1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
/*
* tiler-nv12.c
*
* TILER driver NV12 area reservation functions for TI TILER hardware block.
*
* Author: Lajos Molnar <molnar@ti.com>
*
* Copyright (C) 2009-2010 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "_tiler.h"
static struct tiler_ops *ops; /* shared methods and variables */
static int band_8;
static int band_16;
/*
* NV12 Reservation Functions
*
* TILER is designed so that a (w * h) * 8bit area is twice as wide as a
* (w/2 * h/2) * 16bit area. Since having pairs of such 8-bit and 16-bit
* blocks is a common usecase for TILER, we optimize packing these into a
* TILER area.
*
* During reservation we want to find the most effective packing (most used area
* in the smallest overall area)
*
* We have two algorithms for packing nv12 blocks: either pack 8- and 16-bit
* blocks into separate container areas, or pack them together into same area.
*/
/**
* Calculate effectiveness of packing. We weight total area much higher than
* packing efficiency to get the smallest overall container use.
*
* @param w width of one (8-bit) block
* @param n buffers in a packing
* @param area width of packing area
* @param n_total total number of buffers to be packed
* @return effectiveness, the higher the better
*/
static inline u32 nv12_eff(u16 w, u16 n, u16 area, u16 n_total)
{
return 0x10000000 -
/* weigh against total area needed (for all buffers) */
/* 64-slots = -2048 */
DIV_ROUND_UP(n_total, n) * area * 32 +
/* packing efficiency (0 - 1024) */
1024 * n * ((w * 3 + 1) >> 1) / area;
}
/**
* Fallback nv12 packing algorithm: pack 8 and 16 bit block into separate
* areas.
*
* @author a0194118 (7/16/2010)
*
* @param o desired offset (<a)
* @param a desired alignment (>=2)
* @param w block width (>0)
* @param n number of blocks desired
* @param area pointer to store total area needed
*
* @return number of blocks that can be allocated
*/
static u16 nv12_separate(u16 o, u16 a, u16 w, u16 n, u16 *area)
{
tiler_best2pack(o, a, band_8, w, &n, area);
tiler_best2pack(o >> 1, a >> 1, band_16, (w + 1) >> 1, &n, area);
*area *= 3;
return n;
}
/*
* Specialized NV12 Reservation Algorithms
*
* We use 4 packing methods that pack nv12 blocks into the same area. Together
* these 4 methods give the optimal result for most possible input parameters.
*
* For now we pack into a 64-slot area, so that we don't have to worry about
* stride issues (all blocks get 4K stride). For some of the algorithms this
* could be true even if the area was 128.
*/
/**
* Packing types are marked using a letter sequence, capital letters denoting
* 8-bit blocks, lower case letters denoting corresponding 16-bit blocks.
*
* All methods have the following parameters. They also define the maximum
* number of coordinates that could potentially be packed.
*
* @param o, a, w, n offset, alignment, width, # of blocks as usual
* @param area pointer to store area needed for packing
* @param p pointer to store packing coordinates
* @return number of blocks that can be packed
*/
/* Method A: progressive packing: AAAAaaaaBBbbCc into 64-slot area */
#define MAX_A 21
static int nv12_A(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *p)
{
u16 x = o, u, l, m = 0;
*area = band_8;
while (x + w < *area && m < n) {
/* current 8bit upper bound (a) is next 8bit lower bound (B) */
l = u = (*area + x) >> 1;
/* pack until upper bound */
while (x + w <= u && m < n) {
/* save packing */
BUG_ON(m + 1 >= MAX_A);
*p++ = x;
*p++ = l;
l = (*area + x + w + 1) >> 1;
x = ALIGN(x + w - o, a) + o;
m++;
}
x = ALIGN(l - o, a) + o; /* set new lower bound */
}
return m;
}
/* Method -A: regressive packing: cCbbBBaaaaAAAA into 64-slot area */
static int nv12_revA(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *p)
{
u16 m;
/* this is a mirrored packing of method A */
n = nv12_A((a - (o + w) % a) % a, a, w, n, area, p);
/* reverse packing */
for (m = 0; m < n; m++) {
*p = *area - *p - w;
p++;
*p = *area - *p - ((w + 1) >> 1);
p++;
}
return n;
}
/* Method B: simple layout: aAbcBdeCfgDhEFGH */
#define MAX_B 8
static int nv12_B(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *p)
{
u16 e = (o + w) % a; /* end offset */
u16 o1 = (o >> 1) % a; /* half offset */
u16 e1 = ((o + w + 1) >> 1) % a; /* half end offset */
u16 o2 = o1 + (a >> 2); /* 2nd half offset */
u16 e2 = e1 + (a >> 2); /* 2nd half end offset */
u16 m = 0;
*area = band_8;
/* ensure 16-bit blocks don't overlap 8-bit blocks */
/* width cannot wrap around alignment, half block must be before block,
2nd half can be before or after */
if (w < a && o < e && e1 <= o && (e2 <= o || o2 >= e))
while (o + w <= *area && m < n) {
BUG_ON(m + 1 >= MAX_B);
*p++ = o;
*p++ = o >> 1;
m++;
o += a;
}
return m;
}
/* Method C: butterfly layout: AAbbaaBB */
#define MAX_C 20
static int nv12_C(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *p)
{
int m = 0;
u16 o2, e = ALIGN(w, a), i = 0, j = 0;
*area = band_8;
o2 = *area - (a - (o + w) % a) % a; /* end of last possible block */
m = (min(o2 - 2 * o, 2 * o2 - o - *area) / 3 - w) / e + 1;
for (i = j = 0; i < m && j < n; i++, j++) {
BUG_ON(j + 1 >= MAX_C);
*p++ = o + i * e;
*p++ = (o + i * e + *area) >> 1;
if (++j < n) {
*p++ = o2 - i * e - w;
*p++ = (o2 - i * e - w) >> 1;
}
}
return j;
}
/* Method D: for large allocation: aA or Aa */
#define MAX_D 1
static int nv12_D(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *p)
{
u16 o1, w1 = (w + 1) >> 1, d;
*area = ALIGN(o + w, band_8);
for (d = 0; n > 0 && d + o + w <= *area; d += a) {
/* try to fit 16-bit before 8-bit */
o1 = ((o + d) % band_8) >> 1;
if (o1 + w1 <= o + d) {
*p++ = o + d;
*p++ = o1;
return 1;
}
/* try to fit 16-bit after 8-bit */
o1 += ALIGN(d + o + w - o1, band_16);
if (o1 + w1 <= *area) {
*p++ = o;
*p++ = o1;
return 1;
}
}
return 0;
}
/**
* Umbrella nv12 packing method. This selects the best packings from the above
* methods. It also contains hardcoded packings for parameter combinations
* that have more efficient packings. This method provides is guaranteed to
* provide the optimal packing if 2 <= a <= 64 and w <= 64 and n is large.
*/
#define MAX_ANY 21 /* must be MAX(method-MAX-s, hardcoded n-s) */
static u16 nv12_together(u16 o, u16 a, u16 w, u16 n, u16 *area, u8 *packing)
{
u16 n_best, a_best, n2, a_, o_, w_;
/* algo results (packings) */
u8 pack_A[MAX_A * 2], pack_rA[MAX_A * 2];
u8 pack_B[MAX_B * 2], pack_C[MAX_C * 2];
u8 pack_D[MAX_D * 2];
/*
* Hardcoded packings. They are sorted by increasing area, and then by
* decreasing n. We may not get the best efficiency if less than n
* blocks are needed as packings are not necessarily sorted in
* increasing order. However, for those n-s one of the other 4 methods
* may return the optimal packing.
*/
u8 packings[] = {
/* n=9, o=2, w=4, a=4, area=64 */
9, 2, 4, 4, 64,
/* 8-bit, 16-bit block coordinate pairs */
2, 33, 6, 35, 10, 37, 14, 39, 18, 41,
46, 23, 50, 25, 54, 27, 58, 29,
/* o=0, w=12, a=4, n=3 */
3, 0, 12, 4, 64,
0, 32, 12, 38, 48, 24,
/* end */
0
}, *p = packings, *p_best = NULL, *p_end;
p_end = packings + sizeof(packings) - 1;
/* see which method gives the best packing */
/* start with smallest area algorithms A, B & C, stop if we can
pack all buffers */
n_best = nv12_A(o, a, w, n, area, pack_A);
p_best = pack_A;
if (n_best < n) {
n2 = nv12_revA(o, a, w, n, &a_best, pack_rA);
if (n2 > n_best) {
n_best = n2;
p_best = pack_rA;
*area = a_best;
}
}
if (n_best < n) {
n2 = nv12_B(o, a, w, n, &a_best, pack_B);
if (n2 > n_best) {
n_best = n2;
p_best = pack_B;
*area = a_best;
}
}
if (n_best < n) {
n2 = nv12_C(o, a, w, n, &a_best, pack_C);
if (n2 > n_best) {
n_best = n2;
p_best = pack_C;
*area = a_best;
}
}
/* traverse any special packings */
while (*p) {
n2 = *p++;
o_ = *p++;
w_ = *p++;
a_ = *p++;
/* stop if we already have a better packing */
if (n2 < n_best)
break;
/* check if this packing is satisfactory */
if (a_ >= a && o + w + ALIGN(o_ - o, a) <= o_ + w_) {
*area = *p++;
n_best = min(n2, n);
p_best = p;
break;
}
/* skip to next packing */
p += 1 + n2 * 2;
}
/*
* If so far unsuccessful, check whether 8 and 16 bit blocks can be
* co-packed. This will actually be done in the end by the normal
* allocation, but we need to reserve a big-enough area.
*/
if (!n_best) {
n_best = nv12_D(o, a, w, n, area, pack_D);
p_best = NULL;
}
/* store best packing */
if (p_best && n_best) {
BUG_ON(n_best > MAX_ANY);
memcpy(packing, p_best, n_best * 2 * sizeof(*pack_A));
}
return n_best;
}
/* reserve nv12 blocks */
static void reserve_nv12(u32 n, u32 width, u32 height,
u32 gid, struct process_info *pi)
{
u16 w, h, band, a, o = 0;
struct gid_info *gi;
int res = 0, res2, i;
u16 n_t, n_s, area_t, area_s;
u8 packing[2 * MAX_ANY];
struct list_head reserved = LIST_HEAD_INIT(reserved);
/* Check input parameters for correctness, and support */
if (!width || !height || !n ||
n > ops->width * ops->height / 2)
return;
/* calculate dimensions, band, and alignment in slots */
if (ops->analize(TILFMT_8BIT, width, height, &w, &h, &band, &a))
return;
/* get group context */
gi = ops->get_gi(pi, gid);
if (!gi)
return;
/* reserve in groups until failed or all is reserved */
for (i = 0; i < n && res >= 0; i += res) {
/* check packing separately vs together */
n_s = nv12_separate(o, a, w, n - i, &area_s);
if (ops->nv12_packed)
n_t = nv12_together(o, a, w, n - i, &area_t, packing);
else
n_t = 0;
/* pack based on better efficiency */
res = -1;
if (!ops->nv12_packed ||
nv12_eff(w, n_s, area_s, n - i) >
nv12_eff(w, n_t, area_t, n - i)) {
/*
* Reserve blocks separately into a temporary list, so
* that we can free them if unsuccessful. We need to be
* able to reserve both 8- and 16-bit blocks as the
* offsets of them must match.
*/
res = ops->lay_2d(TILFMT_8BIT, n_s, w, h, band_8, a,
gi, &reserved);
res2 = ops->lay_2d(TILFMT_16BIT, n_s, (w + 1) >> 1, h,
band_16, a >> 1, gi, &reserved);
if (res2 < 0 || res < 0 || res != res2) {
/* clean up */
ops->release(&reserved);
res = -1;
} else {
/* add list to reserved */
ops->add_reserved(&reserved, gi);
}
}
/* if separate packing failed, still try to pack together */
if (res < 0 && ops->nv12_packed && n_t) {
/* pack together */
res = ops->lay_nv12(n_t, area_t, w, h, gi, packing);
}
}
ops->release_gi(gi);
}
/* initialize shared method pointers and global static variables */
void tiler_nv12_init(struct tiler_ops *tiler)
{
ops = tiler;
ops->reserve_nv12 = reserve_nv12;
band_8 = PAGE_SIZE / ops->geom(TILFMT_8BIT)->slot_w
/ ops->geom(TILFMT_8BIT)->bpp;
band_16 = PAGE_SIZE / ops->geom(TILFMT_16BIT)->slot_w
/ ops->geom(TILFMT_16BIT)->bpp;
}
|