diff options
author | Calin Juravle <calin@google.com> | 2013-07-09 19:42:18 +0100 |
---|---|---|
committer | Calin Juravle <calin@google.com> | 2013-08-14 19:06:09 +0100 |
commit | 75a06e56a4cc4599946e21422513e4bafa759509 (patch) | |
tree | 53e7cf102f29e509154291d36230d8a1898feeed | |
parent | f85a03031c10e0bb17b2ea22cceeba9091123aae (diff) | |
download | libcore-75a06e56a4cc4599946e21422513e4bafa759509.zip libcore-75a06e56a4cc4599946e21422513e4bafa759509.tar.gz libcore-75a06e56a4cc4599946e21422513e4bafa759509.tar.bz2 |
Synced java.util.concurrent library up to 2013.07.01.
Compared to the reference code base I re-added
AbstracMap as a base class for ConcurrentHashMap.
Change-Id: I0751638784e962425418ea8640721c00d7200873
7 files changed, 3760 insertions, 2041 deletions
diff --git a/libdvm/src/main/java/java/lang/Class.java b/libdvm/src/main/java/java/lang/Class.java index 2f26688..c8064cb 100644 --- a/libdvm/src/main/java/java/lang/Class.java +++ b/libdvm/src/main/java/java/lang/Class.java @@ -54,13 +54,14 @@ import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; +import java.util.Map; import libcore.util.CollectionUtils; import libcore.util.EmptyArray; import org.apache.harmony.kernel.vm.StringUtils; import libcore.reflect.AnnotationAccess; import libcore.reflect.GenericSignatureParser; import libcore.reflect.Types; - +import libcore.util.BasicLruCache; /** * The in-memory representation of a Java class. This representation serves as * the starting point for querying class-related information, a process usually @@ -779,9 +780,17 @@ public final class Class<T> implements Serializable, AnnotatedElement, GenericDe * void} then an empty array is returned. */ public Type[] getGenericInterfaces() { - GenericSignatureParser parser = new GenericSignatureParser(getClassLoader()); - parser.parseForClass(this, getSignatureAttribute()); - return Types.getClonedTypeArray(parser.interfaceTypes); + Type[] result; + synchronized (Caches.genericInterfaces) { + result = Caches.genericInterfaces.get(this); + if (result == null) { + GenericSignatureParser parser = new GenericSignatureParser(getClassLoader()); + parser.parseForClass(this, getSignatureAttribute()); + result = Types.getClonedTypeArray(parser.interfaceTypes); + Caches.genericInterfaces.put(this, result); + } + } + return result; } /** @@ -1262,4 +1271,9 @@ public final class Class<T> implements Serializable, AnnotatedElement, GenericDe return AnnotationAccess.typeIndexToAnnotationDirectoryOffset(getDex(), getTypeIndex()); } + private static class Caches { + private static final BasicLruCache<Class, Type[]> genericInterfaces + = new BasicLruCache<Class, Type[]>(50); + } + } diff --git a/luni/src/main/java/java/util/concurrent/ConcurrentHashMap.java b/luni/src/main/java/java/util/concurrent/ConcurrentHashMap.java index c85a5cc..515cc38 100644 --- a/luni/src/main/java/java/util/concurrent/ConcurrentHashMap.java +++ b/luni/src/main/java/java/util/concurrent/ConcurrentHashMap.java @@ -5,865 +5,729 @@ */ package java.util.concurrent; -import java.util.concurrent.locks.*; -import java.util.*; + +import java.io.ObjectStreamField; import java.io.Serializable; +import java.lang.reflect.ParameterizedType; +import java.lang.reflect.Type; +import java.util.Arrays; +import java.util.Collection; +import java.util.Comparator; +import java.util.ConcurrentModificationException; +import java.util.Enumeration; +import java.util.HashMap; +import java.util.Hashtable; +import java.util.Iterator; +import java.util.Map; +import java.util.NoSuchElementException; +import java.util.Set; +import java.util.concurrent.ConcurrentMap; +import java.util.concurrent.ForkJoinPool; +import java.util.concurrent.atomic.AtomicInteger; +import java.util.concurrent.locks.LockSupport; +import java.util.concurrent.locks.ReentrantLock; // BEGIN android-note // removed link to collections framework docs +// removed links to hidden api // END android-note /** * A hash table supporting full concurrency of retrievals and - * adjustable expected concurrency for updates. This class obeys the + * high expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of - * <tt>Hashtable</tt>. However, even though all operations are + * {@code Hashtable}. However, even though all operations are * thread-safe, retrieval operations do <em>not</em> entail locking, * and there is <em>not</em> any support for locking the entire table * in a way that prevents all access. This class is fully - * interoperable with <tt>Hashtable</tt> in programs that rely on its + * interoperable with {@code Hashtable} in programs that rely on its * thread safety but not on its synchronization details. * - * <p> Retrieval operations (including <tt>get</tt>) generally do not - * block, so may overlap with update operations (including - * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results - * of the most recently <em>completed</em> update operations holding - * upon their onset. For aggregate operations such as <tt>putAll</tt> - * and <tt>clear</tt>, concurrent retrievals may reflect insertion or - * removal of only some entries. Similarly, Iterators and - * Enumerations return elements reflecting the state of the hash table - * at some point at or since the creation of the iterator/enumeration. - * They do <em>not</em> throw {@link ConcurrentModificationException}. - * However, iterators are designed to be used by only one thread at a time. + * <p>Retrieval operations (including {@code get}) generally do not + * block, so may overlap with update operations (including {@code put} + * and {@code remove}). Retrievals reflect the results of the most + * recently <em>completed</em> update operations holding upon their + * onset. (More formally, an update operation for a given key bears a + * <em>happens-before</em> relation with any (non-null) retrieval for + * that key reporting the updated value.) For aggregate operations + * such as {@code putAll} and {@code clear}, concurrent retrievals may + * reflect insertion or removal of only some entries. Similarly, + * Iterators and Enumerations return elements reflecting the state of + * the hash table at some point at or since the creation of the + * iterator/enumeration. They do <em>not</em> throw {@link + * ConcurrentModificationException}. However, iterators are designed + * to be used by only one thread at a time. Bear in mind that the + * results of aggregate status methods including {@code size}, {@code + * isEmpty}, and {@code containsValue} are typically useful only when + * a map is not undergoing concurrent updates in other threads. + * Otherwise the results of these methods reflect transient states + * that may be adequate for monitoring or estimation purposes, but not + * for program control. * - * <p> The allowed concurrency among update operations is guided by - * the optional <tt>concurrencyLevel</tt> constructor argument - * (default <tt>16</tt>), which is used as a hint for internal sizing. The - * table is internally partitioned to try to permit the indicated - * number of concurrent updates without contention. Because placement - * in hash tables is essentially random, the actual concurrency will - * vary. Ideally, you should choose a value to accommodate as many - * threads as will ever concurrently modify the table. Using a - * significantly higher value than you need can waste space and time, - * and a significantly lower value can lead to thread contention. But - * overestimates and underestimates within an order of magnitude do - * not usually have much noticeable impact. A value of one is - * appropriate when it is known that only one thread will modify and - * all others will only read. Also, resizing this or any other kind of - * hash table is a relatively slow operation, so, when possible, it is - * a good idea to provide estimates of expected table sizes in - * constructors. + * <p>The table is dynamically expanded when there are too many + * collisions (i.e., keys that have distinct hash codes but fall into + * the same slot modulo the table size), with the expected average + * effect of maintaining roughly two bins per mapping (corresponding + * to a 0.75 load factor threshold for resizing). There may be much + * variance around this average as mappings are added and removed, but + * overall, this maintains a commonly accepted time/space tradeoff for + * hash tables. However, resizing this or any other kind of hash + * table may be a relatively slow operation. When possible, it is a + * good idea to provide a size estimate as an optional {@code + * initialCapacity} constructor argument. An additional optional + * {@code loadFactor} constructor argument provides a further means of + * customizing initial table capacity by specifying the table density + * to be used in calculating the amount of space to allocate for the + * given number of elements. Also, for compatibility with previous + * versions of this class, constructors may optionally specify an + * expected {@code concurrencyLevel} as an additional hint for + * internal sizing. Note that using many keys with exactly the same + * {@code hashCode()} is a sure way to slow down performance of any + * hash table. To ameliorate impact, when keys are {@link Comparable}, + * this class may use comparison order among keys to help break ties. * * <p>This class and its views and iterators implement all of the * <em>optional</em> methods of the {@link Map} and {@link Iterator} * interfaces. * - * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class - * does <em>not</em> allow <tt>null</tt> to be used as a key or value. + * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class + * does <em>not</em> allow {@code null} to be used as a key or value. * * @since 1.5 * @author Doug Lea * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values */ -public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> - implements ConcurrentMap<K, V>, Serializable { +public class ConcurrentHashMap<K,V> extends java.util.AbstractMap<K,V> + implements ConcurrentMap<K,V>, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* - * The basic strategy is to subdivide the table among Segments, - * each of which itself is a concurrently readable hash table. To - * reduce footprint, all but one segments are constructed only - * when first needed (see ensureSegment). To maintain visibility - * in the presence of lazy construction, accesses to segments as - * well as elements of segment's table must use volatile access, - * which is done via Unsafe within methods segmentAt etc - * below. These provide the functionality of AtomicReferenceArrays - * but reduce the levels of indirection. Additionally, - * volatile-writes of table elements and entry "next" fields - * within locked operations use the cheaper "lazySet" forms of - * writes (via putOrderedObject) because these writes are always - * followed by lock releases that maintain sequential consistency - * of table updates. - * - * Historical note: The previous version of this class relied - * heavily on "final" fields, which avoided some volatile reads at - * the expense of a large initial footprint. Some remnants of - * that design (including forced construction of segment 0) exist - * to ensure serialization compatibility. + * Overview: + * + * The primary design goal of this hash table is to maintain + * concurrent readability (typically method get(), but also + * iterators and related methods) while minimizing update + * contention. Secondary goals are to keep space consumption about + * the same or better than java.util.HashMap, and to support high + * initial insertion rates on an empty table by many threads. + * + * This map usually acts as a binned (bucketed) hash table. Each + * key-value mapping is held in a Node. Most nodes are instances + * of the basic Node class with hash, key, value, and next + * fields. However, various subclasses exist: TreeNodes are + * arranged in balanced trees, not lists. TreeBins hold the roots + * of sets of TreeNodes. ForwardingNodes are placed at the heads + * of bins during resizing. ReservationNodes are used as + * placeholders while establishing values in computeIfAbsent and + * related methods. The types TreeBin, ForwardingNode, and + * ReservationNode do not hold normal user keys, values, or + * hashes, and are readily distinguishable during search etc + * because they have negative hash fields and null key and value + * fields. (These special nodes are either uncommon or transient, + * so the impact of carrying around some unused fields is + * insignificant.) + * + * The table is lazily initialized to a power-of-two size upon the + * first insertion. Each bin in the table normally contains a + * list of Nodes (most often, the list has only zero or one Node). + * Table accesses require volatile/atomic reads, writes, and + * CASes. Because there is no other way to arrange this without + * adding further indirections, we use intrinsics + * (sun.misc.Unsafe) operations. + * + * We use the top (sign) bit of Node hash fields for control + * purposes -- it is available anyway because of addressing + * constraints. Nodes with negative hash fields are specially + * handled or ignored in map methods. + * + * Insertion (via put or its variants) of the first node in an + * empty bin is performed by just CASing it to the bin. This is + * by far the most common case for put operations under most + * key/hash distributions. Other update operations (insert, + * delete, and replace) require locks. We do not want to waste + * the space required to associate a distinct lock object with + * each bin, so instead use the first node of a bin list itself as + * a lock. Locking support for these locks relies on builtin + * "synchronized" monitors. + * + * Using the first node of a list as a lock does not by itself + * suffice though: When a node is locked, any update must first + * validate that it is still the first node after locking it, and + * retry if not. Because new nodes are always appended to lists, + * once a node is first in a bin, it remains first until deleted + * or the bin becomes invalidated (upon resizing). + * + * The main disadvantage of per-bin locks is that other update + * operations on other nodes in a bin list protected by the same + * lock can stall, for example when user equals() or mapping + * functions take a long time. However, statistically, under + * random hash codes, this is not a common problem. Ideally, the + * frequency of nodes in bins follows a Poisson distribution + * (http://en.wikipedia.org/wiki/Poisson_distribution) with a + * parameter of about 0.5 on average, given the resizing threshold + * of 0.75, although with a large variance because of resizing + * granularity. Ignoring variance, the expected occurrences of + * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The + * first values are: + * + * 0: 0.60653066 + * 1: 0.30326533 + * 2: 0.07581633 + * 3: 0.01263606 + * 4: 0.00157952 + * 5: 0.00015795 + * 6: 0.00001316 + * 7: 0.00000094 + * 8: 0.00000006 + * more: less than 1 in ten million + * + * Lock contention probability for two threads accessing distinct + * elements is roughly 1 / (8 * #elements) under random hashes. + * + * Actual hash code distributions encountered in practice + * sometimes deviate significantly from uniform randomness. This + * includes the case when N > (1<<30), so some keys MUST collide. + * Similarly for dumb or hostile usages in which multiple keys are + * designed to have identical hash codes or ones that differs only + * in masked-out high bits. So we use a secondary strategy that + * applies when the number of nodes in a bin exceeds a + * threshold. These TreeBins use a balanced tree to hold nodes (a + * specialized form of red-black trees), bounding search time to + * O(log N). Each search step in a TreeBin is at least twice as + * slow as in a regular list, but given that N cannot exceed + * (1<<64) (before running out of addresses) this bounds search + * steps, lock hold times, etc, to reasonable constants (roughly + * 100 nodes inspected per operation worst case) so long as keys + * are Comparable (which is very common -- String, Long, etc). + * TreeBin nodes (TreeNodes) also maintain the same "next" + * traversal pointers as regular nodes, so can be traversed in + * iterators in the same way. + * + * The table is resized when occupancy exceeds a percentage + * threshold (nominally, 0.75, but see below). Any thread + * noticing an overfull bin may assist in resizing after the + * initiating thread allocates and sets up the replacement + * array. However, rather than stalling, these other threads may + * proceed with insertions etc. The use of TreeBins shields us + * from the worst case effects of overfilling while resizes are in + * progress. Resizing proceeds by transferring bins, one by one, + * from the table to the next table. To enable concurrency, the + * next table must be (incrementally) prefilled with place-holders + * serving as reverse forwarders to the old table. Because we are + * using power-of-two expansion, the elements from each bin must + * either stay at same index, or move with a power of two + * offset. We eliminate unnecessary node creation by catching + * cases where old nodes can be reused because their next fields + * won't change. On average, only about one-sixth of them need + * cloning when a table doubles. The nodes they replace will be + * garbage collectable as soon as they are no longer referenced by + * any reader thread that may be in the midst of concurrently + * traversing table. Upon transfer, the old table bin contains + * only a special forwarding node (with hash field "MOVED") that + * contains the next table as its key. On encountering a + * forwarding node, access and update operations restart, using + * the new table. + * + * Each bin transfer requires its bin lock, which can stall + * waiting for locks while resizing. However, because other + * threads can join in and help resize rather than contend for + * locks, average aggregate waits become shorter as resizing + * progresses. The transfer operation must also ensure that all + * accessible bins in both the old and new table are usable by any + * traversal. This is arranged by proceeding from the last bin + * (table.length - 1) up towards the first. Upon seeing a + * forwarding node, traversals (see class Traverser) arrange to + * move to the new table without revisiting nodes. However, to + * ensure that no intervening nodes are skipped, bin splitting can + * only begin after the associated reverse-forwarders are in + * place. + * + * The traversal scheme also applies to partial traversals of + * ranges of bins (via an alternate Traverser constructor) + * to support partitioned aggregate operations. Also, read-only + * operations give up if ever forwarded to a null table, which + * provides support for shutdown-style clearing, which is also not + * currently implemented. + * + * Lazy table initialization minimizes footprint until first use, + * and also avoids resizings when the first operation is from a + * putAll, constructor with map argument, or deserialization. + * These cases attempt to override the initial capacity settings, + * but harmlessly fail to take effect in cases of races. + * + * The element count is maintained using a specialization of + * LongAdder. We need to incorporate a specialization rather than + * just use a LongAdder in order to access implicit + * contention-sensing that leads to creation of multiple + * CounterCells. The counter mechanics avoid contention on + * updates but can encounter cache thrashing if read too + * frequently during concurrent access. To avoid reading so often, + * resizing under contention is attempted only upon adding to a + * bin already holding two or more nodes. Under uniform hash + * distributions, the probability of this occurring at threshold + * is around 13%, meaning that only about 1 in 8 puts check + * threshold (and after resizing, many fewer do so). + * + * TreeBins use a special form of comparison for search and + * related operations (which is the main reason we cannot use + * existing collections such as TreeMaps). TreeBins contain + * Comparable elements, but may contain others, as well as + * elements that are Comparable but not necessarily Comparable + * for the same T, so we cannot invoke compareTo among them. To + * handle this, the tree is ordered primarily by hash value, then + * by Comparable.compareTo order if applicable. On lookup at a + * node, if elements are not comparable or compare as 0 then both + * left and right children may need to be searched in the case of + * tied hash values. (This corresponds to the full list search + * that would be necessary if all elements were non-Comparable and + * had tied hashes.) The red-black balancing code is updated from + * pre-jdk-collections + * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) + * based in turn on Cormen, Leiserson, and Rivest "Introduction to + * Algorithms" (CLR). + * + * TreeBins also require an additional locking mechanism. While + * list traversal is always possible by readers even during + * updates, tree traversal is not, mainly because of tree-rotations + * that may change the root node and/or its linkages. TreeBins + * include a simple read-write lock mechanism parasitic on the + * main bin-synchronization strategy: Structural adjustments + * associated with an insertion or removal are already bin-locked + * (and so cannot conflict with other writers) but must wait for + * ongoing readers to finish. Since there can be only one such + * waiter, we use a simple scheme using a single "waiter" field to + * block writers. However, readers need never block. If the root + * lock is held, they proceed along the slow traversal path (via + * next-pointers) until the lock becomes available or the list is + * exhausted, whichever comes first. These cases are not fast, but + * maximize aggregate expected throughput. + * + * Maintaining API and serialization compatibility with previous + * versions of this class introduces several oddities. Mainly: We + * leave untouched but unused constructor arguments refering to + * concurrencyLevel. We accept a loadFactor constructor argument, + * but apply it only to initial table capacity (which is the only + * time that we can guarantee to honor it.) We also declare an + * unused "Segment" class that is instantiated in minimal form + * only when serializing. + * + * This file is organized to make things a little easier to follow + * while reading than they might otherwise: First the main static + * declarations and utilities, then fields, then main public + * methods (with a few factorings of multiple public methods into + * internal ones), then sizing methods, trees, traversers, and + * bulk operations. */ /* ---------------- Constants -------------- */ /** - * The default initial capacity for this table, - * used when not otherwise specified in a constructor. + * The largest possible table capacity. This value must be + * exactly 1<<30 to stay within Java array allocation and indexing + * bounds for power of two table sizes, and is further required + * because the top two bits of 32bit hash fields are used for + * control purposes. */ - static final int DEFAULT_INITIAL_CAPACITY = 16; + private static final int MAXIMUM_CAPACITY = 1 << 30; /** - * The default load factor for this table, used when not - * otherwise specified in a constructor. + * The default initial table capacity. Must be a power of 2 + * (i.e., at least 1) and at most MAXIMUM_CAPACITY. */ - static final float DEFAULT_LOAD_FACTOR = 0.75f; + private static final int DEFAULT_CAPACITY = 16; /** - * The default concurrency level for this table, used when not - * otherwise specified in a constructor. + * The largest possible (non-power of two) array size. + * Needed by toArray and related methods. */ - static final int DEFAULT_CONCURRENCY_LEVEL = 16; + static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** - * The maximum capacity, used if a higher value is implicitly - * specified by either of the constructors with arguments. MUST - * be a power of two <= 1<<30 to ensure that entries are indexable - * using ints. + * The default concurrency level for this table. Unused but + * defined for compatibility with previous versions of this class. */ - static final int MAXIMUM_CAPACITY = 1 << 30; + private static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** - * The minimum capacity for per-segment tables. Must be a power - * of two, at least two to avoid immediate resizing on next use - * after lazy construction. + * The load factor for this table. Overrides of this value in + * constructors affect only the initial table capacity. The + * actual floating point value isn't normally used -- it is + * simpler to use expressions such as {@code n - (n >>> 2)} for + * the associated resizing threshold. */ - static final int MIN_SEGMENT_TABLE_CAPACITY = 2; + private static final float LOAD_FACTOR = 0.75f; /** - * The maximum number of segments to allow; used to bound - * constructor arguments. Must be power of two less than 1 << 24. + * The bin count threshold for using a tree rather than list for a + * bin. Bins are converted to trees when adding an element to a + * bin with at least this many nodes. The value must be greater + * than 2, and should be at least 8 to mesh with assumptions in + * tree removal about conversion back to plain bins upon + * shrinkage. */ - static final int MAX_SEGMENTS = 1 << 16; // slightly conservative + static final int TREEIFY_THRESHOLD = 8; /** - * Number of unsynchronized retries in size and containsValue - * methods before resorting to locking. This is used to avoid - * unbounded retries if tables undergo continuous modification - * which would make it impossible to obtain an accurate result. + * The bin count threshold for untreeifying a (split) bin during a + * resize operation. Should be less than TREEIFY_THRESHOLD, and at + * most 6 to mesh with shrinkage detection under removal. */ - static final int RETRIES_BEFORE_LOCK = 2; - - /* ---------------- Fields -------------- */ + static final int UNTREEIFY_THRESHOLD = 6; /** - * Mask value for indexing into segments. The upper bits of a - * key's hash code are used to choose the segment. + * The smallest table capacity for which bins may be treeified. + * (Otherwise the table is resized if too many nodes in a bin.) + * The value should be at least 4 * TREEIFY_THRESHOLD to avoid + * conflicts between resizing and treeification thresholds. */ - final int segmentMask; + static final int MIN_TREEIFY_CAPACITY = 64; /** - * Shift value for indexing within segments. + * Minimum number of rebinnings per transfer step. Ranges are + * subdivided to allow multiple resizer threads. This value + * serves as a lower bound to avoid resizers encountering + * excessive memory contention. The value should be at least + * DEFAULT_CAPACITY. */ - final int segmentShift; + private static final int MIN_TRANSFER_STRIDE = 16; - /** - * The segments, each of which is a specialized hash table. + /* + * Encodings for Node hash fields. See above for explanation. */ - final Segment<K,V>[] segments; + static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes + static final int TREEBIN = 0x80000000; // hash for roots of trees + static final int RESERVED = 0x80000001; // hash for transient reservations + static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash + + /** Number of CPUS, to place bounds on some sizings */ + static final int NCPU = Runtime.getRuntime().availableProcessors(); - transient Set<K> keySet; - transient Set<Map.Entry<K,V>> entrySet; - transient Collection<V> values; + /** For serialization compatibility. */ + private static final ObjectStreamField[] serialPersistentFields = { + new ObjectStreamField("segments", Segment[].class), + new ObjectStreamField("segmentMask", Integer.TYPE), + new ObjectStreamField("segmentShift", Integer.TYPE) + }; + + /* ---------------- Nodes -------------- */ /** - * ConcurrentHashMap list entry. Note that this is never exported - * out as a user-visible Map.Entry. + * Key-value entry. This class is never exported out as a + * user-mutable Map.Entry (i.e., one supporting setValue; see + * MapEntry below), but can be used for read-only traversals used + * in bulk tasks. Subclasses of Node with a negative hash field + * are special, and contain null keys and values (but are never + * exported). Otherwise, keys and vals are never null. */ - static final class HashEntry<K,V> { + static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; - volatile V value; - volatile HashEntry<K,V> next; + volatile V val; + Node<K,V> next; - HashEntry(int hash, K key, V value, HashEntry<K,V> next) { + Node(int hash, K key, V val, Node<K,V> next) { this.hash = hash; this.key = key; - this.value = value; + this.val = val; this.next = next; } - /** - * Sets next field with volatile write semantics. (See above - * about use of putOrderedObject.) - */ - final void setNext(HashEntry<K,V> n) { - UNSAFE.putOrderedObject(this, nextOffset, n); + public final K getKey() { return key; } + public final V getValue() { return val; } + public final int hashCode() { return key.hashCode() ^ val.hashCode(); } + public final String toString(){ return key + "=" + val; } + public final V setValue(V value) { + throw new UnsupportedOperationException(); } - // Unsafe mechanics - static final sun.misc.Unsafe UNSAFE; - static final long nextOffset; - static { - try { - UNSAFE = sun.misc.Unsafe.getUnsafe(); - Class<?> k = HashEntry.class; - nextOffset = UNSAFE.objectFieldOffset - (k.getDeclaredField("next")); - } catch (Exception e) { - throw new Error(e); + public final boolean equals(Object o) { + Object k, v, u; Map.Entry<?,?> e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry<?,?>)o).getKey()) != null && + (v = e.getValue()) != null && + (k == key || k.equals(key)) && + (v == (u = val) || v.equals(u))); + } + + /** + * Virtualized support for map.get(); overridden in subclasses. + */ + Node<K,V> find(int h, Object k) { + Node<K,V> e = this; + if (k != null) { + do { + K ek; + if (e.hash == h && + ((ek = e.key) == k || (ek != null && k.equals(ek)))) + return e; + } while ((e = e.next) != null); } + return null; } } + /* ---------------- Static utilities -------------- */ + /** - * Gets the ith element of given table (if nonnull) with volatile - * read semantics. Note: This is manually integrated into a few - * performance-sensitive methods to reduce call overhead. + * Spreads (XORs) higher bits of hash to lower and also forces top + * bit to 0. Because the table uses power-of-two masking, sets of + * hashes that vary only in bits above the current mask will + * always collide. (Among known examples are sets of Float keys + * holding consecutive whole numbers in small tables.) So we + * apply a transform that spreads the impact of higher bits + * downward. There is a tradeoff between speed, utility, and + * quality of bit-spreading. Because many common sets of hashes + * are already reasonably distributed (so don't benefit from + * spreading), and because we use trees to handle large sets of + * collisions in bins, we just XOR some shifted bits in the + * cheapest possible way to reduce systematic lossage, as well as + * to incorporate impact of the highest bits that would otherwise + * never be used in index calculations because of table bounds. */ - @SuppressWarnings("unchecked") - static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) { - return (tab == null) ? null : - (HashEntry<K,V>) UNSAFE.getObjectVolatile - (tab, ((long)i << TSHIFT) + TBASE); + static final int spread(int h) { + return (h ^ (h >>> 16)) & HASH_BITS; } /** - * Sets the ith element of given table, with volatile write - * semantics. (See above about use of putOrderedObject.) + * Returns a power of two table size for the given desired capacity. + * See Hackers Delight, sec 3.2 */ - static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i, - HashEntry<K,V> e) { - UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e); + private static final int tableSizeFor(int c) { + int n = c - 1; + n |= n >>> 1; + n |= n >>> 2; + n |= n >>> 4; + n |= n >>> 8; + n |= n >>> 16; + return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } + /** - * Applies a supplemental hash function to a given hashCode, which - * defends against poor quality hash functions. This is critical - * because ConcurrentHashMap uses power-of-two length hash tables, - * that otherwise encounter collisions for hashCodes that do not - * differ in lower or upper bits. + * Returns x's Class if it is of the form "class C implements + * Comparable<C>", else null. */ - private static int hash(int h) { - // Spread bits to regularize both segment and index locations, - // using variant of single-word Wang/Jenkins hash. - h += (h << 15) ^ 0xffffcd7d; - h ^= (h >>> 10); - h += (h << 3); - h ^= (h >>> 6); - h += (h << 2) + (h << 14); - return h ^ (h >>> 16); + static Class<?> comparableClassFor(Object x) { + if (x instanceof Comparable) { + Class<?> c; Type[] ts, as; Type t; ParameterizedType p; + if ((c = x.getClass()) == String.class) // bypass checks + return c; + if ((ts = c.getGenericInterfaces()) != null) { + for (int i = 0; i < ts.length; ++i) { + if (((t = ts[i]) instanceof ParameterizedType) && + ((p = (ParameterizedType)t).getRawType() == + Comparable.class) && + (as = p.getActualTypeArguments()) != null && + as.length == 1 && as[0] == c) // type arg is c + return c; + } + } + } + return null; } /** - * Segments are specialized versions of hash tables. This - * subclasses from ReentrantLock opportunistically, just to - * simplify some locking and avoid separate construction. + * Returns k.compareTo(x) if x matches kc (k's screened comparable + * class), else 0. */ - static final class Segment<K,V> extends ReentrantLock implements Serializable { - /* - * Segments maintain a table of entry lists that are always - * kept in a consistent state, so can be read (via volatile - * reads of segments and tables) without locking. This - * requires replicating nodes when necessary during table - * resizing, so the old lists can be traversed by readers - * still using old version of table. - * - * This class defines only mutative methods requiring locking. - * Except as noted, the methods of this class perform the - * per-segment versions of ConcurrentHashMap methods. (Other - * methods are integrated directly into ConcurrentHashMap - * methods.) These mutative methods use a form of controlled - * spinning on contention via methods scanAndLock and - * scanAndLockForPut. These intersperse tryLocks with - * traversals to locate nodes. The main benefit is to absorb - * cache misses (which are very common for hash tables) while - * obtaining locks so that traversal is faster once - * acquired. We do not actually use the found nodes since they - * must be re-acquired under lock anyway to ensure sequential - * consistency of updates (and in any case may be undetectably - * stale), but they will normally be much faster to re-locate. - * Also, scanAndLockForPut speculatively creates a fresh node - * to use in put if no node is found. - */ + @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable + static int compareComparables(Class<?> kc, Object k, Object x) { + return (x == null || x.getClass() != kc ? 0 : + ((Comparable)k).compareTo(x)); + } - private static final long serialVersionUID = 2249069246763182397L; + /* ---------------- Table element access -------------- */ - /** - * The maximum number of times to tryLock in a prescan before - * possibly blocking on acquire in preparation for a locked - * segment operation. On multiprocessors, using a bounded - * number of retries maintains cache acquired while locating - * nodes. - */ - static final int MAX_SCAN_RETRIES = - Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; + /* + * Volatile access methods are used for table elements as well as + * elements of in-progress next table while resizing. All uses of + * the tab arguments must be null checked by callers. All callers + * also paranoically precheck that tab's length is not zero (or an + * equivalent check), thus ensuring that any index argument taking + * the form of a hash value anded with (length - 1) is a valid + * index. Note that, to be correct wrt arbitrary concurrency + * errors by users, these checks must operate on local variables, + * which accounts for some odd-looking inline assignments below. + * Note that calls to setTabAt always occur within locked regions, + * and so do not need full volatile semantics, but still require + * ordering to maintain concurrent readability. + */ - /** - * The per-segment table. Elements are accessed via - * entryAt/setEntryAt providing volatile semantics. - */ - transient volatile HashEntry<K,V>[] table; + @SuppressWarnings("unchecked") + static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { + return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); + } - /** - * The number of elements. Accessed only either within locks - * or among other volatile reads that maintain visibility. - */ - transient int count; + static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, + Node<K,V> c, Node<K,V> v) { + return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); + } - /** - * The total number of mutative operations in this segment. - * Even though this may overflows 32 bits, it provides - * sufficient accuracy for stability checks in CHM isEmpty() - * and size() methods. Accessed only either within locks or - * among other volatile reads that maintain visibility. - */ - transient int modCount; + static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { + U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v); + } - /** - * The table is rehashed when its size exceeds this threshold. - * (The value of this field is always <tt>(int)(capacity * - * loadFactor)</tt>.) - */ - transient int threshold; + /* ---------------- Fields -------------- */ - /** - * The load factor for the hash table. Even though this value - * is same for all segments, it is replicated to avoid needing - * links to outer object. - * @serial - */ - final float loadFactor; + /** + * The array of bins. Lazily initialized upon first insertion. + * Size is always a power of two. Accessed directly by iterators. + */ + transient volatile Node<K,V>[] table; - Segment(float lf, int threshold, HashEntry<K,V>[] tab) { - this.loadFactor = lf; - this.threshold = threshold; - this.table = tab; - } + /** + * The next table to use; non-null only while resizing. + */ + private transient volatile Node<K,V>[] nextTable; - final V put(K key, int hash, V value, boolean onlyIfAbsent) { - HashEntry<K,V> node = tryLock() ? null : - scanAndLockForPut(key, hash, value); - V oldValue; - try { - HashEntry<K,V>[] tab = table; - int index = (tab.length - 1) & hash; - HashEntry<K,V> first = entryAt(tab, index); - for (HashEntry<K,V> e = first;;) { - if (e != null) { - K k; - if ((k = e.key) == key || - (e.hash == hash && key.equals(k))) { - oldValue = e.value; - if (!onlyIfAbsent) { - e.value = value; - ++modCount; - } - break; - } - e = e.next; - } - else { - if (node != null) - node.setNext(first); - else - node = new HashEntry<K,V>(hash, key, value, first); - int c = count + 1; - if (c > threshold && tab.length < MAXIMUM_CAPACITY) - rehash(node); - else - setEntryAt(tab, index, node); - ++modCount; - count = c; - oldValue = null; - break; - } - } - } finally { - unlock(); - } - return oldValue; - } + /** + * Base counter value, used mainly when there is no contention, + * but also as a fallback during table initialization + * races. Updated via CAS. + */ + private transient volatile long baseCount; - /** - * Doubles size of table and repacks entries, also adding the - * given node to new table - */ - @SuppressWarnings("unchecked") - private void rehash(HashEntry<K,V> node) { - /* - * Reclassify nodes in each list to new table. Because we - * are using power-of-two expansion, the elements from - * each bin must either stay at same index, or move with a - * power of two offset. We eliminate unnecessary node - * creation by catching cases where old nodes can be - * reused because their next fields won't change. - * Statistically, at the default threshold, only about - * one-sixth of them need cloning when a table - * doubles. The nodes they replace will be garbage - * collectable as soon as they are no longer referenced by - * any reader thread that may be in the midst of - * concurrently traversing table. Entry accesses use plain - * array indexing because they are followed by volatile - * table write. - */ - HashEntry<K,V>[] oldTable = table; - int oldCapacity = oldTable.length; - int newCapacity = oldCapacity << 1; - threshold = (int)(newCapacity * loadFactor); - HashEntry<K,V>[] newTable = - (HashEntry<K,V>[]) new HashEntry<?,?>[newCapacity]; - int sizeMask = newCapacity - 1; - for (int i = 0; i < oldCapacity ; i++) { - HashEntry<K,V> e = oldTable[i]; - if (e != null) { - HashEntry<K,V> next = e.next; - int idx = e.hash & sizeMask; - if (next == null) // Single node on list - newTable[idx] = e; - else { // Reuse consecutive sequence at same slot - HashEntry<K,V> lastRun = e; - int lastIdx = idx; - for (HashEntry<K,V> last = next; - last != null; - last = last.next) { - int k = last.hash & sizeMask; - if (k != lastIdx) { - lastIdx = k; - lastRun = last; - } - } - newTable[lastIdx] = lastRun; - // Clone remaining nodes - for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { - V v = p.value; - int h = p.hash; - int k = h & sizeMask; - HashEntry<K,V> n = newTable[k]; - newTable[k] = new HashEntry<K,V>(h, p.key, v, n); - } - } - } - } - int nodeIndex = node.hash & sizeMask; // add the new node - node.setNext(newTable[nodeIndex]); - newTable[nodeIndex] = node; - table = newTable; - } + /** + * Table initialization and resizing control. When negative, the + * table is being initialized or resized: -1 for initialization, + * else -(1 + the number of active resizing threads). Otherwise, + * when table is null, holds the initial table size to use upon + * creation, or 0 for default. After initialization, holds the + * next element count value upon which to resize the table. + */ + private transient volatile int sizeCtl; - /** - * Scans for a node containing given key while trying to - * acquire lock, creating and returning one if not found. Upon - * return, guarantees that lock is held. Unlike in most - * methods, calls to method equals are not screened: Since - * traversal speed doesn't matter, we might as well help warm - * up the associated code and accesses as well. - * - * @return a new node if key not found, else null - */ - private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { - HashEntry<K,V> first = entryForHash(this, hash); - HashEntry<K,V> e = first; - HashEntry<K,V> node = null; - int retries = -1; // negative while locating node - while (!tryLock()) { - HashEntry<K,V> f; // to recheck first below - if (retries < 0) { - if (e == null) { - if (node == null) // speculatively create node - node = new HashEntry<K,V>(hash, key, value, null); - retries = 0; - } - else if (key.equals(e.key)) - retries = 0; - else - e = e.next; - } - else if (++retries > MAX_SCAN_RETRIES) { - lock(); - break; - } - else if ((retries & 1) == 0 && - (f = entryForHash(this, hash)) != first) { - e = first = f; // re-traverse if entry changed - retries = -1; - } - } - return node; - } + /** + * The next table index (plus one) to split while resizing. + */ + private transient volatile int transferIndex; - /** - * Scans for a node containing the given key while trying to - * acquire lock for a remove or replace operation. Upon - * return, guarantees that lock is held. Note that we must - * lock even if the key is not found, to ensure sequential - * consistency of updates. - */ - private void scanAndLock(Object key, int hash) { - // similar to but simpler than scanAndLockForPut - HashEntry<K,V> first = entryForHash(this, hash); - HashEntry<K,V> e = first; - int retries = -1; - while (!tryLock()) { - HashEntry<K,V> f; - if (retries < 0) { - if (e == null || key.equals(e.key)) - retries = 0; - else - e = e.next; - } - else if (++retries > MAX_SCAN_RETRIES) { - lock(); - break; - } - else if ((retries & 1) == 0 && - (f = entryForHash(this, hash)) != first) { - e = first = f; - retries = -1; - } - } - } + /** + * The least available table index to split while resizing. + */ + private transient volatile int transferOrigin; - /** - * Remove; match on key only if value null, else match both. - */ - final V remove(Object key, int hash, Object value) { - if (!tryLock()) - scanAndLock(key, hash); - V oldValue = null; - try { - HashEntry<K,V>[] tab = table; - int index = (tab.length - 1) & hash; - HashEntry<K,V> e = entryAt(tab, index); - HashEntry<K,V> pred = null; - while (e != null) { - K k; - HashEntry<K,V> next = e.next; - if ((k = e.key) == key || - (e.hash == hash && key.equals(k))) { - V v = e.value; - if (value == null || value == v || value.equals(v)) { - if (pred == null) - setEntryAt(tab, index, next); - else - pred.setNext(next); - ++modCount; - --count; - oldValue = v; - } - break; - } - pred = e; - e = next; - } - } finally { - unlock(); - } - return oldValue; - } + /** + * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. + */ + private transient volatile int cellsBusy; - final boolean replace(K key, int hash, V oldValue, V newValue) { - if (!tryLock()) - scanAndLock(key, hash); - boolean replaced = false; - try { - HashEntry<K,V> e; - for (e = entryForHash(this, hash); e != null; e = e.next) { - K k; - if ((k = e.key) == key || - (e.hash == hash && key.equals(k))) { - if (oldValue.equals(e.value)) { - e.value = newValue; - ++modCount; - replaced = true; - } - break; - } - } - } finally { - unlock(); - } - return replaced; - } + /** + * Table of counter cells. When non-null, size is a power of 2. + */ + private transient volatile CounterCell[] counterCells; - final V replace(K key, int hash, V value) { - if (!tryLock()) - scanAndLock(key, hash); - V oldValue = null; - try { - HashEntry<K,V> e; - for (e = entryForHash(this, hash); e != null; e = e.next) { - K k; - if ((k = e.key) == key || - (e.hash == hash && key.equals(k))) { - oldValue = e.value; - e.value = value; - ++modCount; - break; - } - } - } finally { - unlock(); - } - return oldValue; - } + // views + private transient KeySetView<K,V> keySet; + private transient ValuesView<K,V> values; + private transient EntrySetView<K,V> entrySet; - final void clear() { - lock(); - try { - HashEntry<K,V>[] tab = table; - for (int i = 0; i < tab.length ; i++) - setEntryAt(tab, i, null); - ++modCount; - count = 0; - } finally { - unlock(); - } - } - } - // Accessing segments + /* ---------------- Public operations -------------- */ /** - * Gets the jth element of given segment array (if nonnull) with - * volatile element access semantics via Unsafe. (The null check - * can trigger harmlessly only during deserialization.) Note: - * because each element of segments array is set only once (using - * fully ordered writes), some performance-sensitive methods rely - * on this method only as a recheck upon null reads. + * Creates a new, empty map with the default initial table size (16). */ - @SuppressWarnings("unchecked") - static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) { - long u = (j << SSHIFT) + SBASE; - return ss == null ? null : - (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u); + public ConcurrentHashMap() { } /** - * Returns the segment for the given index, creating it and - * recording in segment table (via CAS) if not already present. + * Creates a new, empty map with an initial table size + * accommodating the specified number of elements without the need + * to dynamically resize. * - * @param k the index - * @return the segment - */ - @SuppressWarnings("unchecked") - private Segment<K,V> ensureSegment(int k) { - final Segment<K,V>[] ss = this.segments; - long u = (k << SSHIFT) + SBASE; // raw offset - Segment<K,V> seg; - if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { - Segment<K,V> proto = ss[0]; // use segment 0 as prototype - int cap = proto.table.length; - float lf = proto.loadFactor; - int threshold = (int)(cap * lf); - HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry<?,?>[cap]; - if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) - == null) { // recheck - Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); - while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) - == null) { - if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) - break; - } - } - } - return seg; - } - - // Hash-based segment and entry accesses - - /** - * Gets the segment for the given hash code. + * @param initialCapacity The implementation performs internal + * sizing to accommodate this many elements. + * @throws IllegalArgumentException if the initial capacity of + * elements is negative */ - @SuppressWarnings("unchecked") - private Segment<K,V> segmentForHash(int h) { - long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; - return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); + public ConcurrentHashMap(int initialCapacity) { + if (initialCapacity < 0) + throw new IllegalArgumentException(); + int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? + MAXIMUM_CAPACITY : + tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); + this.sizeCtl = cap; } /** - * Gets the table entry for the given segment and hash code. + * Creates a new map with the same mappings as the given map. + * + * @param m the map */ - @SuppressWarnings("unchecked") - static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) { - HashEntry<K,V>[] tab; - return (seg == null || (tab = seg.table) == null) ? null : - (HashEntry<K,V>) UNSAFE.getObjectVolatile - (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); + public ConcurrentHashMap(Map<? extends K, ? extends V> m) { + this.sizeCtl = DEFAULT_CAPACITY; + putAll(m); } - /* ---------------- Public operations -------------- */ - /** - * Creates a new, empty map with the specified initial - * capacity, load factor and concurrency level. + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}) and + * initial table density ({@code loadFactor}). * * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. - * @param concurrencyLevel the estimated number of concurrently - * updating threads. The implementation performs internal sizing - * to try to accommodate this many threads. - * @throws IllegalArgumentException if the initial capacity is - * negative or the load factor or concurrencyLevel are - * nonpositive. - */ - @SuppressWarnings("unchecked") - public ConcurrentHashMap(int initialCapacity, - float loadFactor, int concurrencyLevel) { - if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) - throw new IllegalArgumentException(); - if (concurrencyLevel > MAX_SEGMENTS) - concurrencyLevel = MAX_SEGMENTS; - // Find power-of-two sizes best matching arguments - int sshift = 0; - int ssize = 1; - while (ssize < concurrencyLevel) { - ++sshift; - ssize <<= 1; - } - this.segmentShift = 32 - sshift; - this.segmentMask = ssize - 1; - if (initialCapacity > MAXIMUM_CAPACITY) - initialCapacity = MAXIMUM_CAPACITY; - int c = initialCapacity / ssize; - if (c * ssize < initialCapacity) - ++c; - int cap = MIN_SEGMENT_TABLE_CAPACITY; - while (cap < c) - cap <<= 1; - // create segments and segments[0] - Segment<K,V> s0 = - new Segment<K,V>(loadFactor, (int)(cap * loadFactor), - (HashEntry<K,V>[])new HashEntry<?,?>[cap]); - Segment<K,V>[] ss = (Segment<K,V>[])new Segment<?,?>[ssize]; - UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] - this.segments = ss; - } - - /** - * Creates a new, empty map with the specified initial capacity - * and load factor and with the default concurrencyLevel (16). - * - * @param initialCapacity The implementation performs internal - * sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * * @since 1.6 */ public ConcurrentHashMap(int initialCapacity, float loadFactor) { - this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); + this(initialCapacity, loadFactor, 1); } /** - * Creates a new, empty map with the specified initial capacity, - * and with default load factor (0.75) and concurrencyLevel (16). + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}), table + * density ({@code loadFactor}), and number of concurrently + * updating threads ({@code concurrencyLevel}). * * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @throws IllegalArgumentException if the initial capacity of - * elements is negative. + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size + * @param concurrencyLevel the estimated number of concurrently + * updating threads. The implementation may use this value as + * a sizing hint. + * @throws IllegalArgumentException if the initial capacity is + * negative or the load factor or concurrencyLevel are + * nonpositive */ - public ConcurrentHashMap(int initialCapacity) { - this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMap(int initialCapacity, + float loadFactor, int concurrencyLevel) { + if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) + throw new IllegalArgumentException(); + if (initialCapacity < concurrencyLevel) // Use at least as many bins + initialCapacity = concurrencyLevel; // as estimated threads + long size = (long)(1.0 + (long)initialCapacity / loadFactor); + int cap = (size >= (long)MAXIMUM_CAPACITY) ? + MAXIMUM_CAPACITY : tableSizeFor((int)size); + this.sizeCtl = cap; } - /** - * Creates a new, empty map with a default initial capacity (16), - * load factor (0.75) and concurrencyLevel (16). - */ - public ConcurrentHashMap() { - this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); - } + // Original (since JDK1.2) Map methods /** - * Creates a new map with the same mappings as the given map. - * The map is created with a capacity of 1.5 times the number - * of mappings in the given map or 16 (whichever is greater), - * and a default load factor (0.75) and concurrencyLevel (16). - * - * @param m the map + * {@inheritDoc} */ - public ConcurrentHashMap(Map<? extends K, ? extends V> m) { - this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, - DEFAULT_INITIAL_CAPACITY), - DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); - putAll(m); + public int size() { + long n = sumCount(); + return ((n < 0L) ? 0 : + (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : + (int)n); } /** - * Returns <tt>true</tt> if this map contains no key-value mappings. - * - * @return <tt>true</tt> if this map contains no key-value mappings + * {@inheritDoc} */ public boolean isEmpty() { - /* - * Sum per-segment modCounts to avoid mis-reporting when - * elements are concurrently added and removed in one segment - * while checking another, in which case the table was never - * actually empty at any point. (The sum ensures accuracy up - * through at least 1<<31 per-segment modifications before - * recheck.) Methods size() and containsValue() use similar - * constructions for stability checks. - */ - long sum = 0L; - final Segment<K,V>[] segments = this.segments; - for (int j = 0; j < segments.length; ++j) { - Segment<K,V> seg = segmentAt(segments, j); - if (seg != null) { - if (seg.count != 0) - return false; - sum += seg.modCount; - } - } - if (sum != 0L) { // recheck unless no modifications - for (int j = 0; j < segments.length; ++j) { - Segment<K,V> seg = segmentAt(segments, j); - if (seg != null) { - if (seg.count != 0) - return false; - sum -= seg.modCount; - } - } - if (sum != 0L) - return false; - } - return true; - } - - /** - * Returns the number of key-value mappings in this map. If the - * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns - * <tt>Integer.MAX_VALUE</tt>. - * - * @return the number of key-value mappings in this map - */ - public int size() { - // Try a few times to get accurate count. On failure due to - // continuous async changes in table, resort to locking. - final Segment<K,V>[] segments = this.segments; - final int segmentCount = segments.length; - - long previousSum = 0L; - for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) { - long sum = 0L; // sum of modCounts - long size = 0L; - for (int i = 0; i < segmentCount; i++) { - Segment<K,V> segment = segmentAt(segments, i); - if (segment != null) { - sum += segment.modCount; - size += segment.count; - } - } - if (sum == previousSum) - return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE; - previousSum = sum; - } - - long size = 0L; - for (int i = 0; i < segmentCount; i++) { - Segment<K,V> segment = ensureSegment(i); - segment.lock(); - size += segment.count; - } - for (int i = 0; i < segmentCount; i++) - segments[i].unlock(); - return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE; + return sumCount() <= 0L; // ignore transient negative values } /** @@ -878,18 +742,20 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * @throws NullPointerException if the specified key is null */ public V get(Object key) { - Segment<K,V> s; // manually integrate access methods to reduce overhead - HashEntry<K,V>[] tab; - int h = hash(key.hashCode()); - long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; - if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && - (tab = s.table) != null) { - for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile - (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); - e != null; e = e.next) { - K k; - if ((k = e.key) == key || (e.hash == h && key.equals(k))) - return e.value; + Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; + int h = spread(key.hashCode()); + if ((tab = table) != null && (n = tab.length) > 0 && + (e = tabAt(tab, (n - 1) & h)) != null) { + if ((eh = e.hash) == h) { + if ((ek = e.key) == key || (ek != null && key.equals(ek))) + return e.val; + } + else if (eh < 0) + return (p = e.find(h, key)) != null ? p.val : null; + while ((e = e.next) != null) { + if (e.hash == h && + ((ek = e.key) == key || (ek != null && key.equals(ek)))) + return e.val; } } return null; @@ -898,149 +764,121 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> /** * Tests if the specified object is a key in this table. * - * @param key possible key - * @return <tt>true</tt> if and only if the specified object + * @param key possible key + * @return {@code true} if and only if the specified object * is a key in this table, as determined by the - * <tt>equals</tt> method; <tt>false</tt> otherwise. + * {@code equals} method; {@code false} otherwise * @throws NullPointerException if the specified key is null */ - @SuppressWarnings("unchecked") public boolean containsKey(Object key) { - Segment<K,V> s; // same as get() except no need for volatile value read - HashEntry<K,V>[] tab; - int h = hash(key.hashCode()); - long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; - if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && - (tab = s.table) != null) { - for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile - (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); - e != null; e = e.next) { - K k; - if ((k = e.key) == key || (e.hash == h && key.equals(k))) - return true; - } - } - return false; + return get(key) != null; } /** - * Returns <tt>true</tt> if this map maps one or more keys to the - * specified value. Note: This method requires a full internal - * traversal of the hash table, and so is much slower than - * method <tt>containsKey</tt>. + * Returns {@code true} if this map maps one or more keys to the + * specified value. Note: This method may require a full traversal + * of the map, and is much slower than method {@code containsKey}. * * @param value value whose presence in this map is to be tested - * @return <tt>true</tt> if this map maps one or more keys to the + * @return {@code true} if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ public boolean containsValue(Object value) { - // Same idea as size() if (value == null) throw new NullPointerException(); - final Segment<K,V>[] segments = this.segments; - long previousSum = 0L; - int lockCount = 0; - try { - for (int retries = -1; ; retries++) { - long sum = 0L; // sum of modCounts - for (int j = 0; j < segments.length; j++) { - Segment<K,V> segment; - if (retries == RETRIES_BEFORE_LOCK) { - segment = ensureSegment(j); - segment.lock(); - lockCount++; - } else { - segment = segmentAt(segments, j); - if (segment == null) - continue; - } - HashEntry<K,V>[] tab = segment.table; - if (tab != null) { - for (int i = 0 ; i < tab.length; i++) { - HashEntry<K,V> e; - for (e = entryAt(tab, i); e != null; e = e.next) { - V v = e.value; - if (v != null && value.equals(v)) - return true; - } - } - sum += segment.modCount; - } - } - if ((retries >= 0 && sum == previousSum) || lockCount > 0) - return false; - previousSum = sum; + Node<K,V>[] t; + if ((t = table) != null) { + Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); + for (Node<K,V> p; (p = it.advance()) != null; ) { + V v; + if ((v = p.val) == value || (v != null && value.equals(v))) + return true; } - } finally { - for (int j = 0; j < lockCount; j++) - segments[j].unlock(); } - } - - /** - * Legacy method testing if some key maps into the specified value - * in this table. This method is identical in functionality to - * {@link #containsValue}, and exists solely to ensure - * full compatibility with class {@link java.util.Hashtable}, - * which supported this method prior to introduction of the - * Java Collections framework. - * - * @param value a value to search for - * @return <tt>true</tt> if and only if some key maps to the - * <tt>value</tt> argument in this table as - * determined by the <tt>equals</tt> method; - * <tt>false</tt> otherwise - * @throws NullPointerException if the specified value is null - */ - public boolean contains(Object value) { - return containsValue(value); + return false; } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * - * <p> The value can be retrieved by calling the <tt>get</tt> method + * <p>The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key - * @return the previous value associated with <tt>key</tt>, or - * <tt>null</tt> if there was no mapping for <tt>key</tt> + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key or value is null */ - @SuppressWarnings("unchecked") public V put(K key, V value) { - Segment<K,V> s; - if (value == null) - throw new NullPointerException(); - int hash = hash(key.hashCode()); - int j = (hash >>> segmentShift) & segmentMask; - if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck - (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment - s = ensureSegment(j); - return s.put(key, hash, value, false); + return putVal(key, value, false); } - /** - * {@inheritDoc} - * - * @return the previous value associated with the specified key, - * or <tt>null</tt> if there was no mapping for the key - * @throws NullPointerException if the specified key or value is null - */ - @SuppressWarnings("unchecked") - public V putIfAbsent(K key, V value) { - Segment<K,V> s; - if (value == null) - throw new NullPointerException(); - int hash = hash(key.hashCode()); - int j = (hash >>> segmentShift) & segmentMask; - if ((s = (Segment<K,V>)UNSAFE.getObject - (segments, (j << SSHIFT) + SBASE)) == null) - s = ensureSegment(j); - return s.put(key, hash, value, true); + /** Implementation for put and putIfAbsent */ + final V putVal(K key, V value, boolean onlyIfAbsent) { + if (key == null || value == null) throw new NullPointerException(); + int hash = spread(key.hashCode()); + int binCount = 0; + for (Node<K,V>[] tab = table;;) { + Node<K,V> f; int n, i, fh; + if (tab == null || (n = tab.length) == 0) + tab = initTable(); + else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { + if (casTabAt(tab, i, null, + new Node<K,V>(hash, key, value, null))) + break; // no lock when adding to empty bin + } + else if ((fh = f.hash) == MOVED) + tab = helpTransfer(tab, f); + else { + V oldVal = null; + synchronized (f) { + if (tabAt(tab, i) == f) { + if (fh >= 0) { + binCount = 1; + for (Node<K,V> e = f;; ++binCount) { + K ek; + if (e.hash == hash && + ((ek = e.key) == key || + (ek != null && key.equals(ek)))) { + oldVal = e.val; + if (!onlyIfAbsent) + e.val = value; + break; + } + Node<K,V> pred = e; + if ((e = e.next) == null) { + pred.next = new Node<K,V>(hash, key, + value, null); + break; + } + } + } + else if (f instanceof TreeBin) { + Node<K,V> p; + binCount = 2; + if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, + value)) != null) { + oldVal = p.val; + if (!onlyIfAbsent) + p.val = value; + } + } + } + } + if (binCount != 0) { + if (binCount >= TREEIFY_THRESHOLD) + treeifyBin(tab, i); + if (oldVal != null) + return oldVal; + break; + } + } + } + addCount(1L, binCount); + return null; } /** @@ -1051,8 +889,9 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * @param m mappings to be stored in this map */ public void putAll(Map<? extends K, ? extends V> m) { + tryPresize(m.size()); for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) - put(e.getKey(), e.getValue()); + putVal(e.getKey(), e.getValue(), false); } /** @@ -1060,87 +899,147 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed - * @return the previous value associated with <tt>key</tt>, or - * <tt>null</tt> if there was no mapping for <tt>key</tt> + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key is null */ public V remove(Object key) { - int hash = hash(key.hashCode()); - Segment<K,V> s = segmentForHash(hash); - return s == null ? null : s.remove(key, hash, null); - } - - /** - * {@inheritDoc} - * - * @throws NullPointerException if the specified key is null - */ - public boolean remove(Object key, Object value) { - int hash = hash(key.hashCode()); - Segment<K,V> s; - return value != null && (s = segmentForHash(hash)) != null && - s.remove(key, hash, value) != null; - } - - /** - * {@inheritDoc} - * - * @throws NullPointerException if any of the arguments are null - */ - public boolean replace(K key, V oldValue, V newValue) { - int hash = hash(key.hashCode()); - if (oldValue == null || newValue == null) - throw new NullPointerException(); - Segment<K,V> s = segmentForHash(hash); - return s != null && s.replace(key, hash, oldValue, newValue); + return replaceNode(key, null, null); } /** - * {@inheritDoc} - * - * @return the previous value associated with the specified key, - * or <tt>null</tt> if there was no mapping for the key - * @throws NullPointerException if the specified key or value is null + * Implementation for the four public remove/replace methods: + * Replaces node value with v, conditional upon match of cv if + * non-null. If resulting value is null, delete. */ - public V replace(K key, V value) { - int hash = hash(key.hashCode()); - if (value == null) - throw new NullPointerException(); - Segment<K,V> s = segmentForHash(hash); - return s == null ? null : s.replace(key, hash, value); + final V replaceNode(Object key, V value, Object cv) { + int hash = spread(key.hashCode()); + for (Node<K,V>[] tab = table;;) { + Node<K,V> f; int n, i, fh; + if (tab == null || (n = tab.length) == 0 || + (f = tabAt(tab, i = (n - 1) & hash)) == null) + break; + else if ((fh = f.hash) == MOVED) + tab = helpTransfer(tab, f); + else { + V oldVal = null; + boolean validated = false; + synchronized (f) { + if (tabAt(tab, i) == f) { + if (fh >= 0) { + validated = true; + for (Node<K,V> e = f, pred = null;;) { + K ek; + if (e.hash == hash && + ((ek = e.key) == key || + (ek != null && key.equals(ek)))) { + V ev = e.val; + if (cv == null || cv == ev || + (ev != null && cv.equals(ev))) { + oldVal = ev; + if (value != null) + e.val = value; + else if (pred != null) + pred.next = e.next; + else + setTabAt(tab, i, e.next); + } + break; + } + pred = e; + if ((e = e.next) == null) + break; + } + } + else if (f instanceof TreeBin) { + validated = true; + TreeBin<K,V> t = (TreeBin<K,V>)f; + TreeNode<K,V> r, p; + if ((r = t.root) != null && + (p = r.findTreeNode(hash, key, null)) != null) { + V pv = p.val; + if (cv == null || cv == pv || + (pv != null && cv.equals(pv))) { + oldVal = pv; + if (value != null) + p.val = value; + else if (t.removeTreeNode(p)) + setTabAt(tab, i, untreeify(t.first)); + } + } + } + } + } + if (validated) { + if (oldVal != null) { + if (value == null) + addCount(-1L, -1); + return oldVal; + } + break; + } + } + } + return null; } /** * Removes all of the mappings from this map. */ public void clear() { - final Segment<K,V>[] segments = this.segments; - for (int j = 0; j < segments.length; ++j) { - Segment<K,V> s = segmentAt(segments, j); - if (s != null) - s.clear(); + long delta = 0L; // negative number of deletions + int i = 0; + Node<K,V>[] tab = table; + while (tab != null && i < tab.length) { + int fh; + Node<K,V> f = tabAt(tab, i); + if (f == null) + ++i; + else if ((fh = f.hash) == MOVED) { + tab = helpTransfer(tab, f); + i = 0; // restart + } + else { + synchronized (f) { + if (tabAt(tab, i) == f) { + Node<K,V> p = (fh >= 0 ? f : + (f instanceof TreeBin) ? + ((TreeBin<K,V>)f).first : null); + while (p != null) { + --delta; + p = p.next; + } + setTabAt(tab, i++, null); + } + } + } } + if (delta != 0L) + addCount(delta, -1); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are - * reflected in the set, and vice-versa. The set supports element + * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, - * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, - * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> - * operations. It does not support the <tt>add</tt> or - * <tt>addAll</tt> operations. + * via the {@code Iterator.remove}, {@code Set.remove}, + * {@code removeAll}, {@code retainAll}, and {@code clear} + * operations. It does not support the {@code add} or + * {@code addAll} operations. * - * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * <p>The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. + * + * @return the set view + * */ public Set<K> keySet() { - Set<K> ks = keySet; - return (ks != null) ? ks : (keySet = new KeySet()); + KeySetView<K,V> ks; + return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null)); } /** @@ -1148,20 +1047,22 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding - * mapping from this map, via the <tt>Iterator.remove</tt>, - * <tt>Collection.remove</tt>, <tt>removeAll</tt>, - * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not - * support the <tt>add</tt> or <tt>addAll</tt> operations. + * mapping from this map, via the {@code Iterator.remove}, + * {@code Collection.remove}, {@code removeAll}, + * {@code retainAll}, and {@code clear} operations. It does not + * support the {@code add} or {@code addAll} operations. * - * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * <p>The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. + * + * @return the collection view */ public Collection<V> values() { - Collection<V> vs = values; - return (vs != null) ? vs : (values = new Values()); + ValuesView<K,V> vs; + return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this)); } /** @@ -1169,20 +1070,329 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, - * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, - * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> - * operations. It does not support the <tt>add</tt> or - * <tt>addAll</tt> operations. + * via the {@code Iterator.remove}, {@code Set.remove}, + * {@code removeAll}, {@code retainAll}, and {@code clear} + * operations. * - * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * <p>The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. + * + * @return the set view */ public Set<Map.Entry<K,V>> entrySet() { - Set<Map.Entry<K,V>> es = entrySet; - return (es != null) ? es : (entrySet = new EntrySet()); + EntrySetView<K,V> es; + return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this)); + } + + /** + * Returns the hash code value for this {@link Map}, i.e., + * the sum of, for each key-value pair in the map, + * {@code key.hashCode() ^ value.hashCode()}. + * + * @return the hash code value for this map + */ + public int hashCode() { + int h = 0; + Node<K,V>[] t; + if ((t = table) != null) { + Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); + for (Node<K,V> p; (p = it.advance()) != null; ) + h += p.key.hashCode() ^ p.val.hashCode(); + } + return h; + } + + /** + * Returns a string representation of this map. The string + * representation consists of a list of key-value mappings (in no + * particular order) enclosed in braces ("{@code {}}"). Adjacent + * mappings are separated by the characters {@code ", "} (comma + * and space). Each key-value mapping is rendered as the key + * followed by an equals sign ("{@code =}") followed by the + * associated value. + * + * @return a string representation of this map + */ + public String toString() { + Node<K,V>[] t; + int f = (t = table) == null ? 0 : t.length; + Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); + StringBuilder sb = new StringBuilder(); + sb.append('{'); + Node<K,V> p; + if ((p = it.advance()) != null) { + for (;;) { + K k = p.key; + V v = p.val; + sb.append(k == this ? "(this Map)" : k); + sb.append('='); + sb.append(v == this ? "(this Map)" : v); + if ((p = it.advance()) == null) + break; + sb.append(',').append(' '); + } + } + return sb.append('}').toString(); + } + + /** + * Compares the specified object with this map for equality. + * Returns {@code true} if the given object is a map with the same + * mappings as this map. This operation may return misleading + * results if either map is concurrently modified during execution + * of this method. + * + * @param o object to be compared for equality with this map + * @return {@code true} if the specified object is equal to this map + */ + public boolean equals(Object o) { + if (o != this) { + if (!(o instanceof Map)) + return false; + Map<?,?> m = (Map<?,?>) o; + Node<K,V>[] t; + int f = (t = table) == null ? 0 : t.length; + Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); + for (Node<K,V> p; (p = it.advance()) != null; ) { + V val = p.val; + Object v = m.get(p.key); + if (v == null || (v != val && !v.equals(val))) + return false; + } + for (Map.Entry<?,?> e : m.entrySet()) { + Object mk, mv, v; + if ((mk = e.getKey()) == null || + (mv = e.getValue()) == null || + (v = get(mk)) == null || + (mv != v && !mv.equals(v))) + return false; + } + } + return true; + } + + /** + * Stripped-down version of helper class used in previous version, + * declared for the sake of serialization compatibility + */ + static class Segment<K,V> extends ReentrantLock implements Serializable { + private static final long serialVersionUID = 2249069246763182397L; + final float loadFactor; + Segment(float lf) { this.loadFactor = lf; } + } + + /** + * Saves the state of the {@code ConcurrentHashMap} instance to a + * stream (i.e., serializes it). + * @param s the stream + * @serialData + * the key (Object) and value (Object) + * for each key-value mapping, followed by a null pair. + * The key-value mappings are emitted in no particular order. + */ + private void writeObject(java.io.ObjectOutputStream s) + throws java.io.IOException { + // For serialization compatibility + // Emulate segment calculation from previous version of this class + int sshift = 0; + int ssize = 1; + while (ssize < DEFAULT_CONCURRENCY_LEVEL) { + ++sshift; + ssize <<= 1; + } + int segmentShift = 32 - sshift; + int segmentMask = ssize - 1; + @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[]) + new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL]; + for (int i = 0; i < segments.length; ++i) + segments[i] = new Segment<K,V>(LOAD_FACTOR); + s.putFields().put("segments", segments); + s.putFields().put("segmentShift", segmentShift); + s.putFields().put("segmentMask", segmentMask); + s.writeFields(); + + Node<K,V>[] t; + if ((t = table) != null) { + Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); + for (Node<K,V> p; (p = it.advance()) != null; ) { + s.writeObject(p.key); + s.writeObject(p.val); + } + } + s.writeObject(null); + s.writeObject(null); + segments = null; // throw away + } + + /** + * Reconstitutes the instance from a stream (that is, deserializes it). + * @param s the stream + */ + private void readObject(java.io.ObjectInputStream s) + throws java.io.IOException, ClassNotFoundException { + /* + * To improve performance in typical cases, we create nodes + * while reading, then place in table once size is known. + * However, we must also validate uniqueness and deal with + * overpopulated bins while doing so, which requires + * specialized versions of putVal mechanics. + */ + sizeCtl = -1; // force exclusion for table construction + s.defaultReadObject(); + long size = 0L; + Node<K,V> p = null; + for (;;) { + @SuppressWarnings("unchecked") K k = (K) s.readObject(); + @SuppressWarnings("unchecked") V v = (V) s.readObject(); + if (k != null && v != null) { + p = new Node<K,V>(spread(k.hashCode()), k, v, p); + ++size; + } + else + break; + } + if (size == 0L) + sizeCtl = 0; + else { + int n; + if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) + n = MAXIMUM_CAPACITY; + else { + int sz = (int)size; + n = tableSizeFor(sz + (sz >>> 1) + 1); + } + @SuppressWarnings({"rawtypes","unchecked"}) + Node<K,V>[] tab = (Node<K,V>[])new Node[n]; + int mask = n - 1; + long added = 0L; + while (p != null) { + boolean insertAtFront; + Node<K,V> next = p.next, first; + int h = p.hash, j = h & mask; + if ((first = tabAt(tab, j)) == null) + insertAtFront = true; + else { + K k = p.key; + if (first.hash < 0) { + TreeBin<K,V> t = (TreeBin<K,V>)first; + if (t.putTreeVal(h, k, p.val) == null) + ++added; + insertAtFront = false; + } + else { + int binCount = 0; + insertAtFront = true; + Node<K,V> q; K qk; + for (q = first; q != null; q = q.next) { + if (q.hash == h && + ((qk = q.key) == k || + (qk != null && k.equals(qk)))) { + insertAtFront = false; + break; + } + ++binCount; + } + if (insertAtFront && binCount >= TREEIFY_THRESHOLD) { + insertAtFront = false; + ++added; + p.next = first; + TreeNode<K,V> hd = null, tl = null; + for (q = p; q != null; q = q.next) { + TreeNode<K,V> t = new TreeNode<K,V> + (q.hash, q.key, q.val, null, null); + if ((t.prev = tl) == null) + hd = t; + else + tl.next = t; + tl = t; + } + setTabAt(tab, j, new TreeBin<K,V>(hd)); + } + } + } + if (insertAtFront) { + ++added; + p.next = first; + setTabAt(tab, j, p); + } + p = next; + } + table = tab; + sizeCtl = n - (n >>> 2); + baseCount = added; + } + } + + // ConcurrentMap methods + + /** + * {@inheritDoc} + * + * @return the previous value associated with the specified key, + * or {@code null} if there was no mapping for the key + * @throws NullPointerException if the specified key or value is null + */ + public V putIfAbsent(K key, V value) { + return putVal(key, value, true); + } + + /** + * {@inheritDoc} + * + * @throws NullPointerException if the specified key is null + */ + public boolean remove(Object key, Object value) { + if (key == null) + throw new NullPointerException(); + return value != null && replaceNode(key, null, value) != null; + } + + /** + * {@inheritDoc} + * + * @throws NullPointerException if any of the arguments are null + */ + public boolean replace(K key, V oldValue, V newValue) { + if (key == null || oldValue == null || newValue == null) + throw new NullPointerException(); + return replaceNode(key, newValue, oldValue) != null; + } + + /** + * {@inheritDoc} + * + * @return the previous value associated with the specified key, + * or {@code null} if there was no mapping for the key + * @throws NullPointerException if the specified key or value is null + */ + public V replace(K key, V value) { + if (key == null || value == null) + throw new NullPointerException(); + return replaceNode(key, value, null); + } + // Hashtable legacy methods + + /** + * Legacy method testing if some key maps into the specified value + * in this table. This method is identical in functionality to + * {@link #containsValue(Object)}, and exists solely to ensure + * full compatibility with class {@link java.util.Hashtable}. + * + * @param value a value to search for + * @return {@code true} if and only if some key maps to the + * {@code value} argument in this table as + * determined by the {@code equals} method; + * {@code false} otherwise + * @throws NullPointerException if the specified value is null + */ + public boolean contains(Object value) { + // BEGIN android-note + // removed deprecation + // END android-note + return containsValue(value); } /** @@ -1192,7 +1402,9 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * @see #keySet() */ public Enumeration<K> keys() { - return new KeyIterator(); + Node<K,V>[] t; + int f = (t = table) == null ? 0 : t.length; + return new KeyIterator<K,V>(t, f, 0, f, this); } /** @@ -1202,281 +1414,1787 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> * @see #values() */ public Enumeration<V> elements() { - return new ValueIterator(); + Node<K,V>[] t; + int f = (t = table) == null ? 0 : t.length; + return new ValueIterator<K,V>(t, f, 0, f, this); } - /* ---------------- Iterator Support -------------- */ + // ConcurrentHashMap-only methods - abstract class HashIterator { - int nextSegmentIndex; - int nextTableIndex; - HashEntry<K,V>[] currentTable; - HashEntry<K, V> nextEntry; - HashEntry<K, V> lastReturned; + /** + * Returns the number of mappings. This method should be used + * instead of {@link #size} because a ConcurrentHashMap may + * contain more mappings than can be represented as an int. The + * value returned is an estimate; the actual count may differ if + * there are concurrent insertions or removals. + * + * @return the number of mappings + * @since 1.8 + * + * @hide + */ + public long mappingCount() { + long n = sumCount(); + return (n < 0L) ? 0L : n; // ignore transient negative values + } - HashIterator() { - nextSegmentIndex = segments.length - 1; - nextTableIndex = -1; - advance(); + /** + * Creates a new {@link Set} backed by a ConcurrentHashMap + * from the given type to {@code Boolean.TRUE}. + * + * @return the new set + * @since 1.8 + * + * @hide + */ + public static <K> KeySetView<K,Boolean> newKeySet() { + return new KeySetView<K,Boolean> + (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE); + } + + /** + * Creates a new {@link Set} backed by a ConcurrentHashMap + * from the given type to {@code Boolean.TRUE}. + * + * @param initialCapacity The implementation performs internal + * sizing to accommodate this many elements. + * @throws IllegalArgumentException if the initial capacity of + * elements is negative + * @return the new set + * @since 1.8 + * + * @hide + */ + public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) { + return new KeySetView<K,Boolean> + (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE); + } + + /** + * Returns a {@link Set} view of the keys in this map, using the + * given common mapped value for any additions (i.e., {@link + * Collection#add} and {@link Collection#addAll(Collection)}). + * This is of course only appropriate if it is acceptable to use + * the same value for all additions from this view. + * + * @param mappedValue the mapped value to use for any additions + * @return the set view + * @throws NullPointerException if the mappedValue is null + * + * @hide + */ + public Set<K> keySet(V mappedValue) { + if (mappedValue == null) + throw new NullPointerException(); + return new KeySetView<K,V>(this, mappedValue); + } + + /* ---------------- Special Nodes -------------- */ + + /** + * A node inserted at head of bins during transfer operations. + */ + static final class ForwardingNode<K,V> extends Node<K,V> { + final Node<K,V>[] nextTable; + ForwardingNode(Node<K,V>[] tab) { + super(MOVED, null, null, null); + this.nextTable = tab; + } + + Node<K,V> find(int h, Object k) { + Node<K,V> e; int n; + Node<K,V>[] tab = nextTable; + if (k != null && tab != null && (n = tab.length) > 0 && + (e = tabAt(tab, (n - 1) & h)) != null) { + do { + int eh; K ek; + if ((eh = e.hash) == h && + ((ek = e.key) == k || (ek != null && k.equals(ek)))) + return e; + if (eh < 0) + return e.find(h, k); + } while ((e = e.next) != null); + } + return null; + } + } + + /** + * A place-holder node used in computeIfAbsent and compute + */ + static final class ReservationNode<K,V> extends Node<K,V> { + ReservationNode() { + super(RESERVED, null, null, null); + } + + Node<K,V> find(int h, Object k) { + return null; + } + } + + /* ---------------- Table Initialization and Resizing -------------- */ + + /** + * Initializes table, using the size recorded in sizeCtl. + */ + private final Node<K,V>[] initTable() { + Node<K,V>[] tab; int sc; + while ((tab = table) == null || tab.length == 0) { + if ((sc = sizeCtl) < 0) + Thread.yield(); // lost initialization race; just spin + else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { + try { + if ((tab = table) == null || tab.length == 0) { + int n = (sc > 0) ? sc : DEFAULT_CAPACITY; + @SuppressWarnings({"rawtypes","unchecked"}) + Node<K,V>[] nt = (Node<K,V>[])new Node[n]; + table = tab = nt; + sc = n - (n >>> 2); + } + } finally { + sizeCtl = sc; + } + break; + } + } + return tab; + } + + /** + * Adds to count, and if table is too small and not already + * resizing, initiates transfer. If already resizing, helps + * perform transfer if work is available. Rechecks occupancy + * after a transfer to see if another resize is already needed + * because resizings are lagging additions. + * + * @param x the count to add + * @param check if <0, don't check resize, if <= 1 only check if uncontended + */ + private final void addCount(long x, int check) { + CounterCell[] as; long b, s; + if ((as = counterCells) != null || + !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { + CounterHashCode hc; CounterCell a; long v; int m; + boolean uncontended = true; + if ((hc = threadCounterHashCode.get()) == null || + as == null || (m = as.length - 1) < 0 || + (a = as[m & hc.code]) == null || + !(uncontended = + U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { + fullAddCount(x, hc, uncontended); + return; + } + if (check <= 1) + return; + s = sumCount(); + } + if (check >= 0) { + Node<K,V>[] tab, nt; int sc; + while (s >= (long)(sc = sizeCtl) && (tab = table) != null && + tab.length < MAXIMUM_CAPACITY) { + if (sc < 0) { + if (sc == -1 || transferIndex <= transferOrigin || + (nt = nextTable) == null) + break; + if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) + transfer(tab, nt); + } + else if (U.compareAndSwapInt(this, SIZECTL, sc, -2)) + transfer(tab, null); + s = sumCount(); + } + } + } + + /** + * Helps transfer if a resize is in progress. + */ + final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { + Node<K,V>[] nextTab; int sc; + if ((f instanceof ForwardingNode) && + (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { + if (nextTab == nextTable && tab == table && + transferIndex > transferOrigin && (sc = sizeCtl) < -1 && + U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) + transfer(tab, nextTab); + return nextTab; + } + return table; + } + + /** + * Tries to presize table to accommodate the given number of elements. + * + * @param size number of elements (doesn't need to be perfectly accurate) + */ + private final void tryPresize(int size) { + int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : + tableSizeFor(size + (size >>> 1) + 1); + int sc; + while ((sc = sizeCtl) >= 0) { + Node<K,V>[] tab = table; int n; + if (tab == null || (n = tab.length) == 0) { + n = (sc > c) ? sc : c; + if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { + try { + if (table == tab) { + @SuppressWarnings({"rawtypes","unchecked"}) + Node<K,V>[] nt = (Node<K,V>[])new Node[n]; + table = nt; + sc = n - (n >>> 2); + } + } finally { + sizeCtl = sc; + } + } + } + else if (c <= sc || n >= MAXIMUM_CAPACITY) + break; + else if (tab == table && + U.compareAndSwapInt(this, SIZECTL, sc, -2)) + transfer(tab, null); + } + } + + /** + * Moves and/or copies the nodes in each bin to new table. See + * above for explanation. + */ + private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { + int n = tab.length, stride; + if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) + stride = MIN_TRANSFER_STRIDE; // subdivide range + if (nextTab == null) { // initiating + try { + @SuppressWarnings({"rawtypes","unchecked"}) + Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1]; + nextTab = nt; + } catch (Throwable ex) { // try to cope with OOME + sizeCtl = Integer.MAX_VALUE; + return; + } + nextTable = nextTab; + transferOrigin = n; + transferIndex = n; + ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab); + for (int k = n; k > 0;) { // progressively reveal ready slots + int nextk = (k > stride) ? k - stride : 0; + for (int m = nextk; m < k; ++m) + nextTab[m] = rev; + for (int m = n + nextk; m < n + k; ++m) + nextTab[m] = rev; + U.putOrderedInt(this, TRANSFERORIGIN, k = nextk); + } + } + int nextn = nextTab.length; + ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); + boolean advance = true; + for (int i = 0, bound = 0;;) { + int nextIndex, nextBound, fh; Node<K,V> f; + while (advance) { + if (--i >= bound) + advance = false; + else if ((nextIndex = transferIndex) <= transferOrigin) { + i = -1; + advance = false; + } + else if (U.compareAndSwapInt + (this, TRANSFERINDEX, nextIndex, + nextBound = (nextIndex > stride ? + nextIndex - stride : 0))) { + bound = nextBound; + i = nextIndex - 1; + advance = false; + } + } + if (i < 0 || i >= n || i + n >= nextn) { + for (int sc;;) { + if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) { + if (sc == -1) { + nextTable = null; + table = nextTab; + sizeCtl = (n << 1) - (n >>> 1); + } + return; + } + } + } + else if ((f = tabAt(tab, i)) == null) { + if (casTabAt(tab, i, null, fwd)) { + setTabAt(nextTab, i, null); + setTabAt(nextTab, i + n, null); + advance = true; + } + } + else if ((fh = f.hash) == MOVED) + advance = true; // already processed + else { + synchronized (f) { + if (tabAt(tab, i) == f) { + Node<K,V> ln, hn; + if (fh >= 0) { + int runBit = fh & n; + Node<K,V> lastRun = f; + for (Node<K,V> p = f.next; p != null; p = p.next) { + int b = p.hash & n; + if (b != runBit) { + runBit = b; + lastRun = p; + } + } + if (runBit == 0) { + ln = lastRun; + hn = null; + } + else { + hn = lastRun; + ln = null; + } + for (Node<K,V> p = f; p != lastRun; p = p.next) { + int ph = p.hash; K pk = p.key; V pv = p.val; + if ((ph & n) == 0) + ln = new Node<K,V>(ph, pk, pv, ln); + else + hn = new Node<K,V>(ph, pk, pv, hn); + } + } + else if (f instanceof TreeBin) { + TreeBin<K,V> t = (TreeBin<K,V>)f; + TreeNode<K,V> lo = null, loTail = null; + TreeNode<K,V> hi = null, hiTail = null; + int lc = 0, hc = 0; + for (Node<K,V> e = t.first; e != null; e = e.next) { + int h = e.hash; + TreeNode<K,V> p = new TreeNode<K,V> + (h, e.key, e.val, null, null); + if ((h & n) == 0) { + if ((p.prev = loTail) == null) + lo = p; + else + loTail.next = p; + loTail = p; + ++lc; + } + else { + if ((p.prev = hiTail) == null) + hi = p; + else + hiTail.next = p; + hiTail = p; + ++hc; + } + } + ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : + (hc != 0) ? new TreeBin<K,V>(lo) : t; + hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : + (lc != 0) ? new TreeBin<K,V>(hi) : t; + } + else + ln = hn = null; + setTabAt(nextTab, i, ln); + setTabAt(nextTab, i + n, hn); + setTabAt(tab, i, fwd); + advance = true; + } + } + } + } + } + + /* ---------------- Conversion from/to TreeBins -------------- */ + + /** + * Replaces all linked nodes in bin at given index unless table is + * too small, in which case resizes instead. + */ + private final void treeifyBin(Node<K,V>[] tab, int index) { + Node<K,V> b; int n, sc; + if (tab != null) { + if ((n = tab.length) < MIN_TREEIFY_CAPACITY) { + if (tab == table && (sc = sizeCtl) >= 0 && + U.compareAndSwapInt(this, SIZECTL, sc, -2)) + transfer(tab, null); + } + else if ((b = tabAt(tab, index)) != null) { + synchronized (b) { + if (tabAt(tab, index) == b) { + TreeNode<K,V> hd = null, tl = null; + for (Node<K,V> e = b; e != null; e = e.next) { + TreeNode<K,V> p = + new TreeNode<K,V>(e.hash, e.key, e.val, + null, null); + if ((p.prev = tl) == null) + hd = p; + else + tl.next = p; + tl = p; + } + setTabAt(tab, index, new TreeBin<K,V>(hd)); + } + } + } + } + } + + /** + * Returns a list on non-TreeNodes replacing those in given list. + */ + static <K,V> Node<K,V> untreeify(Node<K,V> b) { + Node<K,V> hd = null, tl = null; + for (Node<K,V> q = b; q != null; q = q.next) { + Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null); + if (tl == null) + hd = p; + else + tl.next = p; + tl = p; + } + return hd; + } + + /* ---------------- TreeNodes -------------- */ + + /** + * Nodes for use in TreeBins + */ + static final class TreeNode<K,V> extends Node<K,V> { + TreeNode<K,V> parent; // red-black tree links + TreeNode<K,V> left; + TreeNode<K,V> right; + TreeNode<K,V> prev; // needed to unlink next upon deletion + boolean red; + + TreeNode(int hash, K key, V val, Node<K,V> next, + TreeNode<K,V> parent) { + super(hash, key, val, next); + this.parent = parent; + } + + Node<K,V> find(int h, Object k) { + return findTreeNode(h, k, null); } /** - * Sets nextEntry to first node of next non-empty table - * (in backwards order, to simplify checks). + * Returns the TreeNode (or null if not found) for the given key + * starting at given root. */ - final void advance() { - for (;;) { - if (nextTableIndex >= 0) { - if ((nextEntry = entryAt(currentTable, - nextTableIndex--)) != null) + final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) { + if (k != null) { + TreeNode<K,V> p = this; + do { + int ph, dir; K pk; TreeNode<K,V> q; + TreeNode<K,V> pl = p.left, pr = p.right; + if ((ph = p.hash) > h) + p = pl; + else if (ph < h) + p = pr; + else if ((pk = p.key) == k || (pk != null && k.equals(pk))) + return p; + else if (pl == null && pr == null) break; + else if ((kc != null || + (kc = comparableClassFor(k)) != null) && + (dir = compareComparables(kc, k, pk)) != 0) + p = (dir < 0) ? pl : pr; + else if (pl == null) + p = pr; + else if (pr == null || + (q = pr.findTreeNode(h, k, kc)) == null) + p = pl; + else + return q; + } while (p != null); + } + return null; + } + } + + /* ---------------- TreeBins -------------- */ + + /** + * TreeNodes used at the heads of bins. TreeBins do not hold user + * keys or values, but instead point to list of TreeNodes and + * their root. They also maintain a parasitic read-write lock + * forcing writers (who hold bin lock) to wait for readers (who do + * not) to complete before tree restructuring operations. + */ + static final class TreeBin<K,V> extends Node<K,V> { + TreeNode<K,V> root; + volatile TreeNode<K,V> first; + volatile Thread waiter; + volatile int lockState; + // values for lockState + static final int WRITER = 1; // set while holding write lock + static final int WAITER = 2; // set when waiting for write lock + static final int READER = 4; // increment value for setting read lock + + /** + * Creates bin with initial set of nodes headed by b. + */ + TreeBin(TreeNode<K,V> b) { + super(TREEBIN, null, null, null); + this.first = b; + TreeNode<K,V> r = null; + for (TreeNode<K,V> x = b, next; x != null; x = next) { + next = (TreeNode<K,V>)x.next; + x.left = x.right = null; + if (r == null) { + x.parent = null; + x.red = false; + r = x; } - else if (nextSegmentIndex >= 0) { - Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--); - if (seg != null && (currentTable = seg.table) != null) - nextTableIndex = currentTable.length - 1; + else { + Object key = x.key; + int hash = x.hash; + Class<?> kc = null; + for (TreeNode<K,V> p = r;;) { + int dir, ph; + if ((ph = p.hash) > hash) + dir = -1; + else if (ph < hash) + dir = 1; + else if ((kc != null || + (kc = comparableClassFor(key)) != null)) + dir = compareComparables(kc, key, p.key); + else + dir = 0; + TreeNode<K,V> xp = p; + if ((p = (dir <= 0) ? p.left : p.right) == null) { + x.parent = xp; + if (dir <= 0) + xp.left = x; + else + xp.right = x; + r = balanceInsertion(r, x); + break; + } + } } - else + } + this.root = r; + } + + /** + * Acquires write lock for tree restructuring. + */ + private final void lockRoot() { + if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) + contendedLock(); // offload to separate method + } + + /** + * Releases write lock for tree restructuring. + */ + private final void unlockRoot() { + lockState = 0; + } + + /** + * Possibly blocks awaiting root lock. + */ + private final void contendedLock() { + boolean waiting = false; + for (int s;;) { + if (((s = lockState) & WRITER) == 0) { + if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { + if (waiting) + waiter = null; + return; + } + } + else if ((s | WAITER) == 0) { + if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { + waiting = true; + waiter = Thread.currentThread(); + } + } + else if (waiting) + LockSupport.park(this); + } + } + + /** + * Returns matching node or null if none. Tries to search + * using tree comparisons from root, but continues linear + * search when lock not available. + */ + final Node<K,V> find(int h, Object k) { + if (k != null) { + for (Node<K,V> e = first; e != null; e = e.next) { + int s; K ek; + if (((s = lockState) & (WAITER|WRITER)) != 0) { + if (e.hash == h && + ((ek = e.key) == k || (ek != null && k.equals(ek)))) + return e; + } + else if (U.compareAndSwapInt(this, LOCKSTATE, s, + s + READER)) { + TreeNode<K,V> r, p; + try { + p = ((r = root) == null ? null : + r.findTreeNode(h, k, null)); + } finally { + + Thread w; + int ls; + do {} while (!U.compareAndSwapInt + (this, LOCKSTATE, + ls = lockState, ls - READER)); + if (ls == (READER|WAITER) && (w = waiter) != null) + LockSupport.unpark(w); + } + return p; + } + } + } + return null; + } + + /** + * Finds or adds a node. + * @return null if added + */ + final TreeNode<K,V> putTreeVal(int h, K k, V v) { + Class<?> kc = null; + for (TreeNode<K,V> p = root;;) { + int dir, ph; K pk; TreeNode<K,V> q, pr; + if (p == null) { + first = root = new TreeNode<K,V>(h, k, v, null, null); + break; + } + else if ((ph = p.hash) > h) + dir = -1; + else if (ph < h) + dir = 1; + else if ((pk = p.key) == k || (pk != null && k.equals(pk))) + return p; + else if ((kc == null && + (kc = comparableClassFor(k)) == null) || + (dir = compareComparables(kc, k, pk)) == 0) { + if (p.left == null) + dir = 1; + else if ((pr = p.right) == null || + (q = pr.findTreeNode(h, k, kc)) == null) + dir = -1; + else + return q; + } + TreeNode<K,V> xp = p; + if ((p = (dir < 0) ? p.left : p.right) == null) { + TreeNode<K,V> x, f = first; + first = x = new TreeNode<K,V>(h, k, v, f, xp); + if (f != null) + f.prev = x; + if (dir < 0) + xp.left = x; + else + xp.right = x; + if (!xp.red) + x.red = true; + else { + lockRoot(); + try { + root = balanceInsertion(root, x); + } finally { + unlockRoot(); + } + } break; + } } + assert checkInvariants(root); + return null; } - final HashEntry<K,V> nextEntry() { - HashEntry<K,V> e = nextEntry; - if (e == null) - throw new NoSuchElementException(); - lastReturned = e; // cannot assign until after null check - if ((nextEntry = e.next) == null) - advance(); - return e; + /** + * Removes the given node, that must be present before this + * call. This is messier than typical red-black deletion code + * because we cannot swap the contents of an interior node + * with a leaf successor that is pinned by "next" pointers + * that are accessible independently of lock. So instead we + * swap the tree linkages. + * + * @return true if now too small, so should be untreeified + */ + final boolean removeTreeNode(TreeNode<K,V> p) { + TreeNode<K,V> next = (TreeNode<K,V>)p.next; + TreeNode<K,V> pred = p.prev; // unlink traversal pointers + TreeNode<K,V> r, rl; + if (pred == null) + first = next; + else + pred.next = next; + if (next != null) + next.prev = pred; + if (first == null) { + root = null; + return true; + } + if ((r = root) == null || r.right == null || // too small + (rl = r.left) == null || rl.left == null) + return true; + lockRoot(); + try { + TreeNode<K,V> replacement; + TreeNode<K,V> pl = p.left; + TreeNode<K,V> pr = p.right; + if (pl != null && pr != null) { + TreeNode<K,V> s = pr, sl; + while ((sl = s.left) != null) // find successor + s = sl; + boolean c = s.red; s.red = p.red; p.red = c; // swap colors + TreeNode<K,V> sr = s.right; + TreeNode<K,V> pp = p.parent; + if (s == pr) { // p was s's direct parent + p.parent = s; + s.right = p; + } + else { + TreeNode<K,V> sp = s.parent; + if ((p.parent = sp) != null) { + if (s == sp.left) + sp.left = p; + else + sp.right = p; + } + if ((s.right = pr) != null) + pr.parent = s; + } + p.left = null; + if ((p.right = sr) != null) + sr.parent = p; + if ((s.left = pl) != null) + pl.parent = s; + if ((s.parent = pp) == null) + r = s; + else if (p == pp.left) + pp.left = s; + else + pp.right = s; + if (sr != null) + replacement = sr; + else + replacement = p; + } + else if (pl != null) + replacement = pl; + else if (pr != null) + replacement = pr; + else + replacement = p; + if (replacement != p) { + TreeNode<K,V> pp = replacement.parent = p.parent; + if (pp == null) + r = replacement; + else if (p == pp.left) + pp.left = replacement; + else + pp.right = replacement; + p.left = p.right = p.parent = null; + } + + root = (p.red) ? r : balanceDeletion(r, replacement); + + if (p == replacement) { // detach pointers + TreeNode<K,V> pp; + if ((pp = p.parent) != null) { + if (p == pp.left) + pp.left = null; + else if (p == pp.right) + pp.right = null; + p.parent = null; + } + } + } finally { + unlockRoot(); + } + assert checkInvariants(root); + return false; + } + + /* ------------------------------------------------------------ */ + // Red-black tree methods, all adapted from CLR + + static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, + TreeNode<K,V> p) { + TreeNode<K,V> r, pp, rl; + if (p != null && (r = p.right) != null) { + if ((rl = p.right = r.left) != null) + rl.parent = p; + if ((pp = r.parent = p.parent) == null) + (root = r).red = false; + else if (pp.left == p) + pp.left = r; + else + pp.right = r; + r.left = p; + p.parent = r; + } + return root; + } + + static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, + TreeNode<K,V> p) { + TreeNode<K,V> l, pp, lr; + if (p != null && (l = p.left) != null) { + if ((lr = p.left = l.right) != null) + lr.parent = p; + if ((pp = l.parent = p.parent) == null) + (root = l).red = false; + else if (pp.right == p) + pp.right = l; + else + pp.left = l; + l.right = p; + p.parent = l; + } + return root; } - public final boolean hasNext() { return nextEntry != null; } - public final boolean hasMoreElements() { return nextEntry != null; } + static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, + TreeNode<K,V> x) { + x.red = true; + for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { + if ((xp = x.parent) == null) { + x.red = false; + return x; + } + else if (!xp.red || (xpp = xp.parent) == null) + return root; + if (xp == (xppl = xpp.left)) { + if ((xppr = xpp.right) != null && xppr.red) { + xppr.red = false; + xp.red = false; + xpp.red = true; + x = xpp; + } + else { + if (x == xp.right) { + root = rotateLeft(root, x = xp); + xpp = (xp = x.parent) == null ? null : xp.parent; + } + if (xp != null) { + xp.red = false; + if (xpp != null) { + xpp.red = true; + root = rotateRight(root, xpp); + } + } + } + } + else { + if (xppl != null && xppl.red) { + xppl.red = false; + xp.red = false; + xpp.red = true; + x = xpp; + } + else { + if (x == xp.left) { + root = rotateRight(root, x = xp); + xpp = (xp = x.parent) == null ? null : xp.parent; + } + if (xp != null) { + xp.red = false; + if (xpp != null) { + xpp.red = true; + root = rotateLeft(root, xpp); + } + } + } + } + } + } + + static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, + TreeNode<K,V> x) { + for (TreeNode<K,V> xp, xpl, xpr;;) { + if (x == null || x == root) + return root; + else if ((xp = x.parent) == null) { + x.red = false; + return x; + } + else if (x.red) { + x.red = false; + return root; + } + else if ((xpl = xp.left) == x) { + if ((xpr = xp.right) != null && xpr.red) { + xpr.red = false; + xp.red = true; + root = rotateLeft(root, xp); + xpr = (xp = x.parent) == null ? null : xp.right; + } + if (xpr == null) + x = xp; + else { + TreeNode<K,V> sl = xpr.left, sr = xpr.right; + if ((sr == null || !sr.red) && + (sl == null || !sl.red)) { + xpr.red = true; + x = xp; + } + else { + if (sr == null || !sr.red) { + if (sl != null) + sl.red = false; + xpr.red = true; + root = rotateRight(root, xpr); + xpr = (xp = x.parent) == null ? + null : xp.right; + } + if (xpr != null) { + xpr.red = (xp == null) ? false : xp.red; + if ((sr = xpr.right) != null) + sr.red = false; + } + if (xp != null) { + xp.red = false; + root = rotateLeft(root, xp); + } + x = root; + } + } + } + else { // symmetric + if (xpl != null && xpl.red) { + xpl.red = false; + xp.red = true; + root = rotateRight(root, xp); + xpl = (xp = x.parent) == null ? null : xp.left; + } + if (xpl == null) + x = xp; + else { + TreeNode<K,V> sl = xpl.left, sr = xpl.right; + if ((sl == null || !sl.red) && + (sr == null || !sr.red)) { + xpl.red = true; + x = xp; + } + else { + if (sl == null || !sl.red) { + if (sr != null) + sr.red = false; + xpl.red = true; + root = rotateLeft(root, xpl); + xpl = (xp = x.parent) == null ? + null : xp.left; + } + if (xpl != null) { + xpl.red = (xp == null) ? false : xp.red; + if ((sl = xpl.left) != null) + sl.red = false; + } + if (xp != null) { + xp.red = false; + root = rotateRight(root, xp); + } + x = root; + } + } + } + } + } + + /** + * Recursive invariant check + */ + static <K,V> boolean checkInvariants(TreeNode<K,V> t) { + TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, + tb = t.prev, tn = (TreeNode<K,V>)t.next; + if (tb != null && tb.next != t) + return false; + if (tn != null && tn.prev != t) + return false; + if (tp != null && t != tp.left && t != tp.right) + return false; + if (tl != null && (tl.parent != t || tl.hash > t.hash)) + return false; + if (tr != null && (tr.parent != t || tr.hash < t.hash)) + return false; + if (t.red && tl != null && tl.red && tr != null && tr.red) + return false; + if (tl != null && !checkInvariants(tl)) + return false; + if (tr != null && !checkInvariants(tr)) + return false; + return true; + } + + private static final sun.misc.Unsafe U; + private static final long LOCKSTATE; + static { + try { + U = sun.misc.Unsafe.getUnsafe(); + Class<?> k = TreeBin.class; + LOCKSTATE = U.objectFieldOffset + (k.getDeclaredField("lockState")); + } catch (Exception e) { + throw new Error(e); + } + } + } + + /* ----------------Table Traversal -------------- */ + + /** + * Encapsulates traversal for methods such as containsValue; also + * serves as a base class for other iterators. + * + * Method advance visits once each still-valid node that was + * reachable upon iterator construction. It might miss some that + * were added to a bin after the bin was visited, which is OK wrt + * consistency guarantees. Maintaining this property in the face + * of possible ongoing resizes requires a fair amount of + * bookkeeping state that is difficult to optimize away amidst + * volatile accesses. Even so, traversal maintains reasonable + * throughput. + * + * Normally, iteration proceeds bin-by-bin traversing lists. + * However, if the table has been resized, then all future steps + * must traverse both the bin at the current index as well as at + * (index + baseSize); and so on for further resizings. To + * paranoically cope with potential sharing by users of iterators + * across threads, iteration terminates if a bounds checks fails + * for a table read. + */ + static class Traverser<K,V> { + Node<K,V>[] tab; // current table; updated if resized + Node<K,V> next; // the next entry to use + int index; // index of bin to use next + int baseIndex; // current index of initial table + int baseLimit; // index bound for initial table + final int baseSize; // initial table size + + Traverser(Node<K,V>[] tab, int size, int index, int limit) { + this.tab = tab; + this.baseSize = size; + this.baseIndex = this.index = index; + this.baseLimit = limit; + this.next = null; + } + + /** + * Advances if possible, returning next valid node, or null if none. + */ + final Node<K,V> advance() { + Node<K,V> e; + if ((e = next) != null) + e = e.next; + for (;;) { + Node<K,V>[] t; int i, n; K ek; // must use locals in checks + if (e != null) + return next = e; + if (baseIndex >= baseLimit || (t = tab) == null || + (n = t.length) <= (i = index) || i < 0) + return next = null; + if ((e = tabAt(t, index)) != null && e.hash < 0) { + if (e instanceof ForwardingNode) { + tab = ((ForwardingNode<K,V>)e).nextTable; + e = null; + continue; + } + else if (e instanceof TreeBin) + e = ((TreeBin<K,V>)e).first; + else + e = null; + } + if ((index += baseSize) >= n) + index = ++baseIndex; // visit upper slots if present + } + } + } + + /** + * Base of key, value, and entry Iterators. Adds fields to + * Traverser to support iterator.remove. + */ + static class BaseIterator<K,V> extends Traverser<K,V> { + final ConcurrentHashMap<K,V> map; + Node<K,V> lastReturned; + BaseIterator(Node<K,V>[] tab, int size, int index, int limit, + ConcurrentHashMap<K,V> map) { + super(tab, size, index, limit); + this.map = map; + advance(); + } + + public final boolean hasNext() { return next != null; } + public final boolean hasMoreElements() { return next != null; } public final void remove() { - if (lastReturned == null) + Node<K,V> p; + if ((p = lastReturned) == null) throw new IllegalStateException(); - ConcurrentHashMap.this.remove(lastReturned.key); lastReturned = null; + map.replaceNode(p.key, null, null); + } + } + + static final class KeyIterator<K,V> extends BaseIterator<K,V> + implements Iterator<K>, Enumeration<K> { + KeyIterator(Node<K,V>[] tab, int index, int size, int limit, + ConcurrentHashMap<K,V> map) { + super(tab, index, size, limit, map); + } + + public final K next() { + Node<K,V> p; + if ((p = next) == null) + throw new NoSuchElementException(); + K k = p.key; + lastReturned = p; + advance(); + return k; } + + public final K nextElement() { return next(); } } - final class KeyIterator - extends HashIterator - implements Iterator<K>, Enumeration<K> - { - public final K next() { return super.nextEntry().key; } - public final K nextElement() { return super.nextEntry().key; } + static final class ValueIterator<K,V> extends BaseIterator<K,V> + implements Iterator<V>, Enumeration<V> { + ValueIterator(Node<K,V>[] tab, int index, int size, int limit, + ConcurrentHashMap<K,V> map) { + super(tab, index, size, limit, map); + } + + public final V next() { + Node<K,V> p; + if ((p = next) == null) + throw new NoSuchElementException(); + V v = p.val; + lastReturned = p; + advance(); + return v; + } + + public final V nextElement() { return next(); } } - final class ValueIterator - extends HashIterator - implements Iterator<V>, Enumeration<V> - { - public final V next() { return super.nextEntry().value; } - public final V nextElement() { return super.nextEntry().value; } + static final class EntryIterator<K,V> extends BaseIterator<K,V> + implements Iterator<Map.Entry<K,V>> { + EntryIterator(Node<K,V>[] tab, int index, int size, int limit, + ConcurrentHashMap<K,V> map) { + super(tab, index, size, limit, map); + } + + public final Map.Entry<K,V> next() { + Node<K,V> p; + if ((p = next) == null) + throw new NoSuchElementException(); + K k = p.key; + V v = p.val; + lastReturned = p; + advance(); + return new MapEntry<K,V>(k, v, map); + } } /** - * Custom Entry class used by EntryIterator.next(), that relays - * setValue changes to the underlying map. + * Exported Entry for EntryIterator */ - final class WriteThroughEntry - extends AbstractMap.SimpleEntry<K,V> - { - WriteThroughEntry(K k, V v) { - super(k,v); + static final class MapEntry<K,V> implements Map.Entry<K,V> { + final K key; // non-null + V val; // non-null + final ConcurrentHashMap<K,V> map; + MapEntry(K key, V val, ConcurrentHashMap<K,V> map) { + this.key = key; + this.val = val; + this.map = map; + } + public K getKey() { return key; } + public V getValue() { return val; } + public int hashCode() { return key.hashCode() ^ val.hashCode(); } + public String toString() { return key + "=" + val; } + + public boolean equals(Object o) { + Object k, v; Map.Entry<?,?> e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry<?,?>)o).getKey()) != null && + (v = e.getValue()) != null && + (k == key || k.equals(key)) && + (v == val || v.equals(val))); } /** * Sets our entry's value and writes through to the map. The - * value to return is somewhat arbitrary here. Since a - * WriteThroughEntry does not necessarily track asynchronous - * changes, the most recent "previous" value could be - * different from what we return (or could even have been - * removed in which case the put will re-establish). We do not - * and cannot guarantee more. + * value to return is somewhat arbitrary here. Since we do not + * necessarily track asynchronous changes, the most recent + * "previous" value could be different from what we return (or + * could even have been removed, in which case the put will + * re-establish). We do not and cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); - V v = super.setValue(value); - ConcurrentHashMap.this.put(getKey(), value); + V v = val; + val = value; + map.put(key, value); return v; } } - final class EntryIterator - extends HashIterator - implements Iterator<Entry<K,V>> - { - public Map.Entry<K,V> next() { - HashEntry<K,V> e = super.nextEntry(); - return new WriteThroughEntry(e.key, e.value); + /* ----------------Views -------------- */ + + /** + * Base class for views. + * + */ + abstract static class CollectionView<K,V,E> + implements Collection<E>, java.io.Serializable { + private static final long serialVersionUID = 7249069246763182397L; + final ConcurrentHashMap<K,V> map; + CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; } + + /** + * Returns the map backing this view. + * + * @return the map backing this view + */ + public ConcurrentHashMap<K,V> getMap() { return map; } + + /** + * Removes all of the elements from this view, by removing all + * the mappings from the map backing this view. + */ + public final void clear() { map.clear(); } + public final int size() { return map.size(); } + public final boolean isEmpty() { return map.isEmpty(); } + + // implementations below rely on concrete classes supplying these + // abstract methods + /** + * Returns a "weakly consistent" iterator that will never + * throw {@link ConcurrentModificationException}, and + * guarantees to traverse elements as they existed upon + * construction of the iterator, and may (but is not + * guaranteed to) reflect any modifications subsequent to + * construction. + */ + public abstract Iterator<E> iterator(); + public abstract boolean contains(Object o); + public abstract boolean remove(Object o); + + private static final String oomeMsg = "Required array size too large"; + + public final Object[] toArray() { + long sz = map.mappingCount(); + if (sz > MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + int n = (int)sz; + Object[] r = new Object[n]; + int i = 0; + for (E e : this) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = e; + } + return (i == n) ? r : Arrays.copyOf(r, i); + } + + @SuppressWarnings("unchecked") + public final <T> T[] toArray(T[] a) { + long sz = map.mappingCount(); + if (sz > MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + int m = (int)sz; + T[] r = (a.length >= m) ? a : + (T[])java.lang.reflect.Array + .newInstance(a.getClass().getComponentType(), m); + int n = r.length; + int i = 0; + for (E e : this) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = (T)e; + } + if (a == r && i < n) { + r[i] = null; // null-terminate + return r; + } + return (i == n) ? r : Arrays.copyOf(r, i); + } + + /** + * Returns a string representation of this collection. + * The string representation consists of the string representations + * of the collection's elements in the order they are returned by + * its iterator, enclosed in square brackets ({@code "[]"}). + * Adjacent elements are separated by the characters {@code ", "} + * (comma and space). Elements are converted to strings as by + * {@link String#valueOf(Object)}. + * + * @return a string representation of this collection + */ + public final String toString() { + StringBuilder sb = new StringBuilder(); + sb.append('['); + Iterator<E> it = iterator(); + if (it.hasNext()) { + for (;;) { + Object e = it.next(); + sb.append(e == this ? "(this Collection)" : e); + if (!it.hasNext()) + break; + sb.append(',').append(' '); + } + } + return sb.append(']').toString(); } + + public final boolean containsAll(Collection<?> c) { + if (c != this) { + for (Object e : c) { + if (e == null || !contains(e)) + return false; + } + } + return true; + } + + public final boolean removeAll(Collection<?> c) { + boolean modified = false; + for (Iterator<E> it = iterator(); it.hasNext();) { + if (c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; + } + + public final boolean retainAll(Collection<?> c) { + boolean modified = false; + for (Iterator<E> it = iterator(); it.hasNext();) { + if (!c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; + } + } - final class KeySet extends AbstractSet<K> { - public Iterator<K> iterator() { - return new KeyIterator(); + /** + * A view of a ConcurrentHashMap as a {@link Set} of keys, in + * which additions may optionally be enabled by mapping to a + * common value. This class cannot be directly instantiated. + * See {@link #keySet() keySet()}, + * {@link #keySet(Object) keySet(V)}, + * {@link #newKeySet() newKeySet()}, + * {@link #newKeySet(int) newKeySet(int)}. + * + * @since 1.8 + * + * @hide + */ + public static class KeySetView<K,V> extends CollectionView<K,V,K> + implements Set<K>, java.io.Serializable { + private static final long serialVersionUID = 7249069246763182397L; + private final V value; + KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public + super(map); + this.value = value; } - public int size() { - return ConcurrentHashMap.this.size(); + + /** + * Returns the default mapped value for additions, + * or {@code null} if additions are not supported. + * + * @return the default mapped value for additions, or {@code null} + * if not supported + */ + public V getMappedValue() { return value; } + + /** + * {@inheritDoc} + * @throws NullPointerException if the specified key is null + */ + public boolean contains(Object o) { return map.containsKey(o); } + + /** + * Removes the key from this map view, by removing the key (and its + * corresponding value) from the backing map. This method does + * nothing if the key is not in the map. + * + * @param o the key to be removed from the backing map + * @return {@code true} if the backing map contained the specified key + * @throws NullPointerException if the specified key is null + */ + public boolean remove(Object o) { return map.remove(o) != null; } + + /** + * @return an iterator over the keys of the backing map + */ + public Iterator<K> iterator() { + Node<K,V>[] t; + ConcurrentHashMap<K,V> m = map; + int f = (t = m.table) == null ? 0 : t.length; + return new KeyIterator<K,V>(t, f, 0, f, m); } - public boolean isEmpty() { - return ConcurrentHashMap.this.isEmpty(); + + /** + * Adds the specified key to this set view by mapping the key to + * the default mapped value in the backing map, if defined. + * + * @param e key to be added + * @return {@code true} if this set changed as a result of the call + * @throws NullPointerException if the specified key is null + * @throws UnsupportedOperationException if no default mapped value + * for additions was provided + */ + public boolean add(K e) { + V v; + if ((v = value) == null) + throw new UnsupportedOperationException(); + return map.putVal(e, v, true) == null; } - public boolean contains(Object o) { - return ConcurrentHashMap.this.containsKey(o); + + /** + * Adds all of the elements in the specified collection to this set, + * as if by calling {@link #add} on each one. + * + * @param c the elements to be inserted into this set + * @return {@code true} if this set changed as a result of the call + * @throws NullPointerException if the collection or any of its + * elements are {@code null} + * @throws UnsupportedOperationException if no default mapped value + * for additions was provided + */ + public boolean addAll(Collection<? extends K> c) { + boolean added = false; + V v; + if ((v = value) == null) + throw new UnsupportedOperationException(); + for (K e : c) { + if (map.putVal(e, v, true) == null) + added = true; + } + return added; } - public boolean remove(Object o) { - return ConcurrentHashMap.this.remove(o) != null; + + public int hashCode() { + int h = 0; + for (K e : this) + h += e.hashCode(); + return h; } - public void clear() { - ConcurrentHashMap.this.clear(); + + public boolean equals(Object o) { + Set<?> c; + return ((o instanceof Set) && + ((c = (Set<?>)o) == this || + (containsAll(c) && c.containsAll(this)))); } + } - final class Values extends AbstractCollection<V> { - public Iterator<V> iterator() { - return new ValueIterator(); + /** + * A view of a ConcurrentHashMap as a {@link Collection} of + * values, in which additions are disabled. This class cannot be + * directly instantiated. See {@link #values()}. + */ + static final class ValuesView<K,V> extends CollectionView<K,V,V> + implements Collection<V>, java.io.Serializable { + private static final long serialVersionUID = 2249069246763182397L; + ValuesView(ConcurrentHashMap<K,V> map) { super(map); } + public final boolean contains(Object o) { + return map.containsValue(o); } - public int size() { - return ConcurrentHashMap.this.size(); + + public final boolean remove(Object o) { + if (o != null) { + for (Iterator<V> it = iterator(); it.hasNext();) { + if (o.equals(it.next())) { + it.remove(); + return true; + } + } + } + return false; } - public boolean isEmpty() { - return ConcurrentHashMap.this.isEmpty(); + + public final Iterator<V> iterator() { + ConcurrentHashMap<K,V> m = map; + Node<K,V>[] t; + int f = (t = m.table) == null ? 0 : t.length; + return new ValueIterator<K,V>(t, f, 0, f, m); } - public boolean contains(Object o) { - return ConcurrentHashMap.this.containsValue(o); + + public final boolean add(V e) { + throw new UnsupportedOperationException(); } - public void clear() { - ConcurrentHashMap.this.clear(); + public final boolean addAll(Collection<? extends V> c) { + throw new UnsupportedOperationException(); } + } - final class EntrySet extends AbstractSet<Map.Entry<K,V>> { - public Iterator<Map.Entry<K,V>> iterator() { - return new EntryIterator(); - } + /** + * A view of a ConcurrentHashMap as a {@link Set} of (key, value) + * entries. This class cannot be directly instantiated. See + * {@link #entrySet()}. + */ + static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>> + implements Set<Map.Entry<K,V>>, java.io.Serializable { + private static final long serialVersionUID = 2249069246763182397L; + EntrySetView(ConcurrentHashMap<K,V> map) { super(map); } + public boolean contains(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry<?,?> e = (Map.Entry<?,?>)o; - V v = ConcurrentHashMap.this.get(e.getKey()); - return v != null && v.equals(e.getValue()); + Object k, v, r; Map.Entry<?,?> e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry<?,?>)o).getKey()) != null && + (r = map.get(k)) != null && + (v = e.getValue()) != null && + (v == r || v.equals(r))); } + public boolean remove(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry<?,?> e = (Map.Entry<?,?>)o; - return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()); + Object k, v; Map.Entry<?,?> e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry<?,?>)o).getKey()) != null && + (v = e.getValue()) != null && + map.remove(k, v)); } - public int size() { - return ConcurrentHashMap.this.size(); + + /** + * @return an iterator over the entries of the backing map + */ + public Iterator<Map.Entry<K,V>> iterator() { + ConcurrentHashMap<K,V> m = map; + Node<K,V>[] t; + int f = (t = m.table) == null ? 0 : t.length; + return new EntryIterator<K,V>(t, f, 0, f, m); } - public boolean isEmpty() { - return ConcurrentHashMap.this.isEmpty(); + + public boolean add(Entry<K,V> e) { + return map.putVal(e.getKey(), e.getValue(), false) == null; } - public void clear() { - ConcurrentHashMap.this.clear(); + + public boolean addAll(Collection<? extends Entry<K,V>> c) { + boolean added = false; + for (Entry<K,V> e : c) { + if (add(e)) + added = true; + } + return added; } + + public final int hashCode() { + int h = 0; + Node<K,V>[] t; + if ((t = map.table) != null) { + Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); + for (Node<K,V> p; (p = it.advance()) != null; ) { + h += p.hashCode(); + } + } + return h; + } + + public final boolean equals(Object o) { + Set<?> c; + return ((o instanceof Set) && + ((c = (Set<?>)o) == this || + (containsAll(c) && c.containsAll(this)))); + } + } - /* ---------------- Serialization Support -------------- */ + + /* ---------------- Counters -------------- */ + + // Adapted from LongAdder and Striped64. + // See their internal docs for explanation. + + // A padded cell for distributing counts + static final class CounterCell { + volatile long p0, p1, p2, p3, p4, p5, p6; + volatile long value; + volatile long q0, q1, q2, q3, q4, q5, q6; + CounterCell(long x) { value = x; } + } /** - * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a - * stream (i.e., serializes it). - * @param s the stream - * @serialData - * the key (Object) and value (Object) - * for each key-value mapping, followed by a null pair. - * The key-value mappings are emitted in no particular order. + * Holder for the thread-local hash code determining which + * CounterCell to use. The code is initialized via the + * counterHashCodeGenerator, but may be moved upon collisions. */ - private void writeObject(java.io.ObjectOutputStream s) - throws java.io.IOException { - // force all segments for serialization compatibility - for (int k = 0; k < segments.length; ++k) - ensureSegment(k); - s.defaultWriteObject(); - - final Segment<K,V>[] segments = this.segments; - for (int k = 0; k < segments.length; ++k) { - Segment<K,V> seg = segmentAt(segments, k); - seg.lock(); - try { - HashEntry<K,V>[] tab = seg.table; - for (int i = 0; i < tab.length; ++i) { - HashEntry<K,V> e; - for (e = entryAt(tab, i); e != null; e = e.next) { - s.writeObject(e.key); - s.writeObject(e.value); - } - } - } finally { - seg.unlock(); - } - } - s.writeObject(null); - s.writeObject(null); + static final class CounterHashCode { + int code; } /** - * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a - * stream (i.e., deserializes it). - * @param s the stream + * Generates initial value for per-thread CounterHashCodes. */ - @SuppressWarnings("unchecked") - private void readObject(java.io.ObjectInputStream s) - throws java.io.IOException, ClassNotFoundException { - s.defaultReadObject(); + static final AtomicInteger counterHashCodeGenerator = new AtomicInteger(); - // Re-initialize segments to be minimally sized, and let grow. - int cap = MIN_SEGMENT_TABLE_CAPACITY; - final Segment<K,V>[] segments = this.segments; - for (int k = 0; k < segments.length; ++k) { - Segment<K,V> seg = segments[k]; - if (seg != null) { - seg.threshold = (int)(cap * seg.loadFactor); - seg.table = (HashEntry<K,V>[]) new HashEntry<?,?>[cap]; + /** + * Increment for counterHashCodeGenerator. See class ThreadLocal + * for explanation. + */ + static final int SEED_INCREMENT = 0x61c88647; + + /** + * Per-thread counter hash codes. Shared across all instances. + */ + static final ThreadLocal<CounterHashCode> threadCounterHashCode = + new ThreadLocal<CounterHashCode>(); + + final long sumCount() { + CounterCell[] as = counterCells; CounterCell a; + long sum = baseCount; + if (as != null) { + for (int i = 0; i < as.length; ++i) { + if ((a = as[i]) != null) + sum += a.value; } } + return sum; + } - // Read the keys and values, and put the mappings in the table + // See LongAdder version for explanation + private final void fullAddCount(long x, CounterHashCode hc, + boolean wasUncontended) { + int h; + if (hc == null) { + hc = new CounterHashCode(); + int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT); + h = hc.code = (s == 0) ? 1 : s; // Avoid zero + threadCounterHashCode.set(hc); + } + else + h = hc.code; + boolean collide = false; // True if last slot nonempty for (;;) { - K key = (K) s.readObject(); - V value = (V) s.readObject(); - if (key == null) - break; - put(key, value); + CounterCell[] as; CounterCell a; int n; long v; + if ((as = counterCells) != null && (n = as.length) > 0) { + if ((a = as[(n - 1) & h]) == null) { + if (cellsBusy == 0) { // Try to attach new Cell + CounterCell r = new CounterCell(x); // Optimistic create + if (cellsBusy == 0 && + U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { + boolean created = false; + try { // Recheck under lock + CounterCell[] rs; int m, j; + if ((rs = counterCells) != null && + (m = rs.length) > 0 && + rs[j = (m - 1) & h] == null) { + rs[j] = r; + created = true; + } + } finally { + cellsBusy = 0; + } + if (created) + break; + continue; // Slot is now non-empty + } + } + collide = false; + } + else if (!wasUncontended) // CAS already known to fail + wasUncontended = true; // Continue after rehash + else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) + break; + else if (counterCells != as || n >= NCPU) + collide = false; // At max size or stale + else if (!collide) + collide = true; + else if (cellsBusy == 0 && + U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { + try { + if (counterCells == as) {// Expand table unless stale + CounterCell[] rs = new CounterCell[n << 1]; + for (int i = 0; i < n; ++i) + rs[i] = as[i]; + counterCells = rs; + } + } finally { + cellsBusy = 0; + } + collide = false; + continue; // Retry with expanded table + } + h ^= h << 13; // Rehash + h ^= h >>> 17; + h ^= h << 5; + } + else if (cellsBusy == 0 && counterCells == as && + U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { + boolean init = false; + try { // Initialize table + if (counterCells == as) { + CounterCell[] rs = new CounterCell[2]; + rs[h & 1] = new CounterCell(x); + counterCells = rs; + init = true; + } + } finally { + cellsBusy = 0; + } + if (init) + break; + } + else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) + break; // Fall back on using base } + hc.code = h; // Record index for next time } // Unsafe mechanics - private static final sun.misc.Unsafe UNSAFE; - private static final long SBASE; - private static final int SSHIFT; - private static final long TBASE; - private static final int TSHIFT; + private static final sun.misc.Unsafe U; + private static final long SIZECTL; + private static final long TRANSFERINDEX; + private static final long TRANSFERORIGIN; + private static final long BASECOUNT; + private static final long CELLSBUSY; + private static final long CELLVALUE; + private static final long ABASE; + private static final int ASHIFT; static { - int ss, ts; try { - UNSAFE = sun.misc.Unsafe.getUnsafe(); - Class<?> tc = HashEntry[].class; - Class<?> sc = Segment[].class; - TBASE = UNSAFE.arrayBaseOffset(tc); - SBASE = UNSAFE.arrayBaseOffset(sc); - ts = UNSAFE.arrayIndexScale(tc); - ss = UNSAFE.arrayIndexScale(sc); + U = sun.misc.Unsafe.getUnsafe(); + Class<?> k = ConcurrentHashMap.class; + SIZECTL = U.objectFieldOffset + (k.getDeclaredField("sizeCtl")); + TRANSFERINDEX = U.objectFieldOffset + (k.getDeclaredField("transferIndex")); + TRANSFERORIGIN = U.objectFieldOffset + (k.getDeclaredField("transferOrigin")); + BASECOUNT = U.objectFieldOffset + (k.getDeclaredField("baseCount")); + CELLSBUSY = U.objectFieldOffset + (k.getDeclaredField("cellsBusy")); + Class<?> ck = CounterCell.class; + CELLVALUE = U.objectFieldOffset + (ck.getDeclaredField("value")); + Class<?> ak = Node[].class; + ABASE = U.arrayBaseOffset(ak); + int scale = U.arrayIndexScale(ak); + if ((scale & (scale - 1)) != 0) + throw new Error("data type scale not a power of two"); + ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } - if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0) - throw new Error("data type scale not a power of two"); - SSHIFT = 31 - Integer.numberOfLeadingZeros(ss); - TSHIFT = 31 - Integer.numberOfLeadingZeros(ts); } } diff --git a/luni/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java b/luni/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java index 873f825..b39a533 100644 --- a/luni/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java +++ b/luni/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java @@ -31,7 +31,7 @@ import java.util.Queue; * Like most other concurrent collection implementations, this class * does not permit the use of {@code null} elements. * - * <p>This implementation employs an efficient "wait-free" + * <p>This implementation employs an efficient <em>non-blocking</em> * algorithm based on one described in <a * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple, * Fast, and Practical Non-Blocking and Blocking Concurrent Queue diff --git a/luni/src/main/java/java/util/concurrent/CountedCompleter.java b/luni/src/main/java/java/util/concurrent/CountedCompleter.java index ffe7582..d5f794e 100644 --- a/luni/src/main/java/java/util/concurrent/CountedCompleter.java +++ b/luni/src/main/java/java/util/concurrent/CountedCompleter.java @@ -8,14 +8,15 @@ package java.util.concurrent; /** * A {@link ForkJoinTask} with a completion action performed when - * triggered and there are no remaining pending - * actions. CountedCompleters are in general more robust in the + * triggered and there are no remaining pending actions. + * CountedCompleters are in general more robust in the * presence of subtask stalls and blockage than are other forms of * ForkJoinTasks, but are less intuitive to program. Uses of * CountedCompleter are similar to those of other completion based * components (such as {@link java.nio.channels.CompletionHandler}) * except that multiple <em>pending</em> completions may be necessary - * to trigger the completion action {@link #onCompletion}, not just one. + * to trigger the completion action {@link #onCompletion(CountedCompleter)}, + * not just one. * Unless initialized otherwise, the {@linkplain #getPendingCount pending * count} starts at zero, but may be (atomically) changed using * methods {@link #setPendingCount}, {@link #addToPendingCount}, and @@ -40,9 +41,10 @@ package java.util.concurrent; * <p>A concrete CountedCompleter class must define method {@link * #compute}, that should in most cases (as illustrated below), invoke * {@code tryComplete()} once before returning. The class may also - * optionally override method {@link #onCompletion} to perform an - * action upon normal completion, and method {@link - * #onExceptionalCompletion} to perform an action upon any exception. + * optionally override method {@link #onCompletion(CountedCompleter)} + * to perform an action upon normal completion, and method + * {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to + * perform an action upon any exception. * * <p>CountedCompleters most often do not bear results, in which case * they are normally declared as {@code CountedCompleter<Void>}, and @@ -63,13 +65,14 @@ package java.util.concurrent; * only as an internal helper for other computations, so its own task * status (as reported in methods such as {@link ForkJoinTask#isDone}) * is arbitrary; this status changes only upon explicit invocations of - * {@link #complete}, {@link ForkJoinTask#cancel}, {@link - * ForkJoinTask#completeExceptionally} or upon exceptional completion - * of method {@code compute}. Upon any exceptional completion, the - * exception may be relayed to a task's completer (and its completer, - * and so on), if one exists and it has not otherwise already - * completed. Similarly, cancelling an internal CountedCompleter has - * only a local effect on that completer, so is not often useful. + * {@link #complete}, {@link ForkJoinTask#cancel}, + * {@link ForkJoinTask#completeExceptionally(Throwable)} or upon + * exceptional completion of method {@code compute}. Upon any + * exceptional completion, the exception may be relayed to a task's + * completer (and its completer, and so on), if one exists and it has + * not otherwise already completed. Similarly, cancelling an internal + * CountedCompleter has only a local effect on that completer, so is + * not often useful. * * <p><b>Sample Usages.</b> * @@ -96,8 +99,8 @@ package java.util.concurrent; * improve load balancing. In the recursive case, the second of each * pair of subtasks to finish triggers completion of its parent * (because no result combination is performed, the default no-op - * implementation of method {@code onCompletion} is not overridden). A - * static utility method sets up the base task and invokes it + * implementation of method {@code onCompletion} is not overridden). + * A static utility method sets up the base task and invokes it * (here, implicitly using the {@link ForkJoinPool#commonPool()}). * * <pre> {@code @@ -152,12 +155,11 @@ package java.util.concurrent; * } * }</pre> * - * As a further improvement, notice that the left task need not even - * exist. Instead of creating a new one, we can iterate using the - * original task, and add a pending count for each fork. Additionally, - * because no task in this tree implements an {@link #onCompletion} - * method, {@code tryComplete()} can be replaced with {@link - * #propagateCompletion}. + * As a further improvement, notice that the left task need not even exist. + * Instead of creating a new one, we can iterate using the original task, + * and add a pending count for each fork. Additionally, because no task + * in this tree implements an {@link #onCompletion(CountedCompleter)} method, + * {@code tryComplete()} can be replaced with {@link #propagateCompletion}. * * <pre> {@code * class ForEach<E> ... @@ -235,7 +237,7 @@ package java.util.concurrent; * * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine * results of multiple subtasks usually need to access these results - * in method {@link #onCompletion}. As illustrated in the following + * in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following * class (that performs a simplified form of map-reduce where mappings * and reductions are all of type {@code E}), one way to do this in * divide and conquer designs is to have each subtask record its @@ -357,7 +359,7 @@ package java.util.concurrent; * * <p><b>Triggers.</b> Some CountedCompleters are themselves never * forked, but instead serve as bits of plumbing in other designs; - * including those in which the completion of one of more async tasks + * including those in which the completion of one or more async tasks * triggers another async task. For example: * * <pre> {@code @@ -438,20 +440,21 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { } /** - * Performs an action when method {@link #completeExceptionally} - * is invoked or method {@link #compute} throws an exception, and - * this task has not otherwise already completed normally. On - * entry to this method, this task {@link - * ForkJoinTask#isCompletedAbnormally}. The return value of this - * method controls further propagation: If {@code true} and this - * task has a completer, then this completer is also completed - * exceptionally. The default implementation of this method does - * nothing except return {@code true}. + * Performs an action when method {@link + * #completeExceptionally(Throwable)} is invoked or method {@link + * #compute} throws an exception, and this task has not already + * otherwise completed normally. On entry to this method, this task + * {@link ForkJoinTask#isCompletedAbnormally}. The return value + * of this method controls further propagation: If {@code true} + * and this task has a completer that has not completed, then that + * completer is also completed exceptionally, with the same + * exception as this completer. The default implementation of + * this method does nothing except return {@code true}. * * @param ex the exception * @param caller the task invoking this method (which may * be this task itself) - * @return true if this exception should be propagated to this + * @return {@code true} if this exception should be propagated to this * task's completer, if one exists */ public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) { @@ -492,7 +495,7 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { * @param delta the value to add */ public final void addToPendingCount(int delta) { - int c; // note: can replace with intrinsic in jdk8 + int c; do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta)); } @@ -502,7 +505,7 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { * * @param expected the expected value * @param count the new value - * @return true if successful + * @return {@code true} if successful */ public final boolean compareAndSetPendingCount(int expected, int count) { return U.compareAndSwapInt(this, PENDING, expected, count); @@ -536,9 +539,9 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { /** * If the pending count is nonzero, decrements the count; - * otherwise invokes {@link #onCompletion} and then similarly - * tries to complete this task's completer, if one exists, - * else marks this task as complete. + * otherwise invokes {@link #onCompletion(CountedCompleter)} + * and then similarly tries to complete this task's completer, + * if one exists, else marks this task as complete. */ public final void tryComplete() { CountedCompleter<?> a = this, s = a; @@ -557,12 +560,12 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { /** * Equivalent to {@link #tryComplete} but does not invoke {@link - * #onCompletion} along the completion path: If the pending count - * is nonzero, decrements the count; otherwise, similarly tries to - * complete this task's completer, if one exists, else marks this - * task as complete. This method may be useful in cases where - * {@code onCompletion} should not, or need not, be invoked for - * each completer in a computation. + * #onCompletion(CountedCompleter)} along the completion path: + * If the pending count is nonzero, decrements the count; + * otherwise, similarly tries to complete this task's completer, if + * one exists, else marks this task as complete. This method may be + * useful in cases where {@code onCompletion} should not, or need + * not, be invoked for each completer in a computation. */ public final void propagateCompletion() { CountedCompleter<?> a = this, s = a; @@ -579,13 +582,15 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { } /** - * Regardless of pending count, invokes {@link #onCompletion}, - * marks this task as complete and further triggers {@link - * #tryComplete} on this task's completer, if one exists. The - * given rawResult is used as an argument to {@link #setRawResult} - * before invoking {@link #onCompletion} or marking this task as - * complete; its value is meaningful only for classes overriding - * {@code setRawResult}. + * Regardless of pending count, invokes + * {@link #onCompletion(CountedCompleter)}, marks this task as + * complete and further triggers {@link #tryComplete} on this + * task's completer, if one exists. The given rawResult is + * used as an argument to {@link #setRawResult} before invoking + * {@link #onCompletion(CountedCompleter)} or marking this task + * as complete; its value is meaningful only for classes + * overriding {@code setRawResult}. This method does not modify + * the pending count. * * <p>This method may be useful when forcing completion as soon as * any one (versus all) of several subtask results are obtained. @@ -604,7 +609,6 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { p.tryComplete(); } - /** * If this task's pending count is zero, returns this task; * otherwise decrements its pending count and returns {@code @@ -668,8 +672,9 @@ public abstract class CountedCompleter<T> extends ForkJoinTask<T> { void internalPropagateException(Throwable ex) { CountedCompleter<?> a = this, s = a; while (a.onExceptionalCompletion(ex, s) && - (a = (s = a).completer) != null && a.status >= 0) - a.recordExceptionalCompletion(ex); + (a = (s = a).completer) != null && a.status >= 0 && + a.recordExceptionalCompletion(ex) == EXCEPTIONAL) + ; } /** diff --git a/luni/src/main/java/java/util/concurrent/ForkJoinPool.java b/luni/src/main/java/java/util/concurrent/ForkJoinPool.java index 87ffff3..5ac01c8 100644 --- a/luni/src/main/java/java/util/concurrent/ForkJoinPool.java +++ b/luni/src/main/java/java/util/concurrent/ForkJoinPool.java @@ -6,6 +6,7 @@ package java.util.concurrent; +import java.lang.Thread.UncaughtExceptionHandler; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; @@ -17,6 +18,7 @@ import java.util.concurrent.ExecutorService; import java.util.concurrent.Future; import java.util.concurrent.RejectedExecutionException; import java.util.concurrent.RunnableFuture; +import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.TimeUnit; /** @@ -49,9 +51,9 @@ import java.util.concurrent.TimeUnit; * level; by default, equal to the number of available processors. The * pool attempts to maintain enough active (or available) threads by * dynamically adding, suspending, or resuming internal worker - * threads, even if some tasks are stalled waiting to join - * others. However, no such adjustments are guaranteed in the face of - * blocked I/O or other unmanaged synchronization. The nested {@link + * threads, even if some tasks are stalled waiting to join others. + * However, no such adjustments are guaranteed in the face of blocked + * I/O or other unmanaged synchronization. The nested {@link * ManagedBlocker} interface enables extension of the kinds of * synchronization accommodated. * @@ -75,38 +77,45 @@ import java.util.concurrent.TimeUnit; * there is little difference among choice of methods. * * <table BORDER CELLPADDING=3 CELLSPACING=1> + * <caption>Summary of task execution methods</caption> * <tr> * <td></td> * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td> * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td> * </tr> * <tr> - * <td> <b>Arrange async execution</td> + * <td> <b>Arrange async execution</b></td> * <td> {@link #execute(ForkJoinTask)}</td> * <td> {@link ForkJoinTask#fork}</td> * </tr> * <tr> - * <td> <b>Await and obtain result</td> + * <td> <b>Await and obtain result</b></td> * <td> {@link #invoke(ForkJoinTask)}</td> * <td> {@link ForkJoinTask#invoke}</td> * </tr> * <tr> - * <td> <b>Arrange exec and obtain Future</td> + * <td> <b>Arrange exec and obtain Future</b></td> * <td> {@link #submit(ForkJoinTask)}</td> * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td> * </tr> * </table> * * <p>The common pool is by default constructed with default - * parameters, but these may be controlled by setting three {@link - * System#getProperty system properties} with prefix {@code - * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} -- - * an integer greater than zero, {@code threadFactory} -- the class - * name of a {@link ForkJoinWorkerThreadFactory}, and {@code - * exceptionHandler} -- the class name of a {@link - * java.lang.Thread.UncaughtExceptionHandler - * Thread.UncaughtExceptionHandler}. Upon any error in establishing - * these settings, default parameters are used. + * parameters, but these may be controlled by setting three + * {@linkplain System#getProperty system properties}: + * <ul> + * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism} + * - the parallelism level, a non-negative integer + * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory} + * - the class name of a {@link ForkJoinWorkerThreadFactory} + * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler} + * - the class name of a {@link UncaughtExceptionHandler} + * </ul> + * The system class loader is used to load these classes. + * Upon any error in establishing these settings, default parameters + * are used. It is possible to disable or limit the use of threads in + * the common pool by setting the parallelism property to zero, and/or + * using a factory that may return {@code null}. * * <p><b>Implementation notes</b>: This implementation restricts the * maximum number of running threads to 32767. Attempts to create @@ -153,32 +162,35 @@ public class ForkJoinPool extends AbstractExecutorService { * (http://research.sun.com/scalable/pubs/index.html) and * "Idempotent work stealing" by Michael, Saraswat, and Vechev, * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). - * The main differences ultimately stem from GC requirements that - * we null out taken slots as soon as we can, to maintain as small - * a footprint as possible even in programs generating huge - * numbers of tasks. To accomplish this, we shift the CAS - * arbitrating pop vs poll (steal) from being on the indices - * ("base" and "top") to the slots themselves. So, both a - * successful pop and poll mainly entail a CAS of a slot from - * non-null to null. Because we rely on CASes of references, we - * do not need tag bits on base or top. They are simple ints as - * used in any circular array-based queue (see for example - * ArrayDeque). Updates to the indices must still be ordered in a - * way that guarantees that top == base means the queue is empty, - * but otherwise may err on the side of possibly making the queue - * appear nonempty when a push, pop, or poll have not fully - * committed. Note that this means that the poll operation, - * considered individually, is not wait-free. One thief cannot - * successfully continue until another in-progress one (or, if - * previously empty, a push) completes. However, in the - * aggregate, we ensure at least probabilistic non-blockingness. - * If an attempted steal fails, a thief always chooses a different - * random victim target to try next. So, in order for one thief to - * progress, it suffices for any in-progress poll or new push on - * any empty queue to complete. (This is why we normally use - * method pollAt and its variants that try once at the apparent - * base index, else consider alternative actions, rather than - * method poll.) + * See also "Correct and Efficient Work-Stealing for Weak Memory + * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013 + * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an + * analysis of memory ordering (atomic, volatile etc) issues. The + * main differences ultimately stem from GC requirements that we + * null out taken slots as soon as we can, to maintain as small a + * footprint as possible even in programs generating huge numbers + * of tasks. To accomplish this, we shift the CAS arbitrating pop + * vs poll (steal) from being on the indices ("base" and "top") to + * the slots themselves. So, both a successful pop and poll + * mainly entail a CAS of a slot from non-null to null. Because + * we rely on CASes of references, we do not need tag bits on base + * or top. They are simple ints as used in any circular + * array-based queue (see for example ArrayDeque). Updates to the + * indices must still be ordered in a way that guarantees that top + * == base means the queue is empty, but otherwise may err on the + * side of possibly making the queue appear nonempty when a push, + * pop, or poll have not fully committed. Note that this means + * that the poll operation, considered individually, is not + * wait-free. One thief cannot successfully continue until another + * in-progress one (or, if previously empty, a push) completes. + * However, in the aggregate, we ensure at least probabilistic + * non-blockingness. If an attempted steal fails, a thief always + * chooses a different random victim target to try next. So, in + * order for one thief to progress, it suffices for any + * in-progress poll or new push on any empty queue to + * complete. (This is why we normally use method pollAt and its + * variants that try once at the apparent base index, else + * consider alternative actions, rather than method poll.) * * This approach also enables support of a user mode in which local * task processing is in FIFO, not LIFO order, simply by using @@ -197,18 +209,18 @@ public class ForkJoinPool extends AbstractExecutorService { * for work-stealing (this would contaminate lifo/fifo * processing). Instead, we randomly associate submission queues * with submitting threads, using a form of hashing. The - * ThreadLocal Submitter class contains a value initially used as - * a hash code for choosing existing queues, but may be randomly - * repositioned upon contention with other submitters. In - * essence, submitters act like workers except that they are - * restricted to executing local tasks that they submitted (or in - * the case of CountedCompleters, others with the same root task). - * However, because most shared/external queue operations are more - * expensive than internal, and because, at steady state, external - * submitters will compete for CPU with workers, ForkJoinTask.join - * and related methods disable them from repeatedly helping to - * process tasks if all workers are active. Insertion of tasks in - * shared mode requires a lock (mainly to protect in the case of + * Submitter probe value serves as a hash code for + * choosing existing queues, and may be randomly repositioned upon + * contention with other submitters. In essence, submitters act + * like workers except that they are restricted to executing local + * tasks that they submitted (or in the case of CountedCompleters, + * others with the same root task). However, because most + * shared/external queue operations are more expensive than + * internal, and because, at steady state, external submitters + * will compete for CPU with workers, ForkJoinTask.join and + * related methods disable them from repeatedly helping to process + * tasks if all workers are active. Insertion of tasks in shared + * mode requires a lock (mainly to protect in the case of * resizing) but we use only a simple spinlock (using bits in * field qlock), because submitters encountering a busy queue move * on to try or create other queues -- they block only when @@ -298,37 +310,35 @@ public class ForkJoinPool extends AbstractExecutorService { * has not yet entered the wait queue. We solve this by requiring * a full sweep of all workers (via repeated calls to method * scan()) both before and after a newly waiting worker is added - * to the wait queue. During a rescan, the worker might release - * some other queued worker rather than itself, which has the same - * net effect. Because enqueued workers may actually be rescanning - * rather than waiting, we set and clear the "parker" field of - * WorkQueues to reduce unnecessary calls to unpark. (This - * requires a secondary recheck to avoid missed signals.) Note - * the unusual conventions about Thread.interrupts surrounding - * parking and other blocking: Because interrupts are used solely - * to alert threads to check termination, which is checked anyway - * upon blocking, we clear status (using Thread.interrupted) - * before any call to park, so that park does not immediately - * return due to status being set via some other unrelated call to - * interrupt in user code. + * to the wait queue. Because enqueued workers may actually be + * rescanning rather than waiting, we set and clear the "parker" + * field of WorkQueues to reduce unnecessary calls to unpark. + * (This requires a secondary recheck to avoid missed signals.) + * Note the unusual conventions about Thread.interrupts + * surrounding parking and other blocking: Because interrupts are + * used solely to alert threads to check termination, which is + * checked anyway upon blocking, we clear status (using + * Thread.interrupted) before any call to park, so that park does + * not immediately return due to status being set via some other + * unrelated call to interrupt in user code. * * Signalling. We create or wake up workers only when there * appears to be at least one task they might be able to find and - * execute. However, many other threads may notice the same task - * and each signal to wake up a thread that might take it. So in - * general, pools will be over-signalled. When a submission is - * added or another worker adds a task to a queue that has fewer - * than two tasks, they signal waiting workers (or trigger - * creation of new ones if fewer than the given parallelism level - * -- signalWork), and may leave a hint to the unparked worker to - * help signal others upon wakeup). These primary signals are - * buttressed by others (see method helpSignal) whenever other - * threads scan for work or do not have a task to process. On - * most platforms, signalling (unpark) overhead time is noticeably + * execute. When a submission is added or another worker adds a + * task to a queue that has fewer than two tasks, they signal + * waiting workers (or trigger creation of new ones if fewer than + * the given parallelism level -- signalWork). These primary + * signals are buttressed by others whenever other threads remove + * a task from a queue and notice that there are other tasks there + * as well. So in general, pools will be over-signalled. On most + * platforms, signalling (unpark) overhead time is noticeably * long, and the time between signalling a thread and it actually * making progress can be very noticeably long, so it is worth * offloading these delays from critical paths as much as - * possible. + * possible. Additionally, workers spin-down gradually, by staying + * alive so long as they see the ctl state changing. Similar + * stability-sensing techniques are also used before blocking in + * awaitJoin and helpComplete. * * Trimming workers. To release resources after periods of lack of * use, a worker starting to wait when the pool is quiescent will @@ -441,7 +451,7 @@ public class ForkJoinPool extends AbstractExecutorService { * Common Pool * =========== * - * The static commonPool always exists after static + * The static common pool always exists after static * initialization. Since it (or any other created pool) need * never be used, we minimize initial construction overhead and * footprint to the setup of about a dozen fields, with no nested @@ -449,8 +459,11 @@ public class ForkJoinPool extends AbstractExecutorService { * fullExternalPush during the first submission to the pool. * * When external threads submit to the common pool, they can - * perform some subtask processing (see externalHelpJoin and - * related methods). We do not need to record whether these + * perform subtask processing (see externalHelpJoin and related + * methods). This caller-helps policy makes it sensible to set + * common pool parallelism level to one (or more) less than the + * total number of available cores, or even zero for pure + * caller-runs. We do not need to record whether external * submissions are to the common pool -- if not, externalHelpJoin * returns quickly (at the most helping to signal some common pool * workers). These submitters would otherwise be blocked waiting @@ -520,6 +533,7 @@ public class ForkJoinPool extends AbstractExecutorService { * * @param pool the pool this thread works in * @throws NullPointerException if the pool is null + * @return the new worker thread */ public ForkJoinWorkerThread newThread(ForkJoinPool pool); } @@ -536,26 +550,6 @@ public class ForkJoinPool extends AbstractExecutorService { } /** - * Per-thread records for threads that submit to pools. Currently - * holds only pseudo-random seed / index that is used to choose - * submission queues in method externalPush. In the future, this may - * also incorporate a means to implement different task rejection - * and resubmission policies. - * - * Seeds for submitters and workers/workQueues work in basically - * the same way but are initialized and updated using slightly - * different mechanics. Both are initialized using the same - * approach as in class ThreadLocal, where successive values are - * unlikely to collide with previous values. Seeds are then - * randomly modified upon collisions using xorshifts, which - * requires a non-zero seed. - */ - static final class Submitter { - int seed; - Submitter(int s) { seed = s; } - } - - /** * Class for artificial tasks that are used to replace the target * of local joins if they are removed from an interior queue slot * in WorkQueue.tryRemoveAndExec. We don't need the proxy to @@ -614,17 +608,8 @@ public class ForkJoinPool extends AbstractExecutorService { * do not want multiple WorkQueue instances or multiple queue * arrays sharing cache lines. (It would be best for queue objects * and their arrays to share, but there is nothing available to - * help arrange that). Unfortunately, because they are recorded - * in a common array, WorkQueue instances are often moved to be - * adjacent by garbage collectors. To reduce impact, we use field - * padding that works OK on common platforms; this effectively - * trades off slightly slower average field access for the sake of - * avoiding really bad worst-case access. (Until better JVM - * support is in place, this padding is dependent on transient - * properties of JVM field layout rules.) We also take care in - * allocating, sizing and resizing the array. Non-shared queue - * arrays are initialized by workers before use. Others are - * allocated on first use. + * help arrange that). The @Contended annotation alerts JVMs to + * try to keep instances apart. */ static final class WorkQueue { /** @@ -650,13 +635,12 @@ public class ForkJoinPool extends AbstractExecutorService { // Heuristic padding to ameliorate unfortunate memory placements volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; - int seed; // for random scanning; initialize nonzero volatile int eventCount; // encoded inactivation count; < 0 if inactive int nextWait; // encoded record of next event waiter - int hint; // steal or signal hint (index) - int poolIndex; // index of this queue in pool (or 0) - final int mode; // 0: lifo, > 0: fifo, < 0: shared int nsteals; // number of steals + int hint; // steal index hint + short poolIndex; // index of this queue in pool + final short mode; // 0: lifo, > 0: fifo, < 0: shared volatile int qlock; // 1: locked, -1: terminate; else 0 volatile int base; // index of next slot for poll int top; // index of next slot for push @@ -674,8 +658,8 @@ public class ForkJoinPool extends AbstractExecutorService { int seed) { this.pool = pool; this.owner = owner; - this.mode = mode; - this.seed = seed; + this.mode = (short)mode; + this.hint = seed; // store initial seed for runWorker // Place indices in the center of array (that is not yet allocated) base = top = INITIAL_QUEUE_CAPACITY >>> 1; } @@ -688,7 +672,7 @@ public class ForkJoinPool extends AbstractExecutorService { return (n >= 0) ? 0 : -n; // ignore transient negative } - /** + /** * Provides a more accurate estimate of whether this queue has * any tasks than does queueSize, by checking whether a * near-empty queue has at least one unclaimed task. @@ -713,20 +697,18 @@ public class ForkJoinPool extends AbstractExecutorService { */ final void push(ForkJoinTask<?> task) { ForkJoinTask<?>[] a; ForkJoinPool p; - int s = top, m, n; + int s = top, n; if ((a = array) != null) { // ignore if queue removed - int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE; - U.putOrderedObject(a, j, task); - if ((n = (top = s + 1) - base) <= 2) { - if ((p = pool) != null) - p.signalWork(this); - } + int m = a.length - 1; + U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task); + if ((n = (top = s + 1) - base) <= 2) + (p = pool).signalWork(p.workQueues, this); else if (n >= m) growArray(); } } - /** + /** * Initializes or doubles the capacity of array. Call either * by owner or with lock held -- it is OK for base, but not * top, to move while resizings are in progress. @@ -784,9 +766,8 @@ public class ForkJoinPool extends AbstractExecutorService { if ((a = array) != null) { int j = (((a.length - 1) & b) << ASHIFT) + ABASE; if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null && - base == b && - U.compareAndSwapObject(a, j, t, null)) { - base = b + 1; + base == b && U.compareAndSwapObject(a, j, t, null)) { + U.putOrderedInt(this, QBASE, b + 1); return t; } } @@ -802,9 +783,8 @@ public class ForkJoinPool extends AbstractExecutorService { int j = (((a.length - 1) & b) << ASHIFT) + ABASE; t = (ForkJoinTask<?>)U.getObjectVolatile(a, j); if (t != null) { - if (base == b && - U.compareAndSwapObject(a, j, t, null)) { - base = b + 1; + if (U.compareAndSwapObject(a, j, t, null)) { + U.putOrderedInt(this, QBASE, b + 1); return t; } } @@ -861,46 +841,43 @@ public class ForkJoinPool extends AbstractExecutorService { ForkJoinTask.cancelIgnoringExceptions(t); } - /** - * Computes next value for random probes. Scans don't require - * a very high quality generator, but also not a crummy one. - * Marsaglia xor-shift is cheap and works well enough. Note: - * This is manually inlined in its usages in ForkJoinPool to - * avoid writes inside busy scan loops. - */ - final int nextSeed() { - int r = seed; - r ^= r << 13; - r ^= r >>> 17; - return seed = r ^= r << 5; - } - // Specialized execution methods /** - * Pops and runs tasks until empty. + * Polls and runs tasks until empty. */ - private void popAndExecAll() { - // A bit faster than repeated pop calls - ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t; - while ((a = array) != null && (m = a.length - 1) >= 0 && - (s = top - 1) - base >= 0 && - (t = ((ForkJoinTask<?>) - U.getObject(a, j = ((m & s) << ASHIFT) + ABASE))) - != null) { - if (U.compareAndSwapObject(a, j, t, null)) { - top = s; - t.doExec(); - } - } + final void pollAndExecAll() { + for (ForkJoinTask<?> t; (t = poll()) != null;) + t.doExec(); } /** - * Polls and runs tasks until empty. + * Executes a top-level task and any local tasks remaining + * after execution. */ - private void pollAndExecAll() { - for (ForkJoinTask<?> t; (t = poll()) != null;) - t.doExec(); + final void runTask(ForkJoinTask<?> task) { + if ((currentSteal = task) != null) { + task.doExec(); + ForkJoinTask<?>[] a = array; + int md = mode; + ++nsteals; + currentSteal = null; + if (md != 0) + pollAndExecAll(); + else if (a != null) { + int s, m = a.length - 1; + while ((s = top - 1) - base >= 0) { + long i = ((m & s) << ASHIFT) + ABASE; + ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i); + if (t == null) + break; + if (U.compareAndSwapObject(a, i, t, null)) { + top = s; + t.doExec(); + } + } + } + } } /** @@ -911,13 +888,15 @@ public class ForkJoinPool extends AbstractExecutorService { * @return false if no progress can be made, else true */ final boolean tryRemoveAndExec(ForkJoinTask<?> task) { - boolean stat = true, removed = false, empty = true; + boolean stat; ForkJoinTask<?>[] a; int m, s, b, n; - if ((a = array) != null && (m = a.length - 1) >= 0 && + if (task != null && (a = array) != null && (m = a.length - 1) >= 0 && (n = (s = top) - (b = base)) > 0) { + boolean removed = false, empty = true; + stat = true; for (ForkJoinTask<?> t;;) { // traverse from s to b - int j = ((--s & m) << ASHIFT) + ABASE; - t = (ForkJoinTask<?>)U.getObjectVolatile(a, j); + long j = ((--s & m) << ASHIFT) + ABASE; + t = (ForkJoinTask<?>)U.getObject(a, j); if (t == null) // inconsistent length break; else if (t == task) { @@ -945,68 +924,95 @@ public class ForkJoinPool extends AbstractExecutorService { break; } } + if (removed) + task.doExec(); } - if (removed) - task.doExec(); + else + stat = false; return stat; } /** - * Polls for and executes the given task or any other task in - * its CountedCompleter computation. + * Tries to poll for and execute the given task or any other + * task in its CountedCompleter computation. */ - final boolean pollAndExecCC(ForkJoinTask<?> root) { - ForkJoinTask<?>[] a; int b; Object o; - outer: while ((b = base) - top < 0 && (a = array) != null) { + final boolean pollAndExecCC(CountedCompleter<?> root) { + ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r; + if ((b = base) - top < 0 && (a = array) != null) { long j = (((a.length - 1) & b) << ASHIFT) + ABASE; - if ((o = U.getObject(a, j)) == null || - !(o instanceof CountedCompleter)) - break; - for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) { - if (r == root) { - if (base == b && - U.compareAndSwapObject(a, j, t, null)) { - base = b + 1; - t.doExec(); + if ((o = U.getObjectVolatile(a, j)) == null) + return true; // retry + if (o instanceof CountedCompleter) { + for (t = (CountedCompleter<?>)o, r = t;;) { + if (r == root) { + if (base == b && + U.compareAndSwapObject(a, j, t, null)) { + U.putOrderedInt(this, QBASE, b + 1); + t.doExec(); + } return true; } - else - break; // restart + else if ((r = r.completer) == null) + break; // not part of root computation } - if ((r = r.completer) == null) - break outer; // not part of root computation } } return false; } /** - * Executes a top-level task and any local tasks remaining - * after execution. + * Tries to pop and execute the given task or any other task + * in its CountedCompleter computation. */ - final void runTask(ForkJoinTask<?> t) { - if (t != null) { - (currentSteal = t).doExec(); - currentSteal = null; - ++nsteals; - if (base - top < 0) { // process remaining local tasks - if (mode == 0) - popAndExecAll(); - else - pollAndExecAll(); + final boolean externalPopAndExecCC(CountedCompleter<?> root) { + ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r; + if (base - (s = top) < 0 && (a = array) != null) { + long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; + if ((o = U.getObject(a, j)) instanceof CountedCompleter) { + for (t = (CountedCompleter<?>)o, r = t;;) { + if (r == root) { + if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { + if (top == s && array == a && + U.compareAndSwapObject(a, j, t, null)) { + top = s - 1; + qlock = 0; + t.doExec(); + } + else + qlock = 0; + } + return true; + } + else if ((r = r.completer) == null) + break; + } } } + return false; } /** - * Executes a non-top-level (stolen) task. + * Internal version */ - final void runSubtask(ForkJoinTask<?> t) { - if (t != null) { - ForkJoinTask<?> ps = currentSteal; - (currentSteal = t).doExec(); - currentSteal = ps; + final boolean internalPopAndExecCC(CountedCompleter<?> root) { + ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r; + if (base - (s = top) < 0 && (a = array) != null) { + long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; + if ((o = U.getObject(a, j)) instanceof CountedCompleter) { + for (t = (CountedCompleter<?>)o, r = t;;) { + if (r == root) { + if (U.compareAndSwapObject(a, j, t, null)) { + top = s - 1; + t.doExec(); + } + return true; + } + else if ((r = r.completer) == null) + break; + } + } } + return false; } /** @@ -1023,6 +1029,7 @@ public class ForkJoinPool extends AbstractExecutorService { // Unsafe mechanics private static final sun.misc.Unsafe U; + private static final long QBASE; private static final long QLOCK; private static final int ABASE; private static final int ASHIFT; @@ -1031,6 +1038,8 @@ public class ForkJoinPool extends AbstractExecutorService { U = sun.misc.Unsafe.getUnsafe(); Class<?> k = WorkQueue.class; Class<?> ak = ForkJoinTask[].class; + QBASE = U.objectFieldOffset + (k.getDeclaredField("base")); QLOCK = U.objectFieldOffset (k.getDeclaredField("qlock")); ABASE = U.arrayBaseOffset(ak); @@ -1047,13 +1056,6 @@ public class ForkJoinPool extends AbstractExecutorService { // static fields (initialized in static initializer below) /** - * Creates a new ForkJoinWorkerThread. This factory is used unless - * overridden in ForkJoinPool constructors. - */ - public static final ForkJoinWorkerThreadFactory - defaultForkJoinWorkerThreadFactory; - - /** * Per-thread submission bookkeeping. Shared across all pools * to reduce ThreadLocal pollution and because random motion * to avoid contention in one pool is likely to hold for others. @@ -1063,6 +1065,13 @@ public class ForkJoinPool extends AbstractExecutorService { static final ThreadLocal<Submitter> submitters; /** + * Creates a new ForkJoinWorkerThread. This factory is used unless + * overridden in ForkJoinPool constructors. + */ + public static final ForkJoinWorkerThreadFactory + defaultForkJoinWorkerThreadFactory; + + /** * Permission required for callers of methods that may start or * kill threads. */ @@ -1074,12 +1083,15 @@ public class ForkJoinPool extends AbstractExecutorService { * to paranoically avoid potential initialization circularities * as well as to simplify generated code. */ - static final ForkJoinPool commonPool; + static final ForkJoinPool common; /** - * Common pool parallelism. Must equal commonPool.parallelism. + * Common pool parallelism. To allow simpler use and management + * when common pool threads are disabled, we allow the underlying + * common.parallelism field to be zero, but in that case still report + * parallelism as 1 to reflect resulting caller-runs mechanics. */ - static final int commonPoolParallelism; + static final int commonParallelism; /** * Sequence number for creating workerNamePrefix. @@ -1114,7 +1126,7 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Tolerance for idle timeouts, to cope with timer undershoots */ - private static final long TIMEOUT_SLOP = 2000000L; // 20ms + private static final long TIMEOUT_SLOP = 2000000L; /** * The maximum stolen->joining link depth allowed in method @@ -1216,30 +1228,19 @@ public class ForkJoinPool extends AbstractExecutorService { static final int FIFO_QUEUE = 1; static final int SHARED_QUEUE = -1; - // bounds for #steps in scan loop -- must be power 2 minus 1 - private static final int MIN_SCAN = 0x1ff; // cover estimation slop - private static final int MAX_SCAN = 0x1ffff; // 4 * max workers - - // Instance fields - - /* - * Field layout of this class tends to matter more than one would - * like. Runtime layout order is only loosely related to - * declaration order and may differ across JVMs, but the following - * empirically works OK on current JVMs. - */ - // Heuristic padding to ameliorate unfortunate memory placements volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; + // Instance fields volatile long stealCount; // collects worker counts volatile long ctl; // main pool control volatile int plock; // shutdown status and seqLock volatile int indexSeed; // worker/submitter index seed - final int config; // mode and parallelism level + final short parallelism; // parallelism level + final short mode; // LIFO/FIFO WorkQueue[] workQueues; // main registry final ForkJoinWorkerThreadFactory factory; - final Thread.UncaughtExceptionHandler ueh; // per-worker UEH + final UncaughtExceptionHandler ueh; // per-worker UEH final String workerNamePrefix; // to create worker name string volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17; @@ -1254,24 +1255,13 @@ public class ForkJoinPool extends AbstractExecutorService { * a more conservative alternative to a pure spinlock. */ private int acquirePlock() { - int spins = PL_SPINS, r = 0, ps, nps; + int spins = PL_SPINS, ps, nps; for (;;) { if (((ps = plock) & PL_LOCK) == 0 && U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK)) return nps; - else if (r == 0) { // randomize spins if possible - Thread t = Thread.currentThread(); WorkQueue w; Submitter z; - if ((t instanceof ForkJoinWorkerThread) && - (w = ((ForkJoinWorkerThread)t).workQueue) != null) - r = w.seed; - else if ((z = submitters.get()) != null) - r = z.seed; - else - r = 1; - } else if (spins >= 0) { - r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift - if (r >= 0) + if (ThreadLocalRandom.current().nextInt() >= 0) --spins; } else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) { @@ -1303,48 +1293,15 @@ public class ForkJoinPool extends AbstractExecutorService { } /** - * Performs secondary initialization, called when plock is zero. - * Creates workQueue array and sets plock to a valid value. The - * lock body must be exception-free (so no try/finally) so we - * optimistically allocate new array outside the lock and throw - * away if (very rarely) not needed. (A similar tactic is used in - * fullExternalPush.) Because the plock seq value can eventually - * wrap around zero, this method harmlessly fails to reinitialize - * if workQueues exists, while still advancing plock. - * - * Additionally tries to create the first worker. - */ - private void initWorkers() { - WorkQueue[] ws, nws; int ps; - int p = config & SMASK; // find power of two table size - int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots - n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; - n = (n + 1) << 1; - if ((ws = workQueues) == null || ws.length == 0) - nws = new WorkQueue[n]; - else - nws = null; - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - if (((ws = workQueues) == null || ws.length == 0) && nws != null) - workQueues = nws; - int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - tryAddWorker(); - } - - /** * Tries to create and start one worker if fewer than target * parallelism level exist. Adjusts counts etc on failure. */ private void tryAddWorker() { - long c; int u; + long c; int u, e; while ((u = (int)((c = ctl) >>> 32)) < 0 && - (u & SHORT_SIGN) != 0 && (int)c == 0) { - long nc = (long)(((u + UTC_UNIT) & UTC_MASK) | - ((u + UAC_UNIT) & UAC_MASK)) << 32; + (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) { + long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) | + ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e; if (U.compareAndSwapLong(this, CTL, c, nc)) { ForkJoinWorkerThreadFactory fac; Throwable ex = null; @@ -1355,8 +1312,8 @@ public class ForkJoinPool extends AbstractExecutorService { wt.start(); break; } - } catch (Throwable e) { - ex = e; + } catch (Throwable rex) { + ex = rex; } deregisterWorker(wt, ex); break; @@ -1377,14 +1334,14 @@ public class ForkJoinPool extends AbstractExecutorService { * @return the worker's queue */ final WorkQueue registerWorker(ForkJoinWorkerThread wt) { - Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps; + UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps; wt.setDaemon(true); if ((handler = ueh) != null) wt.setUncaughtExceptionHandler(handler); do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed, s += SEED_INCREMENT) || s == 0); // skip 0 - WorkQueue w = new WorkQueue(this, wt, config >>> 16, s); + WorkQueue w = new WorkQueue(this, wt, mode, s); if (((ps = plock) & PL_LOCK) != 0 || !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) ps = acquirePlock(); @@ -1404,14 +1361,15 @@ public class ForkJoinPool extends AbstractExecutorService { } } } - w.eventCount = w.poolIndex = r; // volatile write orders + w.poolIndex = (short)r; + w.eventCount = r; // volatile write orders ws[r] = w; } } finally { if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) releasePlock(nps); } - wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex))); + wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1))); return w; } @@ -1421,17 +1379,17 @@ public class ForkJoinPool extends AbstractExecutorService { * array, and adjusts counts. If pool is shutting down, tries to * complete termination. * - * @param wt the worker thread or null if construction failed + * @param wt the worker thread, or null if construction failed * @param ex the exception causing failure, or null if none */ final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { WorkQueue w = null; if (wt != null && (w = wt.workQueue) != null) { - int ps; + int ps; long sc; w.qlock = -1; // ensure set - long ns = w.nsteals, sc; // collect steal count do {} while (!U.compareAndSwapLong(this, STEALCOUNT, - sc = stealCount, sc + ns)); + sc = stealCount, + sc + w.nsteals)); if (((ps = plock) & PL_LOCK) != 0 || !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) ps = acquirePlock(); @@ -1460,7 +1418,7 @@ public class ForkJoinPool extends AbstractExecutorService { if (e > 0) { // activate or create replacement if ((ws = workQueues) == null || (i = e & SMASK) >= ws.length || - (v = ws[i]) != null) + (v = ws[i]) == null) break; long nc = (((long)(v.nextWait & E_MASK)) | ((long)(u + UAC_UNIT) << 32)); @@ -1489,6 +1447,26 @@ public class ForkJoinPool extends AbstractExecutorService { // Submissions /** + * Per-thread records for threads that submit to pools. Currently + * holds only pseudo-random seed / index that is used to choose + * submission queues in method externalPush. In the future, this may + * also incorporate a means to implement different task rejection + * and resubmission policies. + * + * Seeds for submitters and workers/workQueues work in basically + * the same way but are initialized and updated using slightly + * different mechanics. Both are initialized using the same + * approach as in class ThreadLocal, where successive values are + * unlikely to collide with previous values. Seeds are then + * randomly modified upon collisions using xorshifts, which + * requires a non-zero seed. + */ + static final class Submitter { + int seed; + Submitter(int s) { seed = s; } + } + + /** * Unless shutting down, adds the given task to a submission queue * at submitter's current queue index (modulo submission * range). Only the most common path is directly handled in this @@ -1497,19 +1475,21 @@ public class ForkJoinPool extends AbstractExecutorService { * @param task the task. Caller must ensure non-null. */ final void externalPush(ForkJoinTask<?> task) { - WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a; - if ((z = submitters.get()) != null && plock > 0 && - (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 && - (q = ws[m & z.seed & SQMASK]) != null && + Submitter z = submitters.get(); + WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a; + int ps = plock; + WorkQueue[] ws = workQueues; + if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 && + (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock - int b = q.base, s = q.top, n, an; - if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) { - int j = (((an - 1) & s) << ASHIFT) + ABASE; + if ((a = q.array) != null && + (am = a.length - 1) > (n = (s = q.top) - q.base)) { + int j = ((am & s) << ASHIFT) + ABASE; U.putOrderedObject(a, j, task); q.top = s + 1; // push on to deque q.qlock = 0; - if (n <= 2) - signalWork(q); + if (n <= 1) + signalWork(ws, q); return; } q.qlock = 0; @@ -1520,13 +1500,19 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Full version of externalPush. This method is called, among * other times, upon the first submission of the first task to the - * pool, so must perform secondary initialization (via - * initWorkers). It also detects first submission by an external - * thread by looking up its ThreadLocal, and creates a new shared - * queue if the one at index if empty or contended. The plock lock - * body must be exception-free (so no try/finally) so we - * optimistically allocate new queues outside the lock and throw - * them away if (very rarely) not needed. + * pool, so must perform secondary initialization. It also + * detects first submission by an external thread by looking up + * its ThreadLocal, and creates a new shared queue if the one at + * index if empty or contended. The plock lock body must be + * exception-free (so no try/finally) so we optimistically + * allocate new queues outside the lock and throw them away if + * (very rarely) not needed. + * + * Secondary initialization occurs when plock is zero, to create + * workQueue array and set plock to a valid value. This lock body + * must also be exception-free. Because the plock seq value can + * eventually wrap around zero, this method harmlessly fails to + * reinitialize if workQueues exists, while still advancing plock. */ private void fullExternalPush(ForkJoinTask<?> task) { int r = 0; // random index seed @@ -1537,17 +1523,31 @@ public class ForkJoinPool extends AbstractExecutorService { r += SEED_INCREMENT) && r != 0) submitters.set(z = new Submitter(r)); } - else if (r == 0) { // move to a different index + else if (r == 0) { // move to a different index r = z.seed; - r ^= r << 13; // same xorshift as WorkQueues + r ^= r << 13; // same xorshift as WorkQueues r ^= r >>> 17; - z.seed = r ^ (r << 5); + z.seed = r ^= (r << 5); } - else if ((ps = plock) < 0) + if ((ps = plock) < 0) throw new RejectedExecutionException(); else if (ps == 0 || (ws = workQueues) == null || - (m = ws.length - 1) < 0) - initWorkers(); + (m = ws.length - 1) < 0) { // initialize workQueues + int p = parallelism; // find power of two table size + int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots + n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; + n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1; + WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ? + new WorkQueue[n] : null); + if (((ps = plock) & PL_LOCK) != 0 || + !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) + ps = acquirePlock(); + if (((ws = workQueues) == null || ws.length == 0) && nws != null) + workQueues = nws; + int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); + if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) + releasePlock(nps); + } else if ((q = ws[k = r & m & SQMASK]) != null) { if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { ForkJoinTask<?>[] a = q.array; @@ -1565,7 +1565,7 @@ public class ForkJoinPool extends AbstractExecutorService { q.qlock = 0; // unlock } if (submitted) { - signalWork(q); + signalWork(ws, q); return; } } @@ -1573,6 +1573,7 @@ public class ForkJoinPool extends AbstractExecutorService { } else if (((ps = plock) & PL_LOCK) == 0) { // create new queue q = new WorkQueue(this, null, SHARED_QUEUE, r); + q.poolIndex = (short)k; if (((ps = plock) & PL_LOCK) != 0 || !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) ps = acquirePlock(); @@ -1583,7 +1584,7 @@ public class ForkJoinPool extends AbstractExecutorService { releasePlock(nps); } else - r = 0; // try elsewhere while lock held + r = 0; } } @@ -1594,41 +1595,42 @@ public class ForkJoinPool extends AbstractExecutorService { */ final void incrementActiveCount() { long c; - do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT)); + do {} while (!U.compareAndSwapLong + (this, CTL, c = ctl, ((c & ~AC_MASK) | + ((c & AC_MASK) + AC_UNIT)))); } /** * Tries to create or activate a worker if too few are active. * - * @param q the (non-null) queue holding tasks to be signalled + * @param ws the worker array to use to find signallees + * @param q if non-null, the queue holding tasks to be processed */ - final void signalWork(WorkQueue q) { - int hint = q.poolIndex; - long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p; - while ((u = (int)((c = ctl) >>> 32)) < 0) { - if ((e = (int)c) > 0) { - if ((ws = workQueues) != null && ws.length > (i = e & SMASK) && - (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) { - long nc = (((long)(w.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT) << 32)); - if (U.compareAndSwapLong(this, CTL, c, nc)) { - w.hint = hint; - w.eventCount = (e + E_SEQ) & E_MASK; - if ((p = w.parker) != null) - U.unpark(p); - break; - } - if (q.top - q.base <= 0) - break; - } - else - break; - } - else { + final void signalWork(WorkQueue[] ws, WorkQueue q) { + for (;;) { + long c; int e, u, i; WorkQueue w; Thread p; + if ((u = (int)((c = ctl) >>> 32)) >= 0) + break; + if ((e = (int)c) <= 0) { if ((short)u < 0) tryAddWorker(); break; } + if (ws == null || ws.length <= (i = e & SMASK) || + (w = ws[i]) == null) + break; + long nc = (((long)(w.nextWait & E_MASK)) | + ((long)(u + UAC_UNIT)) << 32); + int ne = (e + E_SEQ) & E_MASK; + if (w.eventCount == (e | INT_SIGN) && + U.compareAndSwapLong(this, CTL, c, nc)) { + w.eventCount = ne; + if ((p = w.parker) != null) + U.unpark(p); + break; + } + if (q != null && q.base >= q.top) + break; } } @@ -1639,214 +1641,154 @@ public class ForkJoinPool extends AbstractExecutorService { */ final void runWorker(WorkQueue w) { w.growArray(); // allocate queue - do { w.runTask(scan(w)); } while (w.qlock >= 0); + for (int r = w.hint; scan(w, r) == 0; ) { + r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift + } } /** - * Scans for and, if found, returns one task, else possibly + * Scans for and, if found, runs one task, else possibly * inactivates the worker. This method operates on single reads of * volatile state and is designed to be re-invoked continuously, * in part because it returns upon detecting inconsistencies, * contention, or state changes that indicate possible success on * re-invocation. * - * The scan searches for tasks across queues (starting at a random - * index, and relying on registerWorker to irregularly scatter - * them within array to avoid bias), checking each at least twice. - * The scan terminates upon either finding a non-empty queue, or - * completing the sweep. If the worker is not inactivated, it - * takes and returns a task from this queue. Otherwise, if not - * activated, it signals workers (that may include itself) and - * returns so caller can retry. Also returns for true if the - * worker array may have changed during an empty scan. On failure - * to find a task, we take one of the following actions, after - * which the caller will retry calling this method unless - * terminated. - * - * * If pool is terminating, terminate the worker. - * - * * If not already enqueued, try to inactivate and enqueue the - * worker on wait queue. Or, if inactivating has caused the pool - * to be quiescent, relay to idleAwaitWork to possibly shrink - * pool. - * - * * If already enqueued and none of the above apply, possibly - * park awaiting signal, else lingering to help scan and signal. - * - * * If a non-empty queue discovered or left as a hint, - * help wake up other workers before return. + * The scan searches for tasks across queues starting at a random + * index, checking each at least twice. The scan terminates upon + * either finding a non-empty queue, or completing the sweep. If + * the worker is not inactivated, it takes and runs a task from + * this queue. Otherwise, if not activated, it tries to activate + * itself or some other worker by signalling. On failure to find a + * task, returns (for retry) if pool state may have changed during + * an empty scan, or tries to inactivate if active, else possibly + * blocks or terminates via method awaitWork. * * @param w the worker (via its WorkQueue) - * @return a task or null if none found + * @param r a random seed + * @return worker qlock status if would have waited, else 0 */ - private final ForkJoinTask<?> scan(WorkQueue w) { + private final int scan(WorkQueue w, int r) { WorkQueue[] ws; int m; - int ps = plock; // read plock before ws - if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) { - int ec = w.eventCount; // ec is negative if inactive - int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5; - w.hint = -1; // update seed and clear hint - int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; - do { - WorkQueue q; ForkJoinTask<?>[] a; int b; - if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 && - (a = q.array) != null) { // probably nonempty - int i = (((a.length - 1) & b) << ASHIFT) + ABASE; - ForkJoinTask<?> t = (ForkJoinTask<?>) - U.getObjectVolatile(a, i); - if (q.base == b && ec >= 0 && t != null && - U.compareAndSwapObject(a, i, t, null)) { - if ((q.base = b + 1) - q.top < 0) - signalWork(q); - return t; // taken - } - else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) { - w.hint = (r + j) & m; // help signal below - break; // cannot take + long c = ctl; // for consistency check + if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) { + for (int j = m + m + 1, ec = w.eventCount;;) { + WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t; + if ((q = ws[(r - j) & m]) != null && + (b = q.base) - q.top < 0 && (a = q.array) != null) { + long i = (((a.length - 1) & b) << ASHIFT) + ABASE; + if ((t = ((ForkJoinTask<?>) + U.getObjectVolatile(a, i))) != null) { + if (ec < 0) + helpRelease(c, ws, w, q, b); + else if (q.base == b && + U.compareAndSwapObject(a, i, t, null)) { + U.putOrderedInt(q, QBASE, b + 1); + if ((b + 1) - q.top < 0) + signalWork(ws, q); + w.runTask(t); + } } + break; } - } while (--j >= 0); - - int h, e, ns; long c, sc; WorkQueue q; - if ((ns = w.nsteals) != 0) { - if (U.compareAndSwapLong(this, STEALCOUNT, - sc = stealCount, sc + ns)) - w.nsteals = 0; // collect steals and rescan - } - else if (plock != ps) // consistency check - ; // skip - else if ((e = (int)(c = ctl)) < 0) - w.qlock = -1; // pool is terminating - else { - if ((h = w.hint) < 0) { - if (ec >= 0) { // try to enqueue/inactivate - long nc = (((long)ec | - ((c - AC_UNIT) & (AC_MASK|TC_MASK)))); - w.nextWait = e; // link and mark inactive + else if (--j < 0) { + if ((ec | (e = (int)c)) < 0) // inactive or terminating + return awaitWork(w, c, ec); + else if (ctl == c) { // try to inactivate and enqueue + long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)); + w.nextWait = e; w.eventCount = ec | INT_SIGN; - if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc)) - w.eventCount = ec; // unmark on CAS failure - else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK)) - idleAwaitWork(w, nc, c); - } - else if (w.eventCount < 0 && !tryTerminate(false, false) && - ctl == c) { // block - Thread wt = Thread.currentThread(); - Thread.interrupted(); // clear status - U.putObject(wt, PARKBLOCKER, this); - w.parker = wt; // emulate LockSupport.park - if (w.eventCount < 0) // recheck - U.park(false, 0L); - w.parker = null; - U.putObject(wt, PARKBLOCKER, null); - } - } - if ((h >= 0 || (h = w.hint) >= 0) && - (ws = workQueues) != null && h < ws.length && - (q = ws[h]) != null) { // signal others before retry - WorkQueue v; Thread p; int u, i, s; - for (int n = (config & SMASK) >>> 1;;) { - int idleCount = (w.eventCount < 0) ? 0 : -1; - if (((s = idleCount - q.base + q.top) <= n && - (n = s) <= 0) || - (u = (int)((c = ctl) >>> 32)) >= 0 || - (e = (int)c) <= 0 || m < (i = e & SMASK) || - (v = ws[i]) == null) - break; - long nc = (((long)(v.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT) << 32)); - if (v.eventCount != (e | INT_SIGN) || - !U.compareAndSwapLong(this, CTL, c, nc)) - break; - v.hint = h; - v.eventCount = (e + E_SEQ) & E_MASK; - if ((p = v.parker) != null) - U.unpark(p); - if (--n <= 0) - break; + if (!U.compareAndSwapLong(this, CTL, c, nc)) + w.eventCount = ec; // back out } + break; } } } - return null; + return 0; } /** - * If inactivating worker w has caused the pool to become - * quiescent, checks for pool termination, and, so long as this is - * not the only worker, waits for event for up to a given - * duration. On timeout, if ctl has not changed, terminates the - * worker, which will in turn wake up another worker to possibly - * repeat this process. + * A continuation of scan(), possibly blocking or terminating + * worker w. Returns without blocking if pool state has apparently + * changed since last invocation. Also, if inactivating w has + * caused the pool to become quiescent, checks for pool + * termination, and, so long as this is not the only worker, waits + * for event for up to a given duration. On timeout, if ctl has + * not changed, terminates the worker, which will in turn wake up + * another worker to possibly repeat this process. * * @param w the calling worker - * @param currentCtl the ctl value triggering possible quiescence - * @param prevCtl the ctl value to restore if thread is terminated - */ - private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) { - if (w != null && w.eventCount < 0 && - !tryTerminate(false, false) && (int)prevCtl != 0) { - int dc = -(short)(currentCtl >>> TC_SHIFT); - long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT; - long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP; - Thread wt = Thread.currentThread(); - while (ctl == currentCtl) { - Thread.interrupted(); // timed variant of version in scan() - U.putObject(wt, PARKBLOCKER, this); - w.parker = wt; - if (ctl == currentCtl) - U.park(false, parkTime); - w.parker = null; - U.putObject(wt, PARKBLOCKER, null); - if (ctl != currentCtl) - break; - if (deadline - System.nanoTime() <= 0L && - U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) { - w.eventCount = (w.eventCount + E_SEQ) | E_MASK; - w.qlock = -1; // shrink - break; + * @param c the ctl value on entry to scan + * @param ec the worker's eventCount on entry to scan + */ + private final int awaitWork(WorkQueue w, long c, int ec) { + int stat, ns; long parkTime, deadline; + if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c && + !Thread.interrupted()) { + int e = (int)c; + int u = (int)(c >>> 32); + int d = (u >> UAC_SHIFT) + parallelism; // active count + + if (e < 0 || (d <= 0 && tryTerminate(false, false))) + stat = w.qlock = -1; // pool is terminating + else if ((ns = w.nsteals) != 0) { // collect steals and retry + long sc; + w.nsteals = 0; + do {} while (!U.compareAndSwapLong(this, STEALCOUNT, + sc = stealCount, sc + ns)); + } + else { + long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L : + ((long)(w.nextWait & E_MASK)) | // ctl to restore + ((long)(u + UAC_UNIT)) << 32); + if (pc != 0L) { // timed wait if last waiter + int dc = -(short)(c >>> TC_SHIFT); + parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT: + (dc + 1) * IDLE_TIMEOUT); + deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP; + } + else + parkTime = deadline = 0L; + if (w.eventCount == ec && ctl == c) { + Thread wt = Thread.currentThread(); + U.putObject(wt, PARKBLOCKER, this); + w.parker = wt; // emulate LockSupport.park + if (w.eventCount == ec && ctl == c) + U.park(false, parkTime); // must recheck before park + w.parker = null; + U.putObject(wt, PARKBLOCKER, null); + if (parkTime != 0L && ctl == c && + deadline - System.nanoTime() <= 0L && + U.compareAndSwapLong(this, CTL, c, pc)) + stat = w.qlock = -1; // shrink pool } } } + return stat; } /** - * Scans through queues looking for work while joining a task; if - * any present, signals. May return early if more signalling is - * detectably unneeded. - * - * @param task return early if done - * @param origin an index to start scan - */ - private void helpSignal(ForkJoinTask<?> task, int origin) { - WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s; - if (task != null && task.status >= 0 && - (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 && - (ws = workQueues) != null && (m = ws.length - 1) >= 0) { - outer: for (int k = origin, j = m; j >= 0; --j) { - WorkQueue q = ws[k++ & m]; - for (int n = m;;) { // limit to at most m signals - if (task.status < 0) - break outer; - if (q == null || - ((s = -q.base + q.top) <= n && (n = s) <= 0)) - break; - if ((u = (int)((c = ctl) >>> 32)) >= 0 || - (e = (int)c) <= 0 || m < (i = e & SMASK) || - (w = ws[i]) == null) - break outer; - long nc = (((long)(w.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT) << 32)); - if (w.eventCount != (e | INT_SIGN)) - break outer; - if (U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; - if ((p = w.parker) != null) - U.unpark(p); - if (--n <= 0) - break; - } - } + * Possibly releases (signals) a worker. Called only from scan() + * when a worker with apparently inactive status finds a non-empty + * queue. This requires revalidating all of the associated state + * from caller. + */ + private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w, + WorkQueue q, int b) { + WorkQueue v; int e, i; Thread p; + if (w != null && w.eventCount < 0 && (e = (int)c) > 0 && + ws != null && ws.length > (i = e & SMASK) && + (v = ws[i]) != null && ctl == c) { + long nc = (((long)(v.nextWait & E_MASK)) | + ((long)((int)(c >>> 32) + UAC_UNIT)) << 32); + int ne = (e + E_SEQ) & E_MASK; + if (q != null && q.base == b && w.eventCount < 0 && + v.eventCount == (e | INT_SIGN) && + U.compareAndSwapLong(this, CTL, c, nc)) { + v.eventCount = ne; + if ((p = v.parker) != null) + U.unpark(p); } } } @@ -1871,7 +1813,8 @@ public class ForkJoinPool extends AbstractExecutorService { */ private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) { int stat = 0, steps = 0; // bound to avoid cycles - if (joiner != null && task != null) { // hoist null checks + if (task != null && joiner != null && + joiner.base - joiner.top >= 0) { // hoist checks restart: for (;;) { ForkJoinTask<?> subtask = task; // current target for (WorkQueue j = joiner, v;;) { // v is stealer of subtask @@ -1898,7 +1841,7 @@ public class ForkJoinPool extends AbstractExecutorService { } } for (;;) { // help stealer or descend to its stealer - ForkJoinTask[] a; int b; + ForkJoinTask[] a; int b; if (subtask.status < 0) // surround probes with continue restart; // consistency checks if ((b = v.base) - v.top < 0 && (a = v.array) != null) { @@ -1909,13 +1852,23 @@ public class ForkJoinPool extends AbstractExecutorService { v.currentSteal != subtask) continue restart; // stale stat = 1; // apparent progress - if (t != null && v.base == b && - U.compareAndSwapObject(a, i, t, null)) { - v.base = b + 1; // help stealer - joiner.runSubtask(t); + if (v.base == b) { + if (t == null) + break restart; + if (U.compareAndSwapObject(a, i, t, null)) { + U.putOrderedInt(v, QBASE, b + 1); + ForkJoinTask<?> ps = joiner.currentSteal; + int jt = joiner.top; + do { + joiner.currentSteal = t; + t.doExec(); // clear local tasks too + } while (task.status >= 0 && + joiner.top != jt && + (t = joiner.pop()) != null); + joiner.currentSteal = ps; + break restart; + } } - else if (v.base == b && ++steps == MAX_HELP) - break restart; // v apparently stalled } else { // empty -- try to descend ForkJoinTask<?> next = v.currentJoin; @@ -1942,27 +1895,33 @@ public class ForkJoinPool extends AbstractExecutorService { * and run tasks within the target's computation. * * @param task the task to join - * @param mode if shared, exit upon completing any task - * if all workers are active - */ - private int helpComplete(ForkJoinTask<?> task, int mode) { - WorkQueue[] ws; WorkQueue q; int m, n, s, u; - if (task != null && (ws = workQueues) != null && - (m = ws.length - 1) >= 0) { - for (int j = 1, origin = j;;) { + */ + private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) { + WorkQueue[] ws; int m; + int s = 0; + if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && + joiner != null && task != null) { + int j = joiner.poolIndex; + int scans = m + m + 1; + long c = 0L; // for stability check + for (int k = scans; ; j += 2) { + WorkQueue q; if ((s = task.status) < 0) - return s; - if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) { - origin = j; - if (mode == SHARED_QUEUE && - ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)) + break; + else if (joiner.internalPopAndExecCC(task)) + k = scans; + else if ((s = task.status) < 0) + break; + else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) + k = scans; + else if (--k < 0) { + if (c == (c = ctl)) break; + k = scans; } - else if ((j = (j + 2) & m) == origin) - break; } } - return 0; + return s; } /** @@ -1971,17 +1930,22 @@ public class ForkJoinPool extends AbstractExecutorService { * for blocking. Fails on contention or termination. Otherwise, * adds a new thread if no idle workers are available and pool * may become starved. + * + * @param c the assumed ctl value */ - final boolean tryCompensate() { - int pc = config & SMASK, e, i, tc; long c; - WorkQueue[] ws; WorkQueue w; Thread p; - if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) { - if (e != 0 && (i = e & SMASK) < ws.length && - (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) { + final boolean tryCompensate(long c) { + WorkQueue[] ws = workQueues; + int pc = parallelism, e = (int)c, m, tc; + if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) { + WorkQueue w = ws[e & m]; + if (e != 0 && w != null) { + Thread p; long nc = ((long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK))); - if (U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; + int ne = (e + E_SEQ) & E_MASK; + if (w.eventCount == (e | INT_SIGN) && + U.compareAndSwapLong(this, CTL, c, nc)) { + w.eventCount = ne; if ((p = w.parker) != null) U.unpark(p); return true; // replace with idle worker @@ -2024,23 +1988,20 @@ public class ForkJoinPool extends AbstractExecutorService { */ final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) { int s = 0; - if (joiner != null && task != null && (s = task.status) >= 0) { + if (task != null && (s = task.status) >= 0 && joiner != null) { ForkJoinTask<?> prevJoin = joiner.currentJoin; joiner.currentJoin = task; - do {} while ((s = task.status) >= 0 && !joiner.isEmpty() && - joiner.tryRemoveAndExec(task)); // process local tasks - if (s >= 0 && (s = task.status) >= 0) { - helpSignal(task, joiner.poolIndex); - if ((s = task.status) >= 0 && - (task instanceof CountedCompleter)) - s = helpComplete(task, LIFO_QUEUE); - } + do {} while (joiner.tryRemoveAndExec(task) && // process local tasks + (s = task.status) >= 0); + if (s >= 0 && (task instanceof CountedCompleter)) + s = helpComplete(joiner, (CountedCompleter<?>)task); + long cc = 0; // for stability checks while (s >= 0 && (s = task.status) >= 0) { - if ((!joiner.isEmpty() || // try helping - (s = tryHelpStealer(joiner, task)) == 0) && + if ((s = tryHelpStealer(joiner, task)) == 0 && (s = task.status) >= 0) { - helpSignal(task, joiner.poolIndex); - if ((s = task.status) >= 0 && tryCompensate()) { + if (!tryCompensate(cc)) + cc = ctl; + else { if (task.trySetSignal() && (s = task.status) >= 0) { synchronized (task) { if (task.status >= 0) { @@ -2053,9 +2014,11 @@ public class ForkJoinPool extends AbstractExecutorService { task.notifyAll(); } } - long c; // re-activate + long c; // reactivate do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); + (this, CTL, c = ctl, + ((c & ~AC_MASK) | + ((c & AC_MASK) + AC_UNIT)))); } } } @@ -2077,15 +2040,11 @@ public class ForkJoinPool extends AbstractExecutorService { if (joiner != null && task != null && (s = task.status) >= 0) { ForkJoinTask<?> prevJoin = joiner.currentJoin; joiner.currentJoin = task; - do {} while ((s = task.status) >= 0 && !joiner.isEmpty() && - joiner.tryRemoveAndExec(task)); - if (s >= 0 && (s = task.status) >= 0) { - helpSignal(task, joiner.poolIndex); - if ((s = task.status) >= 0 && - (task instanceof CountedCompleter)) - s = helpComplete(task, LIFO_QUEUE); - } - if (s >= 0 && joiner.isEmpty()) { + do {} while (joiner.tryRemoveAndExec(task) && // process local tasks + (s = task.status) >= 0); + if (s >= 0) { + if (task instanceof CountedCompleter) + helpComplete(joiner, (CountedCompleter<?>)task); do {} while (task.status >= 0 && tryHelpStealer(joiner, task) > 0); } @@ -2095,29 +2054,22 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Returns a (probably) non-empty steal queue, if one is found - * during a random, then cyclic scan, else null. This method must - * be retried by caller if, by the time it tries to use the queue, - * it is empty. - * @param r a (random) seed for scanning - */ - private WorkQueue findNonEmptyStealQueue(int r) { - for (WorkQueue[] ws;;) { - int ps = plock, m, n; - if ((ws = workQueues) == null || (m = ws.length - 1) < 1) - return null; - for (int j = (m + 1) << 2; ;) { - WorkQueue q = ws[(((r + j) << 1) | 1) & m]; - if (q != null && (n = q.base - q.top) < 0) { - if (n < -1) - signalWork(q); - return q; - } - else if (--j < 0) { - if (plock == ps) - return null; - break; + * during a scan, else null. This method must be retried by + * caller if, by the time it tries to use the queue, it is empty. + */ + private WorkQueue findNonEmptyStealQueue() { + int r = ThreadLocalRandom.current().nextInt(); + for (;;) { + int ps = plock, m; WorkQueue[] ws; WorkQueue q; + if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) { + for (int j = (m + 1) << 2; j >= 0; --j) { + if ((q = ws[(((r - j) << 1) | 1) & m]) != null && + q.base - q.top < 0) + return q; } } + if (plock == ps) + return null; } } @@ -2128,38 +2080,36 @@ public class ForkJoinPool extends AbstractExecutorService { * find tasks either. */ final void helpQuiescePool(WorkQueue w) { + ForkJoinTask<?> ps = w.currentSteal; for (boolean active = true;;) { - ForkJoinTask<?> localTask; // exhaust local queue - while ((localTask = w.nextLocalTask()) != null) - localTask.doExec(); - // Similar to loop in scan(), but ignoring submissions - WorkQueue q = findNonEmptyStealQueue(w.nextSeed()); - if (q != null) { - ForkJoinTask<?> t; int b; + long c; WorkQueue q; ForkJoinTask<?> t; int b; + while ((t = w.nextLocalTask()) != null) + t.doExec(); + if ((q = findNonEmptyStealQueue()) != null) { if (!active) { // re-establish active count - long c; active = true; do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); + (this, CTL, c = ctl, + ((c & ~AC_MASK) | + ((c & AC_MASK) + AC_UNIT)))); + } + if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) { + (w.currentSteal = t).doExec(); + w.currentSteal = ps; } - if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) - w.runSubtask(t); } - else { - long c; - if (active) { // decrement active count without queuing + else if (active) { // decrement active count without queuing + long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT); + if ((int)(nc >> AC_SHIFT) + parallelism == 0) + break; // bypass decrement-then-increment + if (U.compareAndSwapLong(this, CTL, c, nc)) active = false; - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c -= AC_UNIT)); - } - else - c = ctl; // re-increment on exit - if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) { - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); - break; - } } + else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 && + U.compareAndSwapLong + (this, CTL, c, ((c & ~AC_MASK) | + ((c & AC_MASK) + AC_UNIT)))) + break; } } @@ -2173,7 +2123,7 @@ public class ForkJoinPool extends AbstractExecutorService { WorkQueue q; int b; if ((t = w.nextLocalTask()) != null) return t; - if ((q = findNonEmptyStealQueue(w.nextSeed())) == null) + if ((q = findNonEmptyStealQueue()) == null) return null; if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) return t; @@ -2229,7 +2179,7 @@ public class ForkJoinPool extends AbstractExecutorService { static int getSurplusQueuedTaskCount() { Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q; if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) { - int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK; + int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism; int n = (q = wt.workQueue).top - q.base; int a = (int)(pool.ctl >> AC_SHIFT) + p; return n - (a > (p >>>= 1) ? 0 : @@ -2258,45 +2208,47 @@ public class ForkJoinPool extends AbstractExecutorService { * @return true if now terminating or terminated */ private boolean tryTerminate(boolean now, boolean enable) { - if (this == commonPool) // cannot shut down + int ps; + if (this == common) // cannot shut down return false; + if ((ps = plock) >= 0) { // enable by setting plock + if (!enable) + return false; + if ((ps & PL_LOCK) != 0 || + !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) + ps = acquirePlock(); + int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN; + if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) + releasePlock(nps); + } for (long c;;) { - if (((c = ctl) & STOP_BIT) != 0) { // already terminating - if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) { + if (((c = ctl) & STOP_BIT) != 0) { // already terminating + if ((short)(c >>> TC_SHIFT) + parallelism <= 0) { synchronized (this) { - notifyAll(); // signal when 0 workers + notifyAll(); // signal when 0 workers } } return true; } - if (plock >= 0) { // not yet enabled - int ps; - if (!enable) - return false; - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN)) - releasePlock(SHUTDOWN); - } - if (!now) { // check if idle & no tasks - if ((int)(c >> AC_SHIFT) != -(config & SMASK) || - hasQueuedSubmissions()) + if (!now) { // check if idle & no tasks + WorkQueue[] ws; WorkQueue w; + if ((int)(c >> AC_SHIFT) + parallelism > 0) return false; - // Check for unqueued inactive workers. One pass suffices. - WorkQueue[] ws = workQueues; WorkQueue w; - if (ws != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null && w.eventCount >= 0) + if ((ws = workQueues) != null) { + for (int i = 0; i < ws.length; ++i) { + if ((w = ws[i]) != null && + (!w.isEmpty() || + ((i & 1) != 0 && w.eventCount >= 0))) { + signalWork(ws, w); return false; + } } } } if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) { for (int pass = 0; pass < 3; ++pass) { - WorkQueue[] ws = workQueues; - if (ws != null) { - WorkQueue w; Thread wt; + WorkQueue[] ws; WorkQueue w; Thread wt; + if ((ws = workQueues) != null) { int n = ws.length; for (int i = 0; i < n; ++i) { if ((w = ws[i]) != null) { @@ -2307,7 +2259,7 @@ public class ForkJoinPool extends AbstractExecutorService { if (!wt.isInterrupted()) { try { wt.interrupt(); - } catch (SecurityException ignore) { + } catch (Throwable ignore) { } } U.unpark(wt); @@ -2318,7 +2270,7 @@ public class ForkJoinPool extends AbstractExecutorService { // Wake up workers parked on event queue int i, e; long cc; Thread p; while ((e = (int)(cc = ctl) & E_MASK) != 0 && - (i = e & SMASK) < n && + (i = e & SMASK) < n && i >= 0 && (w = ws[i]) != null) { long nc = ((long)(w.nextWait & E_MASK) | ((cc + AC_UNIT) & AC_MASK) | @@ -2344,9 +2296,9 @@ public class ForkJoinPool extends AbstractExecutorService { * least one task. */ static WorkQueue commonSubmitterQueue() { - ForkJoinPool p; WorkQueue[] ws; int m; Submitter z; + Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r; return ((z = submitters.get()) != null && - (p = commonPool) != null && + (p = common) != null && (ws = p.workQueues) != null && (m = ws.length - 1) >= 0) ? ws[m & z.seed & SQMASK] : null; @@ -2355,127 +2307,57 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Tries to pop the given task from submitter's queue in common pool. */ - static boolean tryExternalUnpush(ForkJoinTask<?> t) { - ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z; - ForkJoinTask<?>[] a; int m, s; - if (t != null && - (z = submitters.get()) != null && - (p = commonPool) != null && - (ws = p.workQueues) != null && - (m = ws.length - 1) >= 0 && - (q = ws[m & z.seed & SQMASK]) != null && - (s = q.top) != q.base && - (a = q.array) != null) { + final boolean tryExternalUnpush(ForkJoinTask<?> task) { + WorkQueue joiner; ForkJoinTask<?>[] a; int m, s; + Submitter z = submitters.get(); + WorkQueue[] ws = workQueues; + boolean popped = false; + if (z != null && ws != null && (m = ws.length - 1) >= 0 && + (joiner = ws[z.seed & m & SQMASK]) != null && + joiner.base != (s = joiner.top) && + (a = joiner.array) != null) { long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; - if (U.getObject(a, j) == t && - U.compareAndSwapInt(q, QLOCK, 0, 1)) { - if (q.array == a && q.top == s && // recheck - U.compareAndSwapObject(a, j, t, null)) { - q.top = s - 1; - q.qlock = 0; - return true; + if (U.getObject(a, j) == task && + U.compareAndSwapInt(joiner, QLOCK, 0, 1)) { + if (joiner.top == s && joiner.array == a && + U.compareAndSwapObject(a, j, task, null)) { + joiner.top = s - 1; + popped = true; } - q.qlock = 0; + joiner.qlock = 0; } } - return false; + return popped; } - /** - * Tries to pop and run local tasks within the same computation - * as the given root. On failure, tries to help complete from - * other queues via helpComplete. - */ - private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) { - ForkJoinTask<?>[] a; int m; - if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 && - root != null && root.status >= 0) { - for (;;) { - int s, u; Object o; CountedCompleter<?> task = null; - if ((s = q.top) - q.base > 0) { - long j = ((m & (s - 1)) << ASHIFT) + ABASE; - if ((o = U.getObject(a, j)) != null && - (o instanceof CountedCompleter)) { - CountedCompleter<?> t = (CountedCompleter<?>)o, r = t; - do { - if (r == root) { - if (U.compareAndSwapInt(q, QLOCK, 0, 1)) { - if (q.array == a && q.top == s && - U.compareAndSwapObject(a, j, t, null)) { - q.top = s - 1; - task = t; - } - q.qlock = 0; - } - break; - } - } while ((r = r.completer) != null); - } - } - if (task != null) - task.doExec(); - if (root.status < 0 || - (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0) + final int externalHelpComplete(CountedCompleter<?> task) { + WorkQueue joiner; int m, j; + Submitter z = submitters.get(); + WorkQueue[] ws = workQueues; + int s = 0; + if (z != null && ws != null && (m = ws.length - 1) >= 0 && + (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) { + int scans = m + m + 1; + long c = 0L; // for stability check + j |= 1; // poll odd queues + for (int k = scans; ; j += 2) { + WorkQueue q; + if ((s = task.status) < 0) break; - if (task == null) { - helpSignal(root, q.poolIndex); - if (root.status >= 0) - helpComplete(root, SHARED_QUEUE); + else if (joiner.externalPopAndExecCC(task)) + k = scans; + else if ((s = task.status) < 0) break; + else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) + k = scans; + else if (--k < 0) { + if (c == (c = ctl)) + break; + k = scans; } } } - } - - /** - * Tries to help execute or signal availability of the given task - * from submitter's queue in common pool. - */ - static void externalHelpJoin(ForkJoinTask<?> t) { - // Some hard-to-avoid overlap with tryExternalUnpush - ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z; - ForkJoinTask<?>[] a; int m, s, n; - if (t != null && - (z = submitters.get()) != null && - (p = commonPool) != null && - (ws = p.workQueues) != null && - (m = ws.length - 1) >= 0 && - (q = ws[m & z.seed & SQMASK]) != null && - (a = q.array) != null) { - int am = a.length - 1; - if ((s = q.top) != q.base) { - long j = ((am & (s - 1)) << ASHIFT) + ABASE; - if (U.getObject(a, j) == t && - U.compareAndSwapInt(q, QLOCK, 0, 1)) { - if (q.array == a && q.top == s && - U.compareAndSwapObject(a, j, t, null)) { - q.top = s - 1; - q.qlock = 0; - t.doExec(); - } - else - q.qlock = 0; - } - } - if (t.status >= 0) { - if (t instanceof CountedCompleter) - p.externalHelpComplete(q, t); - else - p.helpSignal(t, q.poolIndex); - } - } - } - - /** - * Restricted version of helpQuiescePool for external callers - */ - static void externalHelpQuiescePool() { - ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b; - if ((p = commonPool) != null && - (q = p.findNonEmptyStealQueue(1)) != null && - (b = q.base) - q.top < 0 && - (t = q.pollAt(b)) != null) - t.doExec(); + return s; } // Exported methods @@ -2529,49 +2411,65 @@ public class ForkJoinPool extends AbstractExecutorService { */ public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, - Thread.UncaughtExceptionHandler handler, + UncaughtExceptionHandler handler, boolean asyncMode) { + this(checkParallelism(parallelism), + checkFactory(factory), + handler, + (asyncMode ? FIFO_QUEUE : LIFO_QUEUE), + "ForkJoinPool-" + nextPoolId() + "-worker-"); checkPermission(); - if (factory == null) - throw new NullPointerException(); + } + + private static int checkParallelism(int parallelism) { if (parallelism <= 0 || parallelism > MAX_CAP) throw new IllegalArgumentException(); - this.factory = factory; - this.ueh = handler; - this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0); - long np = (long)(-parallelism); // offset ctl counts - this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); - int pn = nextPoolId(); - StringBuilder sb = new StringBuilder("ForkJoinPool-"); - sb.append(Integer.toString(pn)); - sb.append("-worker-"); - this.workerNamePrefix = sb.toString(); + return parallelism; + } + + private static ForkJoinWorkerThreadFactory checkFactory + (ForkJoinWorkerThreadFactory factory) { + if (factory == null) + throw new NullPointerException(); + return factory; } /** - * Constructor for common pool, suitable only for static initialization. - * Basically the same as above, but uses smallest possible initial footprint. + * Creates a {@code ForkJoinPool} with the given parameters, without + * any security checks or parameter validation. Invoked directly by + * makeCommonPool. */ - ForkJoinPool(int parallelism, long ctl, - ForkJoinWorkerThreadFactory factory, - Thread.UncaughtExceptionHandler handler) { - this.config = parallelism; - this.ctl = ctl; + private ForkJoinPool(int parallelism, + ForkJoinWorkerThreadFactory factory, + UncaughtExceptionHandler handler, + int mode, + String workerNamePrefix) { + this.workerNamePrefix = workerNamePrefix; this.factory = factory; this.ueh = handler; - this.workerNamePrefix = "ForkJoinPool.commonPool-worker-"; + this.mode = (short)mode; + this.parallelism = (short)parallelism; + long np = (long)(-parallelism); // offset ctl counts + this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); } /** - * Returns the common pool instance. + * Returns the common pool instance. This pool is statically + * constructed; its run state is unaffected by attempts to {@link + * #shutdown} or {@link #shutdownNow}. However this pool and any + * ongoing processing are automatically terminated upon program + * {@link System#exit}. Any program that relies on asynchronous + * task processing to complete before program termination should + * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence}, + * before exit. * * @return the common pool instance * @since 1.8 * @hide */ public static ForkJoinPool commonPool() { - // assert commonPool != null : "static init error"; - return commonPool; + // assert common != null : "static init error"; + return common; } // Execution methods @@ -2627,7 +2525,7 @@ public class ForkJoinPool extends AbstractExecutorService { if (task instanceof ForkJoinTask<?>) // avoid re-wrap job = (ForkJoinTask<?>) task; else - job = new ForkJoinTask.AdaptedRunnableAction(task); + job = new ForkJoinTask.RunnableExecuteAction(task); externalPush(job); } @@ -2729,7 +2627,7 @@ public class ForkJoinPool extends AbstractExecutorService { * * @return the handler, or {@code null} if none */ - public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() { + public UncaughtExceptionHandler getUncaughtExceptionHandler() { return ueh; } @@ -2739,7 +2637,8 @@ public class ForkJoinPool extends AbstractExecutorService { * @return the targeted parallelism level of this pool */ public int getParallelism() { - return config & SMASK; + int par; + return ((par = parallelism) > 0) ? par : 1; } /** @@ -2750,7 +2649,7 @@ public class ForkJoinPool extends AbstractExecutorService { * @hide */ public static int getCommonPoolParallelism() { - return commonPoolParallelism; + return commonParallelism; } /** @@ -2762,7 +2661,7 @@ public class ForkJoinPool extends AbstractExecutorService { * @return the number of worker threads */ public int getPoolSize() { - return (config & SMASK) + (short)(ctl >>> TC_SHIFT); + return parallelism + (short)(ctl >>> TC_SHIFT); } /** @@ -2772,7 +2671,7 @@ public class ForkJoinPool extends AbstractExecutorService { * @return {@code true} if this pool uses async mode */ public boolean getAsyncMode() { - return (config >>> 16) == FIFO_QUEUE; + return mode == FIFO_QUEUE; } /** @@ -2803,7 +2702,7 @@ public class ForkJoinPool extends AbstractExecutorService { * @return the number of active threads */ public int getActiveThreadCount() { - int r = (config & SMASK) + (int)(ctl >> AC_SHIFT); + int r = parallelism + (int)(ctl >> AC_SHIFT); return (r <= 0) ? 0 : r; // suppress momentarily negative values } @@ -2819,7 +2718,7 @@ public class ForkJoinPool extends AbstractExecutorService { * @return {@code true} if all threads are currently idle */ public boolean isQuiescent() { - return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0; + return parallelism + (int)(ctl >> AC_SHIFT) <= 0; } /** @@ -2982,7 +2881,7 @@ public class ForkJoinPool extends AbstractExecutorService { } } } - int pc = (config & SMASK); + int pc = parallelism; int tc = pc + (short)(c >>> TC_SHIFT); int ac = pc + (int)(c >> AC_SHIFT); if (ac < 0) // ignore transient negative @@ -3012,11 +2911,6 @@ public class ForkJoinPool extends AbstractExecutorService { * already shut down. Tasks that are in the process of being * submitted concurrently during the course of this method may or * may not be rejected. - * - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} */ public void shutdown() { checkPermission(); @@ -3051,7 +2945,7 @@ public class ForkJoinPool extends AbstractExecutorService { public boolean isTerminated() { long c = ctl; return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) == -(config & SMASK)); + (short)(c >>> TC_SHIFT) + parallelism <= 0); } /** @@ -3070,7 +2964,7 @@ public class ForkJoinPool extends AbstractExecutorService { public boolean isTerminating() { long c = ctl; return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) != -(config & SMASK)); + (short)(c >>> TC_SHIFT) + parallelism > 0); } /** @@ -3085,9 +2979,10 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Blocks until all tasks have completed execution after a * shutdown request, or the timeout occurs, or the current thread - * is interrupted, whichever happens first. Note that the {@link - * #commonPool()} never terminates until program shutdown so - * this method will always time out. + * is interrupted, whichever happens first. Because the {@link + * #commonPool()} never terminates until program shutdown, when + * applied to the common pool, this method is equivalent to {@link + * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}. * * @param timeout the maximum time to wait * @param unit the time unit of the timeout argument @@ -3097,6 +2992,12 @@ public class ForkJoinPool extends AbstractExecutorService { */ public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + if (this == common) { + awaitQuiescence(timeout, unit); + return false; + } long nanos = unit.toNanos(timeout); if (isTerminated()) return true; @@ -3117,6 +3018,59 @@ public class ForkJoinPool extends AbstractExecutorService { } /** + * If called by a ForkJoinTask operating in this pool, equivalent + * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise, + * waits and/or attempts to assist performing tasks until this + * pool {@link #isQuiescent} or the indicated timeout elapses. + * + * @param timeout the maximum time to wait + * @param unit the time unit of the timeout argument + * @return {@code true} if quiescent; {@code false} if the + * timeout elapsed. + */ + public boolean awaitQuiescence(long timeout, TimeUnit unit) { + long nanos = unit.toNanos(timeout); + ForkJoinWorkerThread wt; + Thread thread = Thread.currentThread(); + if ((thread instanceof ForkJoinWorkerThread) && + (wt = (ForkJoinWorkerThread)thread).pool == this) { + helpQuiescePool(wt.workQueue); + return true; + } + long startTime = System.nanoTime(); + WorkQueue[] ws; + int r = 0, m; + boolean found = true; + while (!isQuiescent() && (ws = workQueues) != null && + (m = ws.length - 1) >= 0) { + if (!found) { + if ((System.nanoTime() - startTime) > nanos) + return false; + Thread.yield(); // cannot block + } + found = false; + for (int j = (m + 1) << 2; j >= 0; --j) { + ForkJoinTask<?> t; WorkQueue q; int b; + if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) { + found = true; + if ((t = q.pollAt(b)) != null) + t.doExec(); + break; + } + } + } + return true; + } + + /** + * Waits and/or attempts to assist performing tasks indefinitely + * until the {@link #commonPool()} {@link #isQuiescent}. + */ + static void quiesceCommonPool() { + common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS); + } + + /** * Interface for extending managed parallelism for tasks running * in {@link ForkJoinPool}s. * @@ -3125,9 +3079,9 @@ public class ForkJoinPool extends AbstractExecutorService { * not necessary. Method {@code block} blocks the current thread * if necessary (perhaps internally invoking {@code isReleasable} * before actually blocking). These actions are performed by any - * thread invoking {@link ForkJoinPool#managedBlock}. The - * unusual methods in this API accommodate synchronizers that may, - * but don't usually, block for long periods. Similarly, they + * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}. + * The unusual methods in this API accommodate synchronizers that + * may, but don't usually, block for long periods. Similarly, they * allow more efficient internal handling of cases in which * additional workers may be, but usually are not, needed to * ensure sufficient parallelism. Toward this end, @@ -3185,6 +3139,7 @@ public class ForkJoinPool extends AbstractExecutorService { /** * Returns {@code true} if blocking is unnecessary. + * @return {@code true} if blocking is unnecessary */ boolean isReleasable(); } @@ -3214,21 +3169,8 @@ public class ForkJoinPool extends AbstractExecutorService { Thread t = Thread.currentThread(); if (t instanceof ForkJoinWorkerThread) { ForkJoinPool p = ((ForkJoinWorkerThread)t).pool; - while (!blocker.isReleasable()) { // variant of helpSignal - WorkQueue[] ws; WorkQueue q; int m, u; - if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) { - for (int i = 0; i <= m; ++i) { - if (blocker.isReleasable()) - return; - if ((q = ws[i]) != null && q.base - q.top < 0) { - p.signalWork(q); - if ((u = (int)(p.ctl >>> 32)) >= 0 || - (u >> UAC_SHIFT) >= 0) - break; - } - } - } - if (p.tryCompensate()) { + while (!blocker.isReleasable()) { + if (p.tryCompensate(p.ctl)) { try { do {} while (!blocker.isReleasable() && !blocker.block()); @@ -3266,6 +3208,7 @@ public class ForkJoinPool extends AbstractExecutorService { private static final long STEALCOUNT; private static final long PLOCK; private static final long INDEXSEED; + private static final long QBASE; private static final long QLOCK; static { @@ -3285,6 +3228,8 @@ public class ForkJoinPool extends AbstractExecutorService { PARKBLOCKER = U.objectFieldOffset (tk.getDeclaredField("parkBlocker")); Class<?> wk = WorkQueue.class; + QBASE = U.objectFieldOffset + (wk.getDeclaredField("base")); QLOCK = U.objectFieldOffset (wk.getDeclaredField("qlock")); Class<?> ak = ForkJoinTask[].class; @@ -3298,45 +3243,51 @@ public class ForkJoinPool extends AbstractExecutorService { } submitters = new ThreadLocal<Submitter>(); - ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory = + defaultForkJoinWorkerThreadFactory = new DefaultForkJoinWorkerThreadFactory(); modifyThreadPermission = new RuntimePermission("modifyThread"); - /* - * Establish common pool parameters. For extra caution, - * computations to set up common pool state are here; the - * constructor just assigns these values to fields. - */ + common = java.security.AccessController.doPrivileged + (new java.security.PrivilegedAction<ForkJoinPool>() { + public ForkJoinPool run() { return makeCommonPool(); }}); + int par = common.parallelism; // report 1 even if threads disabled + commonParallelism = par > 0 ? par : 1; + } - int par = 0; - Thread.UncaughtExceptionHandler handler = null; - try { // TBD: limit or report ignored exceptions? + /** + * Creates and returns the common pool, respecting user settings + * specified via system properties. + */ + private static ForkJoinPool makeCommonPool() { + int parallelism = -1; + ForkJoinWorkerThreadFactory factory + = defaultForkJoinWorkerThreadFactory; + UncaughtExceptionHandler handler = null; + try { // ignore exceptions in accessing/parsing properties String pp = System.getProperty ("java.util.concurrent.ForkJoinPool.common.parallelism"); - String hp = System.getProperty - ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); String fp = System.getProperty ("java.util.concurrent.ForkJoinPool.common.threadFactory"); + String hp = System.getProperty + ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); + if (pp != null) + parallelism = Integer.parseInt(pp); if (fp != null) - fac = ((ForkJoinWorkerThreadFactory)ClassLoader. - getSystemClassLoader().loadClass(fp).newInstance()); + factory = ((ForkJoinWorkerThreadFactory)ClassLoader. + getSystemClassLoader().loadClass(fp).newInstance()); if (hp != null) - handler = ((Thread.UncaughtExceptionHandler)ClassLoader. + handler = ((UncaughtExceptionHandler)ClassLoader. getSystemClassLoader().loadClass(hp).newInstance()); - if (pp != null) - par = Integer.parseInt(pp); } catch (Exception ignore) { } - if (par <= 0) - par = Runtime.getRuntime().availableProcessors(); - if (par > MAX_CAP) - par = MAX_CAP; - commonPoolParallelism = par; - long np = (long)(-par); // precompute initial ctl value - long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); - - commonPool = new ForkJoinPool(par, ct, fac, handler); + if (parallelism < 0 && // default 1 less than #cores + (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0) + parallelism = 0; + if (parallelism > MAX_CAP) + parallelism = MAX_CAP; + return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE, + "ForkJoinPool.commonPool-worker-"); } } diff --git a/luni/src/main/java/java/util/concurrent/ForkJoinTask.java b/luni/src/main/java/java/util/concurrent/ForkJoinTask.java index 818788e..6d25775 100644 --- a/luni/src/main/java/java/util/concurrent/ForkJoinTask.java +++ b/luni/src/main/java/java/util/concurrent/ForkJoinTask.java @@ -136,7 +136,7 @@ import java.lang.reflect.Constructor; * supports other methods and techniques (for example the use of * {@link Phaser}, {@link #helpQuiesce}, and {@link #complete}) that * may be of use in constructing custom subclasses for problems that - * are not statically structured as DAGs. To support such usages a + * are not statically structured as DAGs. To support such usages, a * ForkJoinTask may be atomically <em>tagged</em> with a {@code short} * value using {@link #setForkJoinTaskTag} or {@link * #compareAndSetForkJoinTaskTag} and checked using {@link @@ -286,25 +286,35 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { */ private int externalAwaitDone() { int s; - ForkJoinPool.externalHelpJoin(this); - boolean interrupted = false; - while ((s = status) >= 0) { - if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) { - try { - wait(); - } catch (InterruptedException ie) { - interrupted = true; + ForkJoinPool cp = ForkJoinPool.common; + if ((s = status) >= 0) { + if (cp != null) { + if (this instanceof CountedCompleter) + s = cp.externalHelpComplete((CountedCompleter<?>)this); + else if (cp.tryExternalUnpush(this)) + s = doExec(); + } + if (s >= 0 && (s = status) >= 0) { + boolean interrupted = false; + do { + if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { + synchronized (this) { + if (status >= 0) { + try { + wait(); + } catch (InterruptedException ie) { + interrupted = true; + } + } + else + notifyAll(); } } - else - notifyAll(); - } + } while ((s = status) >= 0); + if (interrupted) + Thread.currentThread().interrupt(); } } - if (interrupted) - Thread.currentThread().interrupt(); return s; } @@ -313,9 +323,15 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { */ private int externalInterruptibleAwaitDone() throws InterruptedException { int s; + ForkJoinPool cp = ForkJoinPool.common; if (Thread.interrupted()) throw new InterruptedException(); - ForkJoinPool.externalHelpJoin(this); + if ((s = status) >= 0 && cp != null) { + if (this instanceof CountedCompleter) + cp.externalHelpComplete((CountedCompleter<?>)this); + else if (cp.tryExternalUnpush(this)) + doExec(); + } while ((s = status) >= 0) { if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { synchronized (this) { @@ -329,7 +345,6 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { return s; } - /** * Implementation for join, get, quietlyJoin. Directly handles * only cases of already-completed, external wait, and @@ -601,14 +616,9 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { /** * A version of "sneaky throw" to relay exceptions */ - static void rethrow(final Throwable ex) { - if (ex != null) { - if (ex instanceof Error) - throw (Error)ex; - if (ex instanceof RuntimeException) - throw (RuntimeException)ex; - throw uncheckedThrowable(ex, RuntimeException.class); - } + static void rethrow(Throwable ex) { + if (ex != null) + ForkJoinTask.<RuntimeException>uncheckedThrow(ex); } /** @@ -617,8 +627,8 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { * unchecked exceptions */ @SuppressWarnings("unchecked") static <T extends Throwable> - T uncheckedThrowable(final Throwable t, final Class<T> c) { - return (T)t; // rely on vacuous cast + void uncheckedThrow(Throwable t) throws T { + throw (T)t; // rely on vacuous cast } /** @@ -653,7 +663,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ((ForkJoinWorkerThread)t).workQueue.push(this); else - ForkJoinPool.commonPool.externalPush(this); + ForkJoinPool.common.externalPush(this); return this; } @@ -774,8 +784,6 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { * @param tasks the collection of tasks * @return the tasks argument, to simplify usage * @throws NullPointerException if tasks or any element are null - - * @hide */ public static <T extends ForkJoinTask<?>> Collection<T> invokeAll(Collection<T> tasks) { if (!(tasks instanceof RandomAccess) || !(tasks instanceof List<?>)) { @@ -831,7 +839,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { * <p>This method is designed to be invoked by <em>other</em> * tasks. To terminate the current task, you can just return or * throw an unchecked exception from its computation method, or - * invoke {@link #completeExceptionally}. + * invoke {@link #completeExceptionally(Throwable)}. * * @param mayInterruptIfRunning this value has no effect in the * default implementation because interrupts are not used to @@ -984,6 +992,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { // Messy in part because we measure in nanosecs, but wait in millisecs int s; long ms; long ns = unit.toNanos(timeout); + ForkJoinPool cp; if ((s = status) >= 0 && ns > 0L) { long deadline = System.nanoTime() + ns; ForkJoinPool p = null; @@ -995,8 +1004,12 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { w = wt.workQueue; p.helpJoinOnce(w, this); // no retries on failure } - else - ForkJoinPool.externalHelpJoin(this); + else if ((cp = ForkJoinPool.common) != null) { + if (this instanceof CountedCompleter) + cp.externalHelpComplete((CountedCompleter<?>)this); + else if (cp.tryExternalUnpush(this)) + doExec(); + } boolean canBlock = false; boolean interrupted = false; try { @@ -1004,7 +1017,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { if (w != null && w.qlock < 0) cancelIgnoringExceptions(this); else if (!canBlock) { - if (p == null || p.tryCompensate()) + if (p == null || p.tryCompensate(p.ctl)) canBlock = true; } else { @@ -1080,7 +1093,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { wt.pool.helpQuiescePool(wt.workQueue); } else - ForkJoinPool.externalHelpQuiescePool(); + ForkJoinPool.quiesceCommonPool(); } /** @@ -1145,7 +1158,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { Thread t; return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? ((ForkJoinWorkerThread)t).workQueue.tryUnpush(this) : - ForkJoinPool.tryExternalUnpush(this)); + ForkJoinPool.common.tryExternalUnpush(this)); } /** @@ -1316,7 +1329,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { * * @param e the expected tag value * @param tag the new tag value - * @return true if successful; i.e., the current value was + * @return {@code true} if successful; i.e., the current value was * equal to e and is now tag. * @since 1.8 * @hide @@ -1370,6 +1383,24 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { } /** + * Adaptor for Runnables in which failure forces worker exception + */ + static final class RunnableExecuteAction extends ForkJoinTask<Void> { + final Runnable runnable; + RunnableExecuteAction(Runnable runnable) { + if (runnable == null) throw new NullPointerException(); + this.runnable = runnable; + } + public final Void getRawResult() { return null; } + public final void setRawResult(Void v) { } + public final boolean exec() { runnable.run(); return true; } + void internalPropagateException(Throwable ex) { + rethrow(ex); // rethrow outside exec() catches. + } + private static final long serialVersionUID = 5232453952276885070L; + } + + /** * Adaptor for Callables */ static final class AdaptedCallable<T> extends ForkJoinTask<T> @@ -1480,5 +1511,4 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable { throw new Error(e); } } - } diff --git a/luni/src/main/java/java/util/concurrent/ForkJoinWorkerThread.java b/luni/src/main/java/java/util/concurrent/ForkJoinWorkerThread.java index f31763c..5f2799b 100644 --- a/luni/src/main/java/java/util/concurrent/ForkJoinWorkerThread.java +++ b/luni/src/main/java/java/util/concurrent/ForkJoinWorkerThread.java @@ -14,8 +14,8 @@ package java.util.concurrent; * scheduling or execution. However, you can override initialization * and termination methods surrounding the main task processing loop. * If you do create such a subclass, you will also need to supply a - * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it - * in a {@code ForkJoinPool}. + * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to + * {@linkplain ForkJoinPool#ForkJoinPool use it} in a {@code ForkJoinPool}. * * @since 1.7 * @hide @@ -61,16 +61,17 @@ public class ForkJoinWorkerThread extends Thread { } /** - * Returns the index number of this thread in its pool. The - * returned value ranges from zero to the maximum number of - * threads (minus one) that have ever been created in the pool. - * This method may be useful for applications that track status or - * collect results per-worker rather than per-task. + * Returns the unique index number of this thread in its pool. + * The returned value ranges from zero to the maximum number of + * threads (minus one) that may exist in the pool, and does not + * change during the lifetime of the thread. This method may be + * useful for applications that track status or collect results + * per-worker-thread rather than per-task. * * @return the index number */ public int getPoolIndex() { - return workQueue.poolIndex; + return workQueue.poolIndex >>> 1; // ignore odd/even tag bit } /** |