1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.lang;
/**
* The wrapper for the primitive type {@code double}.
*
* @see java.lang.Number
* @since 1.0
*/
public final class Double extends Number implements Comparable<Double> {
private static final long serialVersionUID = -9172774392245257468L;
/**
* The value which the receiver represents.
*/
private final double value;
/**
* Constant for the maximum {@code double} value, (2 - 2<sup>-52</sup>) *
* 2<sup>1023</sup>.
*/
public static final double MAX_VALUE = 1.79769313486231570e+308;
/**
* Constant for the minimum {@code double} value, 2<sup>-1074</sup>.
*/
public static final double MIN_VALUE = 5e-324;
/* 4.94065645841246544e-324 gets rounded to 9.88131e-324 */
/**
* Constant for the Not-a-Number (NaN) value of the {@code double} type.
*/
public static final double NaN = 0.0 / 0.0;
/**
* Constant for the positive infinity value of the {@code double} type.
*/
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
/**
* Constant for the negative infinity value of the {@code double} type.
*/
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
/**
* Constant for the smallest positive normal value of the {@code double} type.
*
* @since 1.6
* @hide
*/
public static final double MIN_NORMAL = 2.2250738585072014E-308;
/**
* Maximum exponent that a finite value of the {@code double} type may have.
* Equal to {@code Math.getExponent(Double.MAX_VALUE)}.
*
* @since 1.6
* @hide
*/
public static final int MAX_EXPONENT = 1023;
/**
* Minimum exponent that a normal value of the {@code double} type may have.
* Equal to {@code Math.getExponent(Double.MIN_NORMAL)}.
*
* @since 1.6
* @hide
*/
public static final int MIN_EXPONENT = -1022;
/**
* The {@link Class} object that represents the primitive type {@code
* double}.
*
* @since 1.1
*/
@SuppressWarnings("unchecked")
public static final Class<Double> TYPE
= (Class<Double>) double[].class.getComponentType();
// Note: This can't be set to "double.class", since *that* is
// defined to be "java.lang.Double.TYPE";
/**
* Constant for the number of bits needed to represent a {@code double} in
* two's complement form.
*
* @since 1.5
*/
public static final int SIZE = 64;
/**
* Constructs a new {@code Double} with the specified primitive double
* value.
*
* @param value
* the primitive double value to store in the new instance.
*/
public Double(double value) {
this.value = value;
}
/**
* Constructs a new {@code Double} from the specified string.
*
* @param string
* the string representation of a double value.
* @throws NumberFormatException
* if {@code string} can not be decoded into a double value.
* @see #parseDouble(String)
*/
public Double(String string) throws NumberFormatException {
this(parseDouble(string));
}
/**
* Compares this object to the specified double object to determine their
* relative order. There are two special cases:
* <ul>
* <li>{@code Double.NaN} is equal to {@code Double.NaN} and it is greater
* than any other double value, including {@code Double.POSITIVE_INFINITY};</li>
* <li>+0.0d is greater than -0.0d</li>
* </ul>
*
* @param object
* the double object to compare this object to.
* @return a negative value if the value of this double is less than the
* value of {@code object}; 0 if the value of this double and the
* value of {@code object} are equal; a positive value if the value
* of this double is greater than the value of {@code object}.
* @throws NullPointerException
* if {@code object} is {@code null}.
* @see java.lang.Comparable
* @since 1.2
*/
public int compareTo(Double object) {
return compare(value, object.value);
}
@Override
public byte byteValue() {
return (byte) value;
}
/**
* Converts the specified double value to a binary representation conforming
* to the IEEE 754 floating-point double precision bit layout. All
* <em>Not-a-Number (NaN)</em> values are converted to a single NaN
* representation ({@code 0x7ff8000000000000L}).
*
* @param value
* the double value to convert.
* @return the IEEE 754 floating-point double precision representation of
* {@code value}.
* @see #doubleToRawLongBits(double)
* @see #longBitsToDouble(long)
*/
public static native long doubleToLongBits(double value);
/**
* Converts the specified double value to a binary representation conforming
* to the IEEE 754 floating-point double precision bit layout.
* <em>Not-a-Number (NaN)</em> values are preserved.
*
* @param value
* the double value to convert.
* @return the IEEE 754 floating-point double precision representation of
* {@code value}.
* @see #doubleToLongBits(double)
* @see #longBitsToDouble(long)
*/
public static native long doubleToRawLongBits(double value);
/**
* Gets the primitive value of this double.
*
* @return this object's primitive value.
*/
@Override
public double doubleValue() {
return value;
}
/**
* Tests this double for equality with {@code object}.
* To be equal, {@code object} must be an instance of {@code Double} and
* {@code doubleToLongBits} must give the same value for both objects.
*
* <p>Note that, unlike {@code ==}, {@code -0.0} and {@code +0.0} compare
* unequal, and {@code NaN}s compare equal by this method.
*
* @param object
* the object to compare this double with.
* @return {@code true} if the specified object is equal to this
* {@code Double}; {@code false} otherwise.
*/
@Override
public boolean equals(Object object) {
return (object == this)
|| (object instanceof Double)
&& (doubleToLongBits(this.value) == doubleToLongBits(((Double) object).value));
}
@Override
public float floatValue() {
return (float) value;
}
@Override
public int hashCode() {
long v = doubleToLongBits(value);
return (int) (v ^ (v >>> 32));
}
@Override
public int intValue() {
return (int) value;
}
/**
* Indicates whether this object represents an infinite value.
*
* @return {@code true} if the value of this double is positive or negative
* infinity; {@code false} otherwise.
*/
public boolean isInfinite() {
return isInfinite(value);
}
/**
* Indicates whether the specified double represents an infinite value.
*
* @param d
* the double to check.
* @return {@code true} if the value of {@code d} is positive or negative
* infinity; {@code false} otherwise.
*/
public static boolean isInfinite(double d) {
return (d == POSITIVE_INFINITY) || (d == NEGATIVE_INFINITY);
}
/**
* Indicates whether this object is a <em>Not-a-Number (NaN)</em> value.
*
* @return {@code true} if this double is <em>Not-a-Number</em>;
* {@code false} if it is a (potentially infinite) double number.
*/
public boolean isNaN() {
return isNaN(value);
}
/**
* Indicates whether the specified double is a <em>Not-a-Number (NaN)</em>
* value.
*
* @param d
* the double value to check.
* @return {@code true} if {@code d} is <em>Not-a-Number</em>;
* {@code false} if it is a (potentially infinite) double number.
*/
public static boolean isNaN(double d) {
return d != d;
}
/**
* Converts the specified IEEE 754 floating-point double precision bit
* pattern to a Java double value.
*
* @param bits
* the IEEE 754 floating-point double precision representation of
* a double value.
* @return the double value converted from {@code bits}.
* @see #doubleToLongBits(double)
* @see #doubleToRawLongBits(double)
*/
public static native double longBitsToDouble(long bits);
@Override
public long longValue() {
return (long) value;
}
/**
* Parses the specified string as a double value.
*
* @param string
* the string representation of a double value.
* @return the primitive double value represented by {@code string}.
* @throws NumberFormatException
* if {@code string} is {@code null}, has a length of zero or
* can not be parsed as a double value.
*/
public static double parseDouble(String string)
throws NumberFormatException {
return org.apache.harmony.luni.util.FloatingPointParser
.parseDouble(string);
}
@Override
public short shortValue() {
return (short) value;
}
@Override
public String toString() {
return Double.toString(value);
}
/**
* Returns a string containing a concise, human-readable description of the
* specified double value.
*
* @param d
* the double to convert to a string.
* @return a printable representation of {@code d}.
*/
public static String toString(double d) {
return org.apache.harmony.luni.util.NumberConverter.convert(d);
}
/**
* Parses the specified string as a double value.
*
* @param string
* the string representation of a double value.
* @return a {@code Double} instance containing the double value represented
* by {@code string}.
* @throws NumberFormatException
* if {@code string} is {@code null}, has a length of zero or
* can not be parsed as a double value.
* @see #parseDouble(String)
*/
public static Double valueOf(String string) throws NumberFormatException {
return parseDouble(string);
}
/**
* Compares the two specified double values. There are two special cases:
* <ul>
* <li>{@code Double.NaN} is equal to {@code Double.NaN} and it is greater
* than any other double value, including {@code Double.POSITIVE_INFINITY};</li>
* <li>+0.0d is greater than -0.0d</li>
* </ul>
*
* @param double1
* the first value to compare.
* @param double2
* the second value to compare.
* @return a negative value if {@code double1} is less than {@code double2};
* 0 if {@code double1} and {@code double2} are equal; a positive
* value if {@code double1} is greater than {@code double2}.
*/
public static int compare(double double1, double double2) {
// Non-zero, non-NaN checking.
if (double1 > double2) {
return 1;
}
if (double2 > double1) {
return -1;
}
if (double1 == double2 && 0.0d != double1) {
return 0;
}
// NaNs are equal to other NaNs and larger than any other double
if (isNaN(double1)) {
if (isNaN(double2)) {
return 0;
}
return 1;
} else if (isNaN(double2)) {
return -1;
}
// Deal with +0.0 and -0.0
long d1 = doubleToRawLongBits(double1);
long d2 = doubleToRawLongBits(double2);
// The below expression is equivalent to:
// (d1 == d2) ? 0 : (d1 < d2) ? -1 : 1
return (int) ((d1 >> 63) - (d2 >> 63));
}
/**
* Returns a {@code Double} instance for the specified double value.
*
* @param d
* the double value to store in the instance.
* @return a {@code Double} instance containing {@code d}.
* @since 1.5
*/
public static Double valueOf(double d) {
return new Double(d);
}
/**
* Converts the specified double into its hexadecimal string representation.
*
* @param d
* the double to convert.
* @return the hexadecimal string representation of {@code d}.
* @since 1.5
*/
public static String toHexString(double d) {
/*
* Reference: http://en.wikipedia.org/wiki/IEEE_754
*/
if (d != d) {
return "NaN";
}
if (d == POSITIVE_INFINITY) {
return "Infinity";
}
if (d == NEGATIVE_INFINITY) {
return "-Infinity";
}
long bitValue = doubleToLongBits(d);
boolean negative = (bitValue & 0x8000000000000000L) != 0;
// mask exponent bits and shift down
long exponent = (bitValue & 0x7FF0000000000000L) >>> 52;
// mask significand bits and shift up
long significand = bitValue & 0x000FFFFFFFFFFFFFL;
if (exponent == 0 && significand == 0) {
return (negative ? "-0x0.0p0" : "0x0.0p0");
}
StringBuilder hexString = new StringBuilder(10);
if (negative) {
hexString.append("-0x");
} else {
hexString.append("0x");
}
if (exponent == 0) { // denormal (subnormal) value
hexString.append("0.");
// significand is 52-bits, so there can be 13 hex digits
int fractionDigits = 13;
// remove trailing hex zeros, so Integer.toHexString() won't print
// them
while ((significand != 0) && ((significand & 0xF) == 0)) {
significand >>>= 4;
fractionDigits--;
}
// this assumes Integer.toHexString() returns lowercase characters
String hexSignificand = Long.toHexString(significand);
// if there are digits left, then insert some '0' chars first
if (significand != 0 && fractionDigits > hexSignificand.length()) {
int digitDiff = fractionDigits - hexSignificand.length();
while (digitDiff-- != 0) {
hexString.append('0');
}
}
hexString.append(hexSignificand);
hexString.append("p-1022");
} else { // normal value
hexString.append("1.");
// significand is 52-bits, so there can be 13 hex digits
int fractionDigits = 13;
// remove trailing hex zeros, so Integer.toHexString() won't print
// them
while ((significand != 0) && ((significand & 0xF) == 0)) {
significand >>>= 4;
fractionDigits--;
}
// this assumes Integer.toHexString() returns lowercase characters
String hexSignificand = Long.toHexString(significand);
// if there are digits left, then insert some '0' chars first
if (significand != 0 && fractionDigits > hexSignificand.length()) {
int digitDiff = fractionDigits - hexSignificand.length();
while (digitDiff-- != 0) {
hexString.append('0');
}
}
hexString.append(hexSignificand);
hexString.append('p');
// remove exponent's 'bias' and convert to a string
hexString.append(Long.toString(exponent - 1023));
}
return hexString.toString();
}
}
|