
* Return expired entry, or NULL to just start from scratch in rbtree.
*/
static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
{
struct request *rq = NULL;
if (bfq_bfqq_fifo_expire(bfqq))
return NULL;
bfq_mark_bfqq_fifo_expire(bfqq);
if (list_empty(&bfqq->fifo))
return NULL;
rq = rq_entry_fifo(bfqq->fifo.next);
if (time_before(jiffies, rq_fifo_time(rq)))
return NULL;
return rq;
}
static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
return entity->budget - entity->service;
}
static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
BUG_ON(bfqq != bfqd->in_service_queue);
__bfq_bfqd_reset_in_service(bfqd);
/*
* If this bfqq is shared between multiple processes, check
* to make sure that those processes are still issuing I/Os
* within the mean seek distance. If not, it may be time to
* break the queues apart again.
*/
if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
bfq_mark_bfqq_split_coop(bfqq);
if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
/*
* Overloading budget_timeout field to store the time
* at which the queue remains with no backlog; used by
* the weight-raising mechanism.
*/
bfqq->budget_timeout = jiffies;
bfq_del_bfqq_busy(bfqd, bfqq, 1);
} else {
bfq_activate_bfqq(bfqd, bfqq);
/*
* Resort priority tree of potential close cooperators.
*/
bfq_rq_pos_tree_add(bfqd, bfqq);
}
}
/**
* __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
* @bfqd: device data.
* @bfqq: queue to update.
* @reason: reason for expiration.
*
* Handle the feedback on @bfqq budget. See the body for detailed
* comments.
*/
static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
enum bfqq_expiration reason)
{
struct request *next_rq;
unsigned long budget, min_budget;
budget = bfqq->max_budget;
min_budget = bfq_min_budget(bfqd);
BUG_ON(bfqq != bfqd->in_service_queue);
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
budget, bfq_min_budget(bfqd));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
if (bfq_bfqq_sync(bfqq)) {
switch (reason) {
/*
* Caveat: in all the following cases we trade latency
* for throughput.
*/
case BFQ_BFQQ_TOO_IDLE:
/*
* This is the only case where we may reduce
* the budget: if there is no request of the
* process still waiting for completion, then
* we assume (tentatively) that the timer has
* expired because the batch of requests of
* the process could have been served with a
* smaller budget. Hence, betting that
* process will behave in the same way when it
* becomes backlogged again, we reduce its
* next budget. As long as we guess right,
* this budget cut reduces the latency
* experienced by the process.
*
* However, if there are still outstanding
* requests, then the process may have not yet
* issued its next request just because it is
* still waiting for the completion of some of
* the still outstanding ones. So in this
* subcase we do not reduce its budget, on the
* contrary we increase it to possibly boost
* the throughput, as discussed in the
* comments to the BUDGET_TIMEOUT case.
*/
if (bfqq->dispatched > 0) /* still outstanding reqs */
budget = min(budget * 2, bfqd->bfq_max_budget);
else {
if (budget > 5 * min_budget)
budget -= 4 * min_budget;
else
budget = min_budget;
}
break;
case BFQ_BFQQ_BUDGET_TIMEOUT:
/*
* We double the budget here because: 1) it
* gives the chance to boost the throughput if
* this is not a seeky process (which may have
* bumped into this timeout because of, e.g.,
* ZBR), 2) together with charge_full_budget
* it helps give seeky processes higher
* timestamps, and hence be served less
* frequently.
*/
budget = min(budget * 2, bfqd->bfq_max_budget);
break;
case BFQ_BFQQ_BUDGET_EXHAUSTED:
/*
* The process still has backlog, and did not
* let either the budget timeout or the disk
* idling timeout expire. Hence it is not
* seeky, has a short thinktime and may be
* happy with a higher budget too. So
* definitely increase the budget of this good
* candidate to boost the disk throughput.
*/
budget = min(budget * 4, bfqd->bfq_max_budget);
break;
case BFQ_BFQQ_NO_MORE_REQUESTS:
/*
* Leave the budget unchanged.
*/
default:
return;
}
} else /* async queue */
/* async queues get always the maximum possible budget
* (their ability to dispatch is limited by
* @bfqd->bfq_max_budget_async_rq).
*/
budget = bfqd->bfq_max_budget;
bfqq->max_budget = budget;
if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
bfqq->max_budget > bfqd->bfq_max_budget)
bfqq->max_budget = bfqd->bfq_max_budget;
/*
* Make sure that we have enough budget for the next request.
* Since the finish time of the bfqq must be kept in sync with
* the budget, be sure to call __bfq_bfqq_expire() after the
* update.
*/
next_rq = bfqq->next_rq;
if (next_rq != NULL)
bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
else
bfqq->entity.budget = bfqq->max_budget;
bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu",
next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
bfqq->entity.budget);
}
static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
{
unsigned long max_budget;
/*
* The max_budget calculated when autotuning is equal to the
* amount of sectors transfered in timeout_sync at the
* estimated peak rate.
*/
max_budget = (unsigned long)(peak_rate * 1000 *
timeout >> BFQ_RATE_SHIFT);
return max_budget;
}
/*
* In addition to updating the peak rate, checks whether the process
* is "slow", and returns 1 if so. This slow flag is used, in addition
* to the budget timeout, to reduce the amount of service provided to
* seeky processes, and hence reduce their chances to lower the
* throughput. See the code for more details.
*/
static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int compensate, enum bfqq_expiration reason)
{
u64 bw, usecs, expected, timeout;
ktime_t delta;
int update = 0;
if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
return 0;
if (compensate)
delta = bfqd->last_idling_start;
else
delta = ktime_get();
delta = ktime_sub(delta, bfqd->last_budget_start);
usecs = ktime_to_us(delta);
/* Don't trust short/unrealistic values. */
if (usecs < 100 || usecs >= LONG_MAX)
return 0;
/*
* Calculate the bandwidth for the last slice. We use a 64 bit
* value to store the peak rate, in sectors per usec in fixed
* point math. We do so to have enough precision in the estimate
* and to avoid overflows.
*/
bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
do_div(bw, (unsigned long)usecs);
timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
/*
* Use only long (> 20ms) intervals to filter out spikes for
* the peak rate estimation.
*/
if (usecs > 20000) {
if (bw > bfqd->peak_rate ||
(!BFQQ_SEEKY(bfqq) &&
reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
bfq_log(bfqd, "measured bw =%llu", bw);
/*
* To smooth oscillations use a low-pass filter with
* alpha=7/8, i.e.,
* new_rate = (7/8) * old_rate + (1/8) * bw
*/
do_div(bw, 8);
if (bw == 0)
return 0;
bfqd->peak_rate *= 7;
do_div(bfqd->peak_rate, 8);
bfqd->peak_rate += bw;
update = 1;
bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
}
update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
bfqd->peak_rate_samples++;
if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
update) {
int dev_type = blk_queue_nonrot(bfqd->queue);
if (bfqd->bfq_user_max_budget == 0) {
bfqd->bfq_max_budget =
bfq_calc_max_budget(bfqd->peak_rate,
timeout);
bfq_log(bfqd, "new max_budget=%lu",
bfqd->bfq_max_budget);
}
if (bfqd->device_speed == BFQ_BFQD_FAST &&
bfqd->peak_rate < device_speed_thresh[dev_type]) {
bfqd->device_speed = BFQ_BFQD_SLOW;
bfqd->RT_prod = R_slow[dev_type] *
T_slow[dev_type];
} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
bfqd->peak_rate > device_speed_thresh[dev_type]) {
bfqd->device_speed = BFQ_BFQD_FAST;
bfqd->RT_prod = R_fast[dev_type] *
T_fast[dev_type];
}
}
}
/*
* If the process has been served for a too short time
* interval to let its possible sequential accesses prevail on
* the initial seek time needed to move the disk head on the
* first sector it requested, then give the process a chance
* and for the moment return false.
*/
if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
return 0;
/*
* A process is considered ``slow'' (i.e., seeky, so that we
* cannot treat it fairly in the service domain, as it would
* slow down too much the other processes) if, when a slice
* ends for whatever reason, it has received service at a
* rate that would not be high enough to complete the budget
* before the budget timeout expiration.
*/
expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
/*
* Caveat: processes doing IO in the slower disk zones will
* tend to be slow(er) even if not seeky. And the estimated
* peak rate will actually be an average over the disk
* surface. Hence, to not be too harsh with unlucky processes,
* we keep a budget/3 margin of safety before declaring a
* process slow.
*/
return expected > (4 * bfqq->entity.budget) / 3;
}
/*
* To be deemed as soft real-time, an application must meet two
* requirements. First, the application must not require an average
* bandwidth higher than the approximate bandwidth required to playback or
* record a compressed high-definition video.
* The next function is invoked on the completion of the last request of a
* batch, to compute the next-start time instant, soft_rt_next_start, such
* that, if the next request of the application does not arrive before
* soft_rt_next_start, then the above requirement on the bandwidth is met.
*
* The second requirement is that the request pattern of the application is
* isochronous, i.e., that, after issuing a request or a batch of requests,
* the application stops issuing new requests until all its pending requests
* have been completed. After that, the application may issue a new batch,
* and so on.
* For this reason the next function is invoked to compute
* soft_rt_next_start only for applications that meet this requirement,
* whereas soft_rt_next_start is set to infinity for applications that do
* not.
*
* Unfortunately, even a greedy application may happen to behave in an
* isochronous way if the CPU load is high. In fact, the application may
* stop issuing requests while the CPUs are busy serving other processes,
* then restart, then stop again for a while, and so on. In addition, if
* the disk achieves a low enough throughput with the request pattern
* issued by the application (e.g., because the request pattern is random
* and/or the device is slow), then the application may meet the above
* bandwidth requirement too. To prevent such a greedy application to be
* deemed as soft real-time, a further rule is used in the computation of
* soft_rt_next_start: soft_rt_next_start must be higher than the current
* time plus the maximum time for which the arrival of a request is waited
* for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
* This filters out greedy applications, as the latter issue instead their
* next request as soon as possible after the last one has been completed
* (in contrast, when a batch of requests is completed, a soft real-time
* application spends some time processing data).
*
* Unfortunately, the last filter may easily generate false positives if
* only bfqd->bfq_slice_idle is used as a reference time interval and one
* or both the following cases occur:
* 1) HZ is so low that the duration of a jiffy is comparable to or higher
* than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
* HZ=100.
* 2) jiffies, instead of increasing at a constant rate, may stop increasing
* for a while, then suddenly 'jump' by several units to recover the lost
* increments. This seems to happen, e.g., inside virtual machines.
* To address this issue, we do not use as a reference time interval just
* bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
* particular we add the minimum number of jiffies for which the filter
* seems to be quite precise also in embedded systems and KVM/QEMU virtual
* machines.
*/
static inline unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
return max(bfqq->last_idle_bklogged +
HZ * bfqq->service_from_backlogged /
bfqd->bfq_wr_max_softrt_rate,
jiffies + bfqq->bfqd->bfq_slice_idle + 4);
}
/*
* Return the largest-possible time instant such that, for as long as possible,
* the current time will be lower than this time instant according to the macro
* time_is_before_jiffies().
*/
static inline unsigned long bfq_infinity_from_now(unsigned long now)
{
return now + ULONG_MAX / 2;
}
/**
* bfq_bfqq_expire - expire a queue.
* @bfqd: device owning the queue.
* @bfqq: the queue to expire.
* @compensate: if true, compensate for the time spent idling.
* @reason: the reason causing the expiration.
*
*
* If the process associated to the queue is slow (i.e., seeky), or in
* case of budget timeout, or, finally, if it is async, we
* artificially charge it an entire budget (independently of the
* actual service it received). As a consequence, the queue will get
* higher timestamps than the correct ones upon reactivation, and
* hence it will be rescheduled as if it had received more service
* than what it actually received. In the end, this class of processes
* will receive less service in proportion to how slowly they consume
* their budgets (and hence how seriously they tend to lower the
* throughput).
*
* In contrast, when a queue expires because it has been idling for
* too much or because it exhausted its budget, we do not touch the
* amount of service it has received. Hence when the queue will be
* reactivated and its timestamps updated, the latter will be in sync
* with the actual service received by the queue until expiration.
*
* Charging a full budget to the first type of queues and the exact
* service to the others has the effect of using the WF2Q+ policy to
* schedule the former on a timeslice basis, without violating the
* service domain guarantees of the latter.
*/
static void bfq_bfqq_expire(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
int compensate,
enum bfqq_expiration reason)
{
int slow;
BUG_ON(bfqq != bfqd->in_service_queue);
/* Update disk peak rate for autotuning and check whether the
* process is slow (see bfq_update_peak_rate).
*/
slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
/*
* As above explained, 'punish' slow (i.e., seeky), timed-out
* and async queues, to favor sequential sync workloads.
*
* Processes doing I/O in the slower disk zones will tend to be
* slow(er) even if not seeky. Hence, since the estimated peak
* rate is actually an average over the disk surface, these
* processes may timeout just for bad luck. To avoid punishing
* them we do not charge a full budget to a process that
* succeeded in consuming at least 2/3 of its budget.
*/
if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
bfq_bfqq_charge_full_budget(bfqq);
bfqq->service_from_backlogged += bfqq->entity.service;
if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
!bfq_bfqq_constantly_seeky(bfqq)) {
bfq_mark_bfqq_constantly_seeky(bfqq);
if (!blk_queue_nonrot(bfqd->queue))
bfqd->const_seeky_busy_in_flight_queues++;
}
if (reason == BFQ_BFQQ_TOO_IDLE &&
bfqq->entity.service <= 2 * bfqq->entity.budget / 10 )
bfq_clear_bfqq_IO_bound(bfqq);
if (bfqd->low_latency && bfqq->wr_coeff == 1)
bfqq->last_wr_start_finish = jiffies;
if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
RB_EMPTY_ROOT(&bfqq->sort_list)) {
/*
* If we get here, and there are no outstanding requests,
* then the request pattern is isochronous (see the comments
* to the function bfq_bfqq_softrt_next_start()). Hence we
* can compute soft_rt_next_start. If, instead, the queue
* still has outstanding requests, then we have to wait
* for the completion of all the outstanding requests to
* discover whether the request pattern is actually
* isochronous.
*/
if (bfqq->dispatched == 0)
bfqq->soft_rt_next_start =
bfq_bfqq_softrt_next_start(bfqd, bfqq);
else {
/*
* The application is still waiting for the
* completion of one or more requests:
* prevent it from possibly being incorrectly
* deemed as soft real-time by setting its
* soft_rt_next_start to infinity. In fact,
* without this assignment, the application
* would be incorrectly deemed as soft
* real-time if:
* 1) it issued a new request before the
* completion of all its in-flight
* requests, and
* 2) at that time, its soft_rt_next_start
* happened to be in the past.
*/
bfqq->soft_rt_next_start =
bfq_infinity_from_now(jiffies);
/*
* Schedule an update of soft_rt_next_start to when
* the task may be discovered to be isochronous.
*/
bfq_mark_bfqq_softrt_update(bfqq);
}
}
bfq_log_bfqq(bfqd, bfqq,
"expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
/*
* Increase, decrease or leave budget unchanged according to
* reason.
*/
__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
__bfq_bfqq_expire(bfqd, bfqq);
}
/*
* Budget timeout is not implemented through a dedicated timer, but
* just checked on request arrivals and completions, as well as on
* idle timer expirations.
*/
static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
{
if (bfq_bfqq_budget_new(bfqq) ||
time_before(jiffies, bfqq->budget_timeout))
return 0;
return 1;
}
/*
* If we expire a queue that is waiting for the arrival of a new
* request, we may prevent the fictitious timestamp back-shifting that
* allows the guarantees of the queue to be preserved (see [1] for
* this tricky aspect). Hence we return true only if this condition
* does not hold, or if the queue is slow enough to deserve only to be
* kicked off for preserving a high throughput.
*/
static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqq->bfqd, bfqq,
"may_budget_timeout: wait_request %d left %d timeout %d",
bfq_bfqq_wait_request(bfqq),
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
bfq_bfqq_budget_timeout(bfqq));
return (!bfq_bfqq_wait_request(bfqq) ||
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
&&
bfq_bfqq_budget_timeout(bfqq);
}
/*
* Device idling is allowed only for the queues for which this function
* returns true. For this reason, the return value of this function plays a
* critical role for both throughput boosting and service guarantees. The
* return value is computed through a logical expression. In this rather
* long comment, we try to briefly describe all the details and motivations
* behind the components of this logical expression.
*
* First, the expression is false if bfqq is not sync, or if: bfqq happened
* to become active during a large burst of queue activations, and the
* pattern of requests bfqq contains boosts the throughput if bfqq is
* expired. In fact, queues that became active during a large burst benefit
* only from throughput, as discussed in the comments to bfq_handle_burst.
* In this respect, expiring bfqq certainly boosts the throughput on NCQ-
* capable flash-based devices, whereas, on rotational devices, it boosts
* the throughput only if bfqq contains random requests.
*
* On the opposite end, if (a) bfqq is sync, (b) the above burst-related
* condition does not hold, and (c) bfqq is being weight-raised, then the
* expression always evaluates to true, as device idling is instrumental
* for preserving low-latency guarantees (see [1]). If, instead, conditions
* (a) and (b) do hold, but (c) does not, then the expression evaluates to
* true only if: (1) bfqq is I/O-bound and has a non-null idle window, and
* (2) at least one of the following two conditions holds.
* The first condition is that the device is not performing NCQ, because
* idling the device most certainly boosts the throughput if this condition
* holds and bfqq is I/O-bound and has been granted a non-null idle window.
* The second compound condition is made of the logical AND of two components.
*
* The first component is true only if there is no weight-raised busy
* queue. This guarantees that the device is not idled for a sync non-
* weight-raised queue when there are busy weight-raised queues. The former
* is then expired immediately if empty. Combined with the timestamping
* rules of BFQ (see [1] for details), this causes sync non-weight-raised
* queues to get a lower number of requests served, and hence to ask for a
* lower number of requests from the request pool, before the busy weight-
* raised queues get served again.
*
* This is beneficial for the processes associated with weight-raised
* queues, when the request pool is saturated (e.g., in the presence of
* write hogs). In fact, if the processes associated with the other queues
* ask for requests at a lower rate, then weight-raised processes have a
* higher probability to get a request from the pool immediately (or at
* least soon) when they need one. Hence they have a higher probability to
* actually get a fraction of the disk throughput proportional to their
* high weight. This is especially true with NCQ-capable drives, which
* enqueue several requests in advance and further reorder internally-
* queued requests.
*
* In the end, mistreating non-weight-raised queues when there are busy
* weight-raised queues seems to mitigate starvation problems in the
* presence of heavy write workloads and NCQ, and hence to guarantee a
* higher application and system responsiveness in these hostile scenarios.
*
* If the first component of the compound condition is instead true, i.e.,
* there is no weight-raised busy queue, then the second component of the
* compound condition takes into account service-guarantee and throughput
* issues related to NCQ (recall that the compound condition is evaluated
* only if the device is detected as supporting NCQ).
*
* As for service guarantees, allowing the drive to enqueue more than one
* request at a time, and hence delegating de facto final scheduling
* decisions to the drive's internal scheduler, causes loss of control on
* the actual request service order. In this respect, when the drive is
* allowed to enqueue more than one request at a time, the service
* distribution enforced by the drive's internal scheduler is likely to
* coincide with the desired device-throughput distribution only in the
* following, perfectly symmetric, scenario:
* 1) all active queues have the same weight,
* 2) all active groups at the same level in the groups tree have the same
* weight,
* 3) all active groups at the same level in the groups tree have the same
* number of children.
*
* Even in such a scenario, sequential I/O may still receive a preferential
* treatment, but this is not likely to be a big issue with flash-based
* devices, because of their non-dramatic loss of throughput with random
* I/O. Things do differ with HDDs, for which additional care is taken, as
* explained after completing the discussion for flash-based devices.
*
* Unfortunately, keeping the necessary state for evaluating exactly the
* above symmetry conditions would be quite complex and time-consuming.
* Therefore BFQ evaluates instead the following stronger sub-conditions,
* for which it is much easier to maintain the needed state:
* 1) all active queues have the same weight,
* 2) all active groups have the same weight,
* 3) all active groups have at most one active child each.
* In particular, the last two conditions are always true if hierarchical
* support and the cgroups interface are not enabled, hence no state needs
* to be maintained in this case.
*
* According to the above considerations, the second component of the
* compound condition evaluates to true if any of the above symmetry
* sub-condition does not hold, or the device is not flash-based. Therefore,
* if also the first component is true, then idling is allowed for a sync
* queue. These are the only sub-conditions considered if the device is
* flash-based, as, for such a device, it is sensible to force idling only
* for service-guarantee issues. In fact, as for throughput, idling
* NCQ-capable flash-based devices would not boost the throughput even
* with sequential I/O; rather it would lower the throughput in proportion
* to how fast the device is. In the end, (only) if all the three
* sub-conditions hold and the device is flash-based, the compound
* condition evaluates to false and therefore no idling is performed.
*
* As already said, things change with a rotational device, where idling
* boosts the throughput with sequential I/O (even with NCQ). Hence, for
* such a device the second component of the compound condition evaluates
* to true also if the following additional sub-condition does not hold:
* the queue is constantly seeky. Unfortunately, this different behavior
* with respect to flash-based devices causes an additional asymmetry: if
* some sync queues enjoy idling and some other sync queues do not, then
* the latter get a low share of the device throughput, simply because the
* former get many requests served after being set as in service, whereas
* the latter do not. As a consequence, to guarantee the desired throughput
* distribution, on HDDs the compound expression evaluates to true (and
* hence device idling is performed) also if the following last symmetry
* condition does not hold: no other queue is benefiting from idling. Also
* this last condition is actually replaced with a simpler-to-maintain and
* stronger condition: there is no busy queue which is not constantly seeky
* (and hence may also benefit from idling).
*
* To sum up, when all the required symmetry and throughput-boosting
* sub-conditions hold, the second component of the compound condition
* evaluates to false, and hence no idling is performed. This helps to
* keep the drives' internal queues full on NCQ-capable devices, and hence
* to boost the throughput, without causing 'almost' any loss of service
* guarantees. The 'almost' follows from the fact that, if the internal
* queue of one such device is filled while all the sub-conditions hold,
* but at some point in time some sub-condition stops to hold, then it may
* become impossible to let requests be served in the new desired order
* until all the requests already queued in the device have been served.
*/
static inline bool bfq_bfqq_must_not_expire(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
#define cond_for_seeky_on_ncq_hdd (bfq_bfqq_constantly_seeky(bfqq) && \
bfqd->busy_in_flight_queues == \
bfqd->const_seeky_busy_in_flight_queues)
#define cond_for_expiring_in_burst (bfq_bfqq_in_large_burst(bfqq) && \
bfqd->hw_tag && \
(blk_queue_nonrot(bfqd->queue) || \
bfq_bfqq_constantly_seeky(bfqq)))
/*
* Condition for expiring a non-weight-raised queue (and hence not idling
* the device).
*/
#define cond_for_expiring_non_wr (bfqd->hw_tag && \
(bfqd->wr_busy_queues > 0 || \
(blk_queue_nonrot(bfqd->queue) || \
cond_for_seeky_on_ncq_hdd)))
return bfq_bfqq_sync(bfqq) &&
!cond_for_expiring_in_burst &&
(bfqq->wr_coeff > 1 || !symmetric_scenario ||
(bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_idle_window(bfqq) &&
!cond_for_expiring_non_wr)
);
}
/*
* If the in-service queue is empty but sync, and the function
* bfq_bfqq_must_not_expire returns true, then:
* 1) the queue must remain in service and cannot be expired, and
* 2) the disk must be idled to wait for the possible arrival of a new
* request for the queue.
* See the comments to the function bfq_bfqq_must_not_expire for the reasons
* why performing device idling is the best choice to boost the throughput
* and preserve service guarantees when bfq_bfqq_must_not_expire itself
* returns true.
*/
static inline bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
bfq_bfqq_must_not_expire(bfqq);
}
/*
* Select a queue for service. If we have a current queue in service,
* check whether to continue servicing it, or retrieve and set a new one.
*/
static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq;
struct request *next_rq;
enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
bfqq = bfqd->in_service_queue;
if (bfqq == NULL)
goto new_queue;
bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
if (bfq_may_expire_for_budg_timeout(bfqq) &&
!timer_pending(&bfqd->idle_slice_timer) &&
!bfq_bfqq_must_idle(bfqq))
goto expire;
next_rq = bfqq->next_rq;
/*
* If bfqq has requests queued and it has enough budget left to
* serve them, keep the queue, otherwise expire it.
*/
if (next_rq != NULL) {
if (bfq_serv_to_charge(next_rq, bfqq) >
bfq_bfqq_budget_left(bfqq)) {
reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
goto expire;
} else {
/*
* The idle timer may be pending because we may
* not disable disk idling even when a new request
* arrives.
*/
if (timer_pending(&bfqd->idle_slice_timer)) {
/*
* If we get here: 1) at least a new request
* has arrived but we have not disabled the
* timer because the request was too small,
* 2) then the block layer has unplugged
* the device, causing the dispatch to be
* invoked.
*
* Since the device is unplugged, now the
* requests are probably large enough to
* provide a reasonable throughput.
* So we disable idling.
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
}
goto keep_queue;
}
}
/*
* No requests pending. However, if the in-service queue is idling
* for a new request, or has requests waiting for a completion and
* may idle after their completion, then keep it anyway.
*/
if (timer_pending(&bfqd->idle_slice_timer) ||
(bfqq->dispatched != 0 && bfq_bfqq_must_not_expire(bfqq))) {
bfqq = NULL;
goto keep_queue;
}
reason = BFQ_BFQQ_NO_MORE_REQUESTS;
expire:
bfq_bfqq_expire(bfqd, bfqq, 0, reason);
new_queue:
bfqq = bfq_set_in_service_queue(bfqd);
bfq_log(bfqd, "select_queue: new queue %d returned",
bfqq != NULL ? bfqq->pid : 0);
keep_queue:
return bfqq;
}
static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
bfq_log_bfqq(bfqd, bfqq,
"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
jiffies_to_msecs(bfqq->wr_cur_max_time),
bfqq->wr_coeff,
bfqq->entity.weight, bfqq->entity.orig_weight);
BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
entity->orig_weight * bfqq->wr_coeff);
if (entity->ioprio_changed)
bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
/*
* If the queue was activated in a burst, or
* too much time has elapsed from the beginning
* of this weight-raising period, or the queue has
* exceeded the acceptable number of cooperations,
* then end weight raising.
*/
if (bfq_bfqq_in_large_burst(bfqq) ||
bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
time_is_before_jiffies(bfqq->last_wr_start_finish +
bfqq->wr_cur_max_time)) {
bfqq->last_wr_start_finish = jiffies;
bfq_log_bfqq(bfqd, bfqq,
"wrais ending at %lu, rais_max_time %u",
bfqq->last_wr_start_finish,
jiffies_to_msecs(bfqq->wr_cur_max_time));
bfq_bfqq_end_wr(bfqq);
}
}
/* Update weight both if it must be raised and if it must be lowered */
if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
__bfq_entity_update_weight_prio(
bfq_entity_service_tree(entity),
entity);
}
/*
* Dispatch one request from bfqq, moving it to the request queue
* dispatch list.
*/
static int bfq_dispatch_request(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
int dispatched = 0;
struct request *rq;
unsigned long service_to_charge;
BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
/* Follow expired path, else get first next available. */
rq = bfq_check_fifo(bfqq);
if (rq == NULL)
rq = bfqq->next_rq;
service_to_charge = bfq_serv_to_charge(rq, bfqq);
if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
/*
* This may happen if the next rq is chosen in fifo order
* instead of sector order. The budget is properly
* dimensioned to be always sufficient to serve the next
* request only if it is chosen in sector order. The reason
* is that it would be quite inefficient and little useful
* to always make sure that the budget is large enough to
* serve even the possible next rq in fifo order.
* In fact, requests are seldom served in fifo order.
*
* Expire the queue for budget exhaustion, and make sure
* that the next act_budget is enough to serve the next
* request, even if it comes from the fifo expired path.
*/
bfqq->next_rq = rq;
/*
* Since this dispatch is failed, make sure that
* a new one will be performed
*/
if (!bfqd->rq_in_driver)
bfq_schedule_dispatch(bfqd);
goto expire;
}
/* Finally, insert request into driver dispatch list. */
bfq_bfqq_served(bfqq, service_to_charge);
bfq_dispatch_insert(bfqd->queue, rq);
bfq_update_wr_data(bfqd, bfqq);
bfq_log_bfqq(bfqd, bfqq,
"dispatched %u sec req (%llu), budg left %lu",
blk_rq_sectors(rq),
(long long unsigned)blk_rq_pos(rq),
bfq_bfqq_budget_left(bfqq));
dispatched++;
if (bfqd->in_service_bic == NULL) {
atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
bfqd->in_service_bic = RQ_BIC(rq);
}
if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
dispatched >= bfqd->bfq_max_budget_async_rq) ||
bfq_class_idle(bfqq)))
goto expire;
return dispatched;
expire:
bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
return dispatched;
}
static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
{
int dispatched = 0;
while (bfqq->next_rq != NULL) {
bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
dispatched++;
}
BUG_ON(!list_empty(&bfqq->fifo));
return dispatched;
}
/*
* Drain our current requests.
* Used for barriers and when switching io schedulers on-the-fly.
*/
static int bfq_forced_dispatch(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq, *n;
struct bfq_service_tree *st;
int dispatched = 0;
bfqq = bfqd->in_service_queue;
if (bfqq != NULL)
__bfq_bfqq_expire(bfqd, bfqq);
/*
* Loop through classes, and be careful to leave the scheduler
* in a consistent state, as feedback mechanisms and vtime
* updates cannot be disabled during the process.
*/
list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
st = bfq_entity_service_tree(&bfqq->entity);
dispatched += __bfq_forced_dispatch_bfqq(bfqq);
bfqq->max_budget = bfq_max_budget(bfqd);
bfq_forget_idle(st);
}
BUG_ON(bfqd->busy_queues != 0);
return dispatched;
}
static int bfq_dispatch_requests(struct request_queue *q, int force)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq;
int max_dispatch;
bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
if (bfqd->busy_queues == 0)
return 0;
if (unlikely(force))
return bfq_forced_dispatch(bfqd);
bfqq = bfq_select_queue(bfqd);
if (bfqq == NULL)
return 0;
if (bfq_class_idle(bfqq))
max_dispatch = 1;
if (!bfq_bfqq_sync(bfqq))
max_dispatch = bfqd->bfq_max_budget_async_rq;
if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
if (bfqd->busy_queues > 1)
return 0;
if (bfqq->dispatched >= 4 * max_dispatch)
return 0;
}
if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
return 0;
bfq_clear_bfqq_wait_request(bfqq);
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
if (!bfq_dispatch_request(bfqd, bfqq))
return 0;
bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
bfq_bfqq_sync(bfqq) ? "sync" : "async");
return 1;
}
/*
* Task holds one reference to the queue, dropped when task exits. Each rq
* in-flight on this queue also holds a reference, dropped when rq is freed.
*
* Queue lock must be held here.
*/
static void bfq_put_queue(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
BUG_ON(atomic_read(&bfqq->ref) <= 0);
bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
atomic_read(&bfqq->ref));
if (!atomic_dec_and_test(&bfqq->ref))
return;
BUG_ON(rb_first(&bfqq->sort_list) != NULL);
BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
BUG_ON(bfqq->entity.tree != NULL);
BUG_ON(bfq_bfqq_busy(bfqq));
BUG_ON(bfqd->in_service_queue == bfqq);
if (bfq_bfqq_sync(bfqq))
/*
* The fact that this queue is being destroyed does not
* invalidate the fact that this queue may have been
* activated during the current burst. As a consequence,
* although the queue does not exist anymore, and hence
* needs to be removed from the burst list if there,
* the burst size has not to be decremented.
*/
hlist_del_init(&bfqq->burst_list_node);
bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
kmem_cache_free(bfq_pool, bfqq);
}
static void bfq_put_cooperator(struct bfq_queue *bfqq)
{
struct bfq_queue *__bfqq, *next;
/*
* If this queue was scheduled to merge with another queue, be
* sure to drop the reference taken on that queue (and others in
* the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
*/
__bfqq = bfqq->new_bfqq;
while (__bfqq) {
if (__bfqq == bfqq)
break;
next = __bfqq->new_bfqq;
bfq_put_queue(__bfqq);
__bfqq = next;
}
}
static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
if (bfqq == bfqd->in_service_queue) {
__bfq_bfqq_expire(bfqd, bfqq);
bfq_schedule_dispatch(bfqd);
}
bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
atomic_read(&bfqq->ref));
bfq_put_cooperator(bfqq);
bfq_put_queue(bfqq);
}
static inline void bfq_init_icq(struct io_cq *icq)
{
struct bfq_io_cq *bic = icq_to_bic(icq);
bic->ttime.last_end_request = jiffies;
/*
* A newly created bic indicates that the process has just
* started doing I/O, and is probably mapping into memory its
* executable and libraries: it definitely needs weight raising.
* There is however the possibility that the process performs,
* for a while, I/O close to some other process. EQM intercepts
* this behavior and may merge the queue corresponding to the
* process with some other queue, BEFORE the weight of the queue
* is raised. Merged queues are not weight-raised (they are assumed
* to belong to processes that benefit only from high throughput).
* If the merge is basically the consequence of an accident, then
* the queue will be split soon and will get back its old weight.
* It is then important to write down somewhere that this queue
* does need weight raising, even if it did not make it to get its
* weight raised before being merged. To this purpose, we overload
* the field raising_time_left and assign 1 to it, to mark the queue
* as needing weight raising.
*/
bic->wr_time_left = 1;
}
static void bfq_exit_icq(struct io_cq *icq)
{
struct bfq_io_cq *bic = icq_to_bic(icq);
struct bfq_data *bfqd = bic_to_bfqd(bic);
if (bic->bfqq[BLK_RW_ASYNC]) {
bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
bic->bfqq[BLK_RW_ASYNC] = NULL;
}
if (bic->bfqq[BLK_RW_SYNC]) {
/*
* If the bic is using a shared queue, put the reference
* taken on the io_context when the bic started using a
* shared bfq_queue.
*/
if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
put_io_context(icq->ioc);
bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
bic->bfqq[BLK_RW_SYNC] = NULL;
}
}
/*
* Update the entity prio values; note that the new values will not
* be used until the next (re)activation.
*/
static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
{
struct task_struct *tsk = current;
struct io_context *ioc = bic->icq.ioc;
int ioprio_class;
ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
switch (ioprio_class) {
default:
dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
"bfq: bad prio class %d\n", ioprio_class);
case IOPRIO_CLASS_NONE:
/*
* No prio set, inherit CPU scheduling settings.
*/
bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
break;
case IOPRIO_CLASS_RT:
bfqq->entity.new_ioprio = task_ioprio(ioc);
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
break;
case IOPRIO_CLASS_BE:
bfqq->entity.new_ioprio = task_ioprio(ioc);
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
break;
case IOPRIO_CLASS_IDLE:
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
bfqq->entity.new_ioprio = 7;
bfq_clear_bfqq_idle_window(bfqq);
break;
}
if (bfqq->entity.new_ioprio < 0 ||
bfqq->entity.new_ioprio >= IOPRIO_BE_NR) {
printk(KERN_CRIT "bfq_set_next_ioprio_data: new_ioprio %d\n",
bfqq->entity.new_ioprio);
BUG();
}
bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->entity.new_ioprio);
bfqq->entity.ioprio_changed = 1;
}
static void bfq_check_ioprio_change(struct io_context *ioc,
struct bfq_io_cq *bic)
{
struct bfq_data *bfqd;
struct bfq_queue *bfqq, *new_bfqq;
struct bfq_group *bfqg;
unsigned long uninitialized_var(flags);
int ioprio = bic->icq.ioc->ioprio;
bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
&flags);
if (unlikely(bfqd == NULL))
return;
bic->ioprio = ioprio;
bfqq = bic->bfqq[BLK_RW_ASYNC];
if (bfqq != NULL) {
bfqg = container_of(bfqq->entity.sched_data, struct bfq_group,
sched_data);
new_bfqq = bfq_get_queue(bfqd, bfqg, BLK_RW_ASYNC, bic->icq.ioc,
GFP_ATOMIC);
if (new_bfqq != NULL) {
bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
bfq_log_bfqq(bfqd, bfqq,
"check_ioprio_change: bfqq %p %d",
bfqq, atomic_read(&bfqq->ref));
bfq_put_queue(bfqq);
}
}
bfqq = bic->bfqq[BLK_RW_SYNC];
if (bfqq != NULL)
bfq_set_next_ioprio_data(bfqq, bic);
bfq_put_bfqd_unlock(bfqd, &flags);
}
static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct bfq_io_cq *bic, pid_t pid, int is_sync)
{
RB_CLEAR_NODE(&bfqq->entity.rb_node);
INIT_LIST_HEAD(&bfqq->fifo);
INIT_HLIST_NODE(&bfqq->burst_list_node);
atomic_set(&bfqq->ref, 0);
bfqq->bfqd = bfqd;
if (bic)
bfq_set_next_ioprio_data(bfqq, bic);
if (is_sync) {
if (!bfq_class_idle(bfqq))
bfq_mark_bfqq_idle_window(bfqq);
bfq_mark_bfqq_sync(bfqq);
}
bfq_mark_bfqq_IO_bound(bfqq);
/* Tentative initial value to trade off between thr and lat */
bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
bfqq->pid = pid;
bfqq->wr_coeff = 1;
bfqq->last_wr_start_finish = 0;
/*
* Set to the value for which bfqq will not be deemed as
* soft rt when it becomes backlogged.
*/
bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
}
static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
struct bfq_group *bfqg,
int is_sync,
struct io_context *ioc,
gfp_t gfp_mask)
{
struct bfq_queue *bfqq, *new_bfqq = NULL;
struct bfq_io_cq *bic;
retry:
bic = bfq_bic_lookup(bfqd, ioc);
/* bic always exists here */
bfqq = bic_to_bfqq(bic, is_sync);
/*
* Always try a new alloc if we fall back to the OOM bfqq
* originally, since it should just be a temporary situation.
*/
if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
bfqq = NULL;
if (new_bfqq != NULL) {
bfqq = new_bfqq;
new_bfqq = NULL;
} else if (gfp_mask & __GFP_WAIT) {
spin_unlock_irq(bfqd->queue->queue_lock);
new_bfqq = kmem_cache_alloc_node(bfq_pool,
gfp_mask | __GFP_ZERO,
bfqd->queue->node);
spin_lock_irq(bfqd->queue->queue_lock);
if (new_bfqq != NULL)
goto retry;
} else {
bfqq = kmem_cache_alloc_node(bfq_pool,
gfp_mask | __GFP_ZERO,
bfqd->queue->node);
}
if (bfqq != NULL) {
bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
is_sync);
bfq_init_entity(&bfqq->entity, bfqg);
bfq_log_bfqq(bfqd, bfqq, "allocated");
} else {
bfqq = &bfqd->oom_bfqq;
bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
}
}
if (new_bfqq != NULL)
kmem_cache_free(bfq_pool, new_bfqq);
return bfqq;
}
static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
struct bfq_group *bfqg,
int ioprio_class, int ioprio)
{
switch (ioprio_class) {
case IOPRIO_CLASS_RT:
return &bfqg->async_bfqq[0][ioprio];
case IOPRIO_CLASS_BE:
return &bfqg->async_bfqq[1][ioprio];
case IOPRIO_CLASS_IDLE:
return &bfqg->async_idle_bfqq;
default:
BUG();
}
}
static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
struct bfq_group *bfqg, int is_sync,
struct io_context *ioc, gfp_t gfp_mask)
{
const int ioprio = task_ioprio(ioc);
const int ioprio_class = task_ioprio_class(ioc);
struct bfq_queue **async_bfqq = NULL;
struct bfq_queue *bfqq = NULL;
if (!is_sync) {
async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
ioprio);
bfqq = *async_bfqq;
}
if (bfqq == NULL)
bfqq = bfq_find_alloc_queue(bfqd, bfqg, is_sync, ioc, gfp_mask);
/*
* Pin the queue now that it's allocated, scheduler exit will
* prune it.
*/
if (!is_sync && *async_bfqq == NULL) {
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
bfqq, atomic_read(&bfqq->ref));
*async_bfqq = bfqq;
}
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
atomic_read(&bfqq->ref));
return bfqq;
}
static void bfq_update_io_thinktime(struct bfq_data *bfqd,
struct bfq_io_cq *bic)
{
unsigned long elapsed = jiffies - bic->ttime.last_end_request;
unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
bic->ttime.ttime_samples;
}
static void bfq_update_io_seektime(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *rq)
{
sector_t sdist;
u64 total;
if (bfqq->last_request_pos < blk_rq_pos(rq))
sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
else
sdist = bfqq->last_request_pos - blk_rq_pos(rq);
/*
* Don't allow the seek distance to get too large from the
* odd fragment, pagein, etc.
*/
if (bfqq->seek_samples == 0) /* first request, not really a seek */
sdist = 0;
else if (bfqq->seek_samples <= 60) /* second & third seek */
sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
else
sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
total = bfqq->seek_total + (bfqq->seek_samples/2);
do_div(total, bfqq->seek_samples);
bfqq->seek_mean = (sector_t)total;
bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
(u64)bfqq->seek_mean);
}
/*
* Disable idle window if the process thinks too long or seeks so much that
* it doesn't matter.
*/
static void bfq_update_idle_window(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct bfq_io_cq *bic)
{
int enable_idle;
/* Don't idle for async or idle io prio class. */
if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
return;
/* Idle window just restored, statistics are meaningless. */
if (bfq_bfqq_just_split(bfqq))
return;
enable_idle = bfq_bfqq_idle_window(bfqq);
if (atomic_read(&bic->icq.ioc->nr_tasks) == 0 ||
bfqd->bfq_slice_idle == 0 ||
(bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
bfqq->wr_coeff == 1))
enable_idle = 0;
else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle &&
bfqq->wr_coeff == 1)
enable_idle = 0;
else
enable_idle = 1;
}
bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
enable_idle);
if (enable_idle)
bfq_mark_bfqq_idle_window(bfqq);
else
bfq_clear_bfqq_idle_window(bfqq);
}
/*
* Called when a new fs request (rq) is added to bfqq. Check if there's
* something we should do about it.
*/
static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct request *rq)
{
struct bfq_io_cq *bic = RQ_BIC(rq);
if (rq->cmd_flags & REQ_META)
bfqq->meta_pending++;
bfq_update_io_thinktime(bfqd, bic);
bfq_update_io_seektime(bfqd, bfqq, rq);
if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
bfq_clear_bfqq_constantly_seeky(bfqq);
if (!blk_queue_nonrot(bfqd->queue)) {
BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
bfqd->const_seeky_busy_in_flight_queues--;
}
}
if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
!BFQQ_SEEKY(bfqq))
bfq_update_idle_window(bfqd, bfqq, bic);
bfq_clear_bfqq_just_split(bfqq);
bfq_log_bfqq(bfqd, bfqq,
"rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
(long long unsigned)bfqq->seek_mean);
bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
int small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
blk_rq_sectors(rq) < 32;
int budget_timeout = bfq_bfqq_budget_timeout(bfqq);
/*
* There is just this request queued: if the request
* is small and the queue is not to be expired, then
* just exit.
*
* In this way, if the disk is being idled to wait for
* a new request from the in-service queue, we avoid
* unplugging the device and committing the disk to serve
* just a small request. On the contrary, we wait for
* the block layer to decide when to unplug the device:
* hopefully, new requests will be merged to this one
* quickly, then the device will be unplugged and
* larger requests will be dispatched.
*/
if (small_req && !budget_timeout)
return;
/*
* A large enough request arrived, or the queue is to
* be expired: in both cases disk idling is to be
* stopped, so clear wait_request flag and reset
* timer.
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
/*
* The queue is not empty, because a new request just
* arrived. Hence we can safely expire the queue, in
* case of budget timeout, without risking that the
* timestamps of the queue are not updated correctly.
* See [1] for more details.
*/
if (budget_timeout)
bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
/*
* Let the request rip immediately, or let a new queue be
* selected if bfqq has just been expired.
*/
__blk_run_queue(bfqd->queue);
}
}
static void bfq_insert_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
assert_spin_locked(bfqd->queue->queue_lock);
/*
* An unplug may trigger a requeue of a request from the device
* driver: make sure we are in process context while trying to
* merge two bfq_queues.
*/
if (!in_interrupt()) {
new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
if (new_bfqq != NULL) {
if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
/*
* Release the request's reference to the old bfqq
* and make sure one is taken to the shared queue.
*/
new_bfqq->allocated[rq_data_dir(rq)]++;
bfqq->allocated[rq_data_dir(rq)]--;
atomic_inc(&new_bfqq->ref);
bfq_put_queue(bfqq);
if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
bfqq, new_bfqq);
rq->elv.priv[1] = new_bfqq;
bfqq = new_bfqq;
} else
bfq_bfqq_increase_failed_cooperations(bfqq);
}
bfq_add_request(rq);
/*
* Here a newly-created bfq_queue has already started a weight-raising
* period: clear raising_time_left to prevent bfq_bfqq_save_state()
* from assigning it a full weight-raising period. See the detailed
* comments about this field in bfq_init_icq().
*/
if (bfqq->bic != NULL)
bfqq->bic->wr_time_left = 0;
rq_set_fifo_time(rq, jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)]);
list_add_tail(&rq->queuelist, &bfqq->fifo);
bfq_rq_enqueued(bfqd, bfqq, rq);
}
static void bfq_update_hw_tag(struct bfq_data *bfqd)
{
bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
bfqd->rq_in_driver);
if (bfqd->hw_tag == 1)
return;
/*
* This sample is valid if the number of outstanding requests
* is large enough to allow a queueing behavior. Note that the
* sum is not exact, as it's not taking into account deactivated
* requests.
*/
if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
return;
if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
return;
bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
bfqd->max_rq_in_driver = 0;
bfqd->hw_tag_samples = 0;
}
static void bfq_completed_request(struct request_queue *q, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
bool sync = bfq_bfqq_sync(bfqq);
bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
blk_rq_sectors(rq), sync);
bfq_update_hw_tag(bfqd);
BUG_ON(!bfqd->rq_in_driver);
BUG_ON(!bfqq->dispatched);
bfqd->rq_in_driver--;
bfqq->dispatched--;
if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
bfq_weights_tree_remove(bfqd, &bfqq->entity,
&bfqd->queue_weights_tree);
if (!blk_queue_nonrot(bfqd->queue)) {
BUG_ON(!bfqd->busy_in_flight_queues);
bfqd->busy_in_flight_queues--;
if (bfq_bfqq_constantly_seeky(bfqq)) {
BUG_ON(!bfqd->
const_seeky_busy_in_flight_queues);
bfqd->const_seeky_busy_in_flight_queues--;
}
}
}
if (sync) {
bfqd->sync_flight--;
RQ_BIC(rq)->ttime.last_end_request = jiffies;
}
/*
* If we are waiting to discover whether the request pattern of the
* task associated with the queue is actually isochronous, and
* both requisites for this condition to hold are satisfied, then
* compute soft_rt_next_start (see the comments to the function
* bfq_bfqq_softrt_next_start()).
*/
if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
RB_EMPTY_ROOT(&bfqq->sort_list))
bfqq->soft_rt_next_start =
bfq_bfqq_softrt_next_start(bfqd, bfqq);
/*
* If this is the in-service queue, check if it needs to be expired,
* or if we want to idle in case it has no pending requests.
*/
if (bfqd->in_service_queue == bfqq) {
if (bfq_bfqq_budget_new(bfqq))
bfq_set_budget_timeout(bfqd);
if (bfq_bfqq_must_idle(bfqq)) {
bfq_arm_slice_timer(bfqd);
goto out;
} else if (bfq_may_expire_for_budg_timeout(bfqq))
bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
(bfqq->dispatched == 0 ||
!bfq_bfqq_must_not_expire(bfqq)))
bfq_bfqq_expire(bfqd, bfqq, 0,
BFQ_BFQQ_NO_MORE_REQUESTS);
}
if (!bfqd->rq_in_driver)
bfq_schedule_dispatch(bfqd);
out:
return;
}
static inline int __bfq_may_queue(struct bfq_queue *bfqq)
{
if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
bfq_clear_bfqq_must_alloc(bfqq);
return ELV_MQUEUE_MUST;
}
return ELV_MQUEUE_MAY;
}
static int bfq_may_queue(struct request_queue *q, int rw)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct task_struct *tsk = current;
struct bfq_io_cq *bic;
struct bfq_queue *bfqq;
/*
* Don't force setup of a queue from here, as a call to may_queue
* does not necessarily imply that a request actually will be
* queued. So just lookup a possibly existing queue, or return
* 'may queue' if that fails.
*/
bic = bfq_bic_lookup(bfqd, tsk->io_context);
if (bic == NULL)
return ELV_MQUEUE_MAY;
bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
if (bfqq != NULL)
return __bfq_may_queue(bfqq);
return ELV_MQUEUE_MAY;
}
/*
* Queue lock held here.
*/
static void bfq_put_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
if (bfqq != NULL) {
const int rw = rq_data_dir(rq);
BUG_ON(!bfqq->allocated[rw]);
bfqq->allocated[rw]--;
rq->elv.priv[0] = NULL;
rq->elv.priv[1] = NULL;
bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
bfqq, atomic_read(&bfqq->ref));
bfq_put_queue(bfqq);
}
}
/*
* Returns NULL if a new bfqq should be allocated, or the old bfqq if this
* was the last process referring to said bfqq.
*/
static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
put_io_context(bic->icq.ioc);
if (bfqq_process_refs(bfqq) == 1) {
bfqq->pid = current->pid;
bfq_clear_bfqq_coop(bfqq);
bfq_clear_bfqq_split_coop(bfqq);
return bfqq;
}
bic_set_bfqq(bic, NULL, 1);
bfq_put_cooperator(bfqq);
bfq_put_queue(bfqq);
return NULL;
}
/*
* Allocate bfq data structures associated with this request.
*/
static int bfq_set_request(struct request_queue *q, struct request *rq,
gfp_t gfp_mask)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
const int rw = rq_data_dir(rq);
const int is_sync = rq_is_sync(rq);
struct bfq_queue *bfqq;
struct bfq_group *bfqg;
unsigned long flags;
bool split = false;
/* handle changed prio notifications; cgroup change is handled separately */
if (unlikely(bic->icq.changed))
if (test_and_clear_bit(ICQ_IOPRIO_CHANGED, &bic->icq.changed))
bfq_check_ioprio_change(bic->icq.ioc, bic);
/*
if (unlikely(icq_get_changed(&bic->icq) & ICQ_IOPRIO_CHANGED))
bfq_check_ioprio_change(bic->icq.ioc, bic);
*/
might_sleep_if(gfp_mask & __GFP_WAIT);
spin_lock_irqsave(q->queue_lock, flags);
if (bic == NULL)
goto queue_fail;
bfqg = bfq_bic_update_cgroup(bic);
new_queue:
bfqq = bic_to_bfqq(bic, is_sync);
if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
bfqq = bfq_get_queue(bfqd, bfqg, is_sync, bic->icq.ioc, gfp_mask);
bic_set_bfqq(bic, bfqq, is_sync);
if (split && is_sync) {
if ((bic->was_in_burst_list && bfqd->large_burst) ||
bic->saved_in_large_burst)
bfq_mark_bfqq_in_large_burst(bfqq);
else {
bfq_clear_bfqq_in_large_burst(bfqq);
if (bic->was_in_burst_list)
hlist_add_head(&bfqq->burst_list_node,
&bfqd->burst_list);
}
}
} else {
/* If the queue was seeky for too long, break it apart. */
if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
bfqq = bfq_split_bfqq(bic, bfqq);
split = true;
if (!bfqq)
goto new_queue;
}
}
bfqq->allocated[rw]++;
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
atomic_read(&bfqq->ref));
rq->elv.priv[0] = bic;
rq->elv.priv[1] = bfqq;
/*
* If a bfq_queue has only one process reference, it is owned
* by only one bfq_io_cq: we can set the bic field of the
* bfq_queue to the address of that structure. Also, if the
* queue has just been split, mark a flag so that the
* information is available to the other scheduler hooks.
*/
if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
bfqq->bic = bic;
if (split) {
bfq_mark_bfqq_just_split(bfqq);
/*
* If the queue has just been split from a shared
* queue, restore the idle window and the possible
* weight raising period.
*/
bfq_bfqq_resume_state(bfqq, bic);
}
}
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
queue_fail:
bfq_schedule_dispatch(bfqd);
spin_unlock_irqrestore(q->queue_lock, flags);
return 1;
}
static void bfq_kick_queue(struct work_struct *work)
{
struct bfq_data *bfqd =
container_of(work, struct bfq_data, unplug_work);
struct request_queue *q = bfqd->queue;
spin_lock_irq(q->queue_lock);
__blk_run_queue(q);
spin_unlock_irq(q->queue_lock);
}
/*
* Handler of the expiration of the timer running if the in-service queue
* is idling inside its time slice.
*/
static void bfq_idle_slice_timer(unsigned long data)
{
struct bfq_data *bfqd = (struct bfq_data *)data;
struct bfq_queue *bfqq;
unsigned long flags;
enum bfqq_expiration reason;
spin_lock_irqsave(bfqd->queue->queue_lock, flags);
bfqq = bfqd->in_service_queue;
/*
* Theoretical race here: the in-service queue can be NULL or
* different from the queue that was idling if the timer handler
* spins on the queue_lock and a new request arrives for the
* current queue and there is a full dispatch cycle that changes
* the in-service queue. This can hardly happen, but in the worst
* case we just expire a queue too early.
*/
if (bfqq != NULL) {
bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
if (bfq_bfqq_budget_timeout(bfqq))
/*
* Also here the queue can be safely expired
* for budget timeout without wasting
* guarantees
*/
reason = BFQ_BFQQ_BUDGET_TIMEOUT;
else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
/*
* The queue may not be empty upon timer expiration,
* because we may not disable the timer when the
* first request of the in-service queue arrives
* during disk idling.
*/
reason = BFQ_BFQQ_TOO_IDLE;
else
goto schedule_dispatch;
bfq_bfqq_expire(bfqd, bfqq, 1, reason);
}
schedule_dispatch:
bfq_schedule_dispatch(bfqd);
spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
}
static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
{
del_timer_sync(&bfqd->idle_slice_timer);
cancel_work_sync(&bfqd->unplug_work);
}
static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
struct bfq_queue **bfqq_ptr)
{
struct bfq_group *root_group = bfqd->root_group;
struct bfq_queue *bfqq = *bfqq_ptr;
bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
if (bfqq != NULL) {
bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
bfqq, atomic_read(&bfqq->ref));
bfq_put_queue(bfqq);
*bfqq_ptr = NULL;
}
}
/*
* Release all the bfqg references to its async queues. If we are
* deallocating the group these queues may still contain requests, so
* we reparent them to the root cgroup (i.e., the only one that will
* exist for sure until all the requests on a device are gone).
*/
static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
{
int i, j;
for (i = 0; i < 2; i++)
for (j = 0; j < IOPRIO_BE_NR; j++)
__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
}
static void bfq_exit_queue(struct elevator_queue *e)
{
struct bfq_data *bfqd = e->elevator_data;
struct request_queue *q = bfqd->queue;
struct bfq_queue *bfqq, *n;
bfq_shutdown_timer_wq(bfqd);
spin_lock_irq(q->queue_lock);
BUG_ON(bfqd->in_service_queue != NULL);
list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
bfq_deactivate_bfqq(bfqd, bfqq, 0);
bfq_disconnect_groups(bfqd);
spin_unlock_irq(q->queue_lock);
bfq_shutdown_timer_wq(bfqd);
synchronize_rcu();
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
bfq_free_root_group(bfqd);
kfree(bfqd);
}
static void *bfq_init_queue(struct request_queue *q)
{
struct bfq_group *bfqg;
struct bfq_data *bfqd;
bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
if (bfqd == NULL)
return NULL;
/*
* Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
* Grab a permanent reference to it, so that the normal code flow
* will not attempt to free it.
*/
bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
atomic_inc(&bfqd->oom_bfqq.ref);
bfqd->oom_bfqq.entity.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
bfqd->oom_bfqq.entity.new_ioprio_class = IOPRIO_CLASS_BE;
bfqd->oom_bfqq.entity.new_weight =
bfq_ioprio_to_weight(bfqd->oom_bfqq.entity.new_ioprio);
/*
* Trigger weight initialization, according to ioprio, at the
* oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
* class won't be changed any more.
*/
bfqd->oom_bfqq.entity.ioprio_changed = 1;
bfqd->queue = q;
bfqg = bfq_alloc_root_group(bfqd, q->node);
if (bfqg == NULL) {
kfree(bfqd);
return NULL;
}
bfqd->root_group = bfqg;
bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
#ifdef CONFIG_CGROUP_BFQIO
bfqd->active_numerous_groups = 0;
#endif
init_timer(&bfqd->idle_slice_timer);
bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
bfqd->idle_slice_timer.data = (unsigned long)bfqd;
bfqd->rq_pos_tree = RB_ROOT;
bfqd->queue_weights_tree = RB_ROOT;
bfqd->group_weights_tree = RB_ROOT;
INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
INIT_LIST_HEAD(&bfqd->active_list);
INIT_LIST_HEAD(&bfqd->idle_list);
INIT_HLIST_HEAD(&bfqd->burst_list);
bfqd->hw_tag = -1;
bfqd->bfq_max_budget = bfq_default_max_budget;
bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
bfqd->bfq_back_max = bfq_back_max;
bfqd->bfq_back_penalty = bfq_back_penalty;
bfqd->bfq_slice_idle = bfq_slice_idle;
bfqd->bfq_class_idle_last_service = 0;
bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
bfqd->bfq_coop_thresh = 2;
bfqd->bfq_failed_cooperations = 7000;
bfqd->bfq_requests_within_timer = 120;
bfqd->bfq_large_burst_thresh = 11;
bfqd->bfq_burst_interval = msecs_to_jiffies(500);
bfqd->low_latency = true;
bfqd->bfq_wr_coeff = 20;
bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
bfqd->bfq_wr_max_time = 0;
bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
bfqd->bfq_wr_max_softrt_rate = 7000; /*
* Approximate rate required
* to playback or record a
* high-definition compressed
* video.
*/
bfqd->wr_busy_queues = 0;
bfqd->busy_in_flight_queues = 0;
bfqd->const_seeky_busy_in_flight_queues = 0;
/*
* Begin by assuming, optimistically, that the device peak rate is
* equal to the highest reference rate.
*/
bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
T_fast[blk_queue_nonrot(bfqd->queue)];
bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
bfqd->device_speed = BFQ_BFQD_FAST;
return bfqd;
}
static void bfq_slab_kill(void)
{
if (bfq_pool != NULL)
kmem_cache_destroy(bfq_pool);
}
static int __init bfq_slab_setup(void)
{
bfq_pool = KMEM_CACHE(bfq_queue, 0);
if (bfq_pool == NULL)
return -ENOMEM;
return 0;
}
static ssize_t bfq_var_show(unsigned int var, char *page)
{
return sprintf(page, "%d\n", var);
}
static ssize_t bfq_var_store(unsigned long *var, const char *page,
size_t count)
{
unsigned long new_val;
int ret = kstrtoul(page, 10, &new_val);
if (ret == 0)
*var = new_val;
return count;
}
static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
{
struct bfq_data *bfqd = e->elevator_data;
return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
jiffies_to_msecs(bfqd->bfq_wr_max_time) :
jiffies_to_msecs(bfq_wr_duration(bfqd)));
}
static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
{
struct bfq_queue *bfqq;
struct bfq_data *bfqd = e->elevator_data;
ssize_t num_char = 0;
spin_lock_irq(bfqd->queue->queue_lock);
num_char += sprintf(page + num_char, "Active:\n");
list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
num_char += sprintf(page + num_char,
"pid%d: weight %hu, dur %d/%u\n",
bfqq->pid,
bfqq->entity.weight,
jiffies_to_msecs(jiffies -
bfqq->last_wr_start_finish),
jiffies_to_msecs(bfqq->wr_cur_max_time));
}
num_char += sprintf(page + num_char, "Idle:\n");
list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
num_char += sprintf(page + num_char,
"pid%d: weight %hu, dur %d/%u\n",
bfqq->pid,
bfqq->entity.weight,
jiffies_to_msecs(jiffies -
bfqq->last_wr_start_finish),
jiffies_to_msecs(bfqq->wr_cur_max_time));
}
spin_unlock_irq(bfqd->queue->queue_lock);
return num_char;
}
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned int __data = __VAR; \
if (__CONV) \
__data = jiffies_to_msecs(__data); \
return bfq_var_show(__data, (page)); \
}
SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
SHOW_FUNCTION(bfq_max_budget_async_rq_show,
bfqd->bfq_max_budget_async_rq, 0);
SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
1);
SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
#undef SHOW_FUNCTION
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
static ssize_t \
__FUNC(struct elevator_queue *e, const char *page, size_t count) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned long uninitialized_var(__data); \
int ret = bfq_var_store(&__data, (page), count); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
if (__CONV) \
*(__PTR) = msecs_to_jiffies(__data); \
else \
*(__PTR) = __data; \
return ret; \
}
STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
INT_MAX, 1);
STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
INT_MAX, 1);
STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
INT_MAX, 0);
STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
1, INT_MAX, 0);
STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
INT_MAX, 1);
STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
1);
STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
INT_MAX, 1);
STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
&bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
INT_MAX, 0);
#undef STORE_FUNCTION
/* do nothing for the moment */
static ssize_t bfq_weights_store(struct elevator_queue *e,
const char *page, size_t count)
{
return count;
}
static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
{
u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
return bfq_calc_max_budget(bfqd->peak_rate, timeout);
else
return bfq_default_max_budget;
}
static ssize_t bfq_max_budget_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
else {
if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_max_budget = __data;
}
bfqd->bfq_user_max_budget = __data;
return ret;
}
static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data < 1)
__data = 1;
else if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
if (bfqd->bfq_user_max_budget == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
return ret;
}
static ssize_t bfq_low_latency_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data > 1)
__data = 1;
if (__data == 0 && bfqd->low_latency != 0)
bfq_end_wr(bfqd);
bfqd->low_latency = __data;
return ret;
}
#define BFQ_ATTR(name) \
__ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
static struct elv_fs_entry bfq_attrs[] = {
BFQ_ATTR(fifo_expire_sync),
BFQ_ATTR(fifo_expire_async),
BFQ_ATTR(back_seek_max),
BFQ_ATTR(back_seek_penalty),
BFQ_ATTR(slice_idle),
BFQ_ATTR(max_budget),
BFQ_ATTR(max_budget_async_rq),
BFQ_ATTR(timeout_sync),
BFQ_ATTR(timeout_async),
BFQ_ATTR(low_latency),
BFQ_ATTR(wr_coeff),
BFQ_ATTR(wr_max_time),
BFQ_ATTR(wr_rt_max_time),
BFQ_ATTR(wr_min_idle_time),
BFQ_ATTR(wr_min_inter_arr_async),
BFQ_ATTR(wr_max_softrt_rate),
BFQ_ATTR(weights),
__ATTR_NULL
};
static struct elevator_type iosched_bfq = {
.ops = {
.elevator_merge_fn = bfq_merge,
.elevator_merged_fn = bfq_merged_request,
.elevator_merge_req_fn = bfq_merged_requests,
.elevator_allow_merge_fn = bfq_allow_merge,
.elevator_dispatch_fn = bfq_dispatch_requests,
.elevator_add_req_fn = bfq_insert_request,
.elevator_activate_req_fn = bfq_activate_request,
.elevator_deactivate_req_fn = bfq_deactivate_request,
.elevator_completed_req_fn = bfq_completed_request,
.elevator_former_req_fn = elv_rb_former_request,
.elevator_latter_req_fn = elv_rb_latter_request,
.elevator_init_icq_fn = bfq_init_icq,
.elevator_exit_icq_fn = bfq_exit_icq,
.elevator_set_req_fn = bfq_set_request,
.elevator_put_req_fn = bfq_put_request,
.elevator_may_queue_fn = bfq_may_queue,
.elevator_init_fn = bfq_init_queue,
.elevator_exit_fn = bfq_exit_queue,
},
.icq_size = sizeof(struct bfq_io_cq),
.icq_align = __alignof__(struct bfq_io_cq),
.elevator_attrs = bfq_attrs,
.elevator_name = "bfq",
.elevator_owner = THIS_MODULE,
};
static int __init bfq_init(void)
{
/*
* Can be 0 on HZ < 1000 setups.
*/
if (bfq_slice_idle == 0)
bfq_slice_idle = 1;
if (bfq_timeout_async == 0)
bfq_timeout_async = 1;
if (bfq_slab_setup())
return -ENOMEM;
/*
* Times to load large popular applications for the typical systems
* installed on the reference devices (see the comments before the
* definitions of the two arrays).
*/
T_slow[0] = msecs_to_jiffies(2600);
T_slow[1] = msecs_to_jiffies(1000);
T_fast[0] = msecs_to_jiffies(5500);
T_fast[1] = msecs_to_jiffies(2000);
/*
* Thresholds that determine the switch between speed classes (see
* the comments before the definition of the array).
*/
device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
elv_register(&iosched_bfq);
pr_info("BFQ I/O-scheduler: v7r8");
return 0;
}
static void __exit bfq_exit(void)
{
elv_unregister(&iosched_bfq);
bfq_slab_kill();
}
module_init(bfq_init);
module_exit(bfq_exit);
MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
MODULE_LICENSE("GPL");
|