summaryrefslogtreecommitdiffstats
path: root/luni/src/main/native/commonDblParce.cpp
blob: 76038519e6b82ddf546b377f8872bf44d1da59f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "commonDblParce.h"
#include "cbigint.h"


/* ************************* Defines ************************* */
#if defined(__linux__) || defined(FREEBSD)
#define USE_LL
#endif

#define LOW_I32_FROM_VAR(u64)     LOW_I32_FROM_LONG64(u64)
#define LOW_I32_FROM_PTR(u64ptr)  LOW_I32_FROM_LONG64_PTR(u64ptr)
#define HIGH_I32_FROM_VAR(u64)    HIGH_I32_FROM_LONG64(u64)
#define HIGH_I32_FROM_PTR(u64ptr) HIGH_I32_FROM_LONG64_PTR(u64ptr)

#define MAX_ACCURACY_WIDTH 17

#define DEFAULT_WIDTH MAX_ACCURACY_WIDTH

#if defined(USE_LL)
#define INFINITE_LONGBITS (0x7FF0000000000000LL)
#else
#if defined(USE_L)
#define INFINITE_LONGBITS (0x7FF0000000000000L)
#else
#define INFINITE_LONGBITS (0x7FF0000000000000)
#endif /* USE_L */
#endif /* USE_LL */

#define MINIMUM_LONGBITS (0x1)

#if defined(USE_LL)
#define MANTISSA_MASK (0x000FFFFFFFFFFFFFLL)
#define EXPONENT_MASK (0x7FF0000000000000LL)
#define NORMAL_MASK   (0x0010000000000000LL)
#else
#if defined(USE_L)
#define MANTISSA_MASK (0x000FFFFFFFFFFFFFL)
#define EXPONENT_MASK (0x7FF0000000000000L)
#define NORMAL_MASK   (0x0010000000000000L)
#else
#define MANTISSA_MASK (0x000FFFFFFFFFFFFF)
#define EXPONENT_MASK (0x7FF0000000000000)
#define NORMAL_MASK   (0x0010000000000000)
#endif /* USE_L */
#endif /* USE_LL */

#define DOUBLE_TO_LONGBITS(dbl) (*((U_64 *)(&dbl)))

/* Keep a count of the number of times we decrement and increment to
 * approximate the double, and attempt to detect the case where we
 * could potentially toggle back and forth between decrementing and
 * incrementing. It is possible for us to be stuck in the loop when
 * incrementing by one or decrementing by one may exceed or stay below
 * the value that we are looking for. In this case, just break out of
 * the loop if we toggle between incrementing and decrementing for more
 * than twice.
 */
#define INCREMENT_DOUBLE(_x, _decCount, _incCount) \
    { \
        ++DOUBLE_TO_LONGBITS(_x); \
        _incCount++; \
        if( (_incCount > 2) && (_decCount > 2) ) { \
            if( _decCount > _incCount ) { \
                DOUBLE_TO_LONGBITS(_x) += _decCount - _incCount; \
            } else if( _incCount > _decCount ) { \
                DOUBLE_TO_LONGBITS(_x) -= _incCount - _decCount; \
            } \
            break; \
        } \
    }
#define DECREMENT_DOUBLE(_x, _decCount, _incCount) \
    { \
        --DOUBLE_TO_LONGBITS(_x); \
        _decCount++; \
        if( (_incCount > 2) && (_decCount > 2) ) { \
            if( _decCount > _incCount ) { \
                DOUBLE_TO_LONGBITS(_x) += _decCount - _incCount; \
            } else if( _incCount > _decCount ) { \
                DOUBLE_TO_LONGBITS(_x) -= _incCount - _decCount; \
            } \
            break; \
        } \
    }

#define allocateU64(x, n) if (!((x) = (U_64*) malloc((n) * sizeof(U_64)))) goto OutOfMemory;
#define release(r) if ((r)) free((r));

/* *********************************************************** */

/* ************************ local data ************************ */
static const jdouble tens[] = {
  1.0,
  1.0e1,
  1.0e2,
  1.0e3,
  1.0e4,
  1.0e5,
  1.0e6,
  1.0e7,
  1.0e8,
  1.0e9,
  1.0e10,
  1.0e11,
  1.0e12,
  1.0e13,
  1.0e14,
  1.0e15,
  1.0e16,
  1.0e17,
  1.0e18,
  1.0e19,
  1.0e20,
  1.0e21,
  1.0e22
};
/* *********************************************************** */

/* ************** private function declarations ************** */
static jdouble createDouble1   (JNIEnv* env, U_64 * f, IDATA length, jint e);
static jdouble doubleAlgorithm (JNIEnv* env, U_64 * f, IDATA length, jint e,
                                jdouble z);
/* *********************************************************** */

#define tenToTheE(e) (*(tens + (e)))
#define LOG5_OF_TWO_TO_THE_N 23

#define sizeOfTenToTheE(e) (((e) / 19) + 1)

jdouble
createDouble (JNIEnv* env, const char *s, jint e)
{
  /* assumes s is a null terminated string with at least one
   * character in it */
  U_64 def[DEFAULT_WIDTH];
  U_64 defBackup[DEFAULT_WIDTH];
  U_64 *f, *fNoOverflow, *g, *tempBackup;
  U_32 overflow;
  jdouble result;
  IDATA index = 1;
  int unprocessedDigits = 0;

  f = def;
  fNoOverflow = defBackup;
  *f = 0;
  tempBackup = g = 0;
  do
    {
      if (*s >= '0' && *s <= '9')
        {
          /* Make a back up of f before appending, so that we can
           * back out of it if there is no more room, i.e. index >
           * MAX_ACCURACY_WIDTH.
           */
          memcpy (fNoOverflow, f, sizeof (U_64) * index);
          overflow =
            simpleAppendDecimalDigitHighPrecision (f, index, *s - '0');
          if (overflow)
            {
              f[index++] = overflow;
              /* There is an overflow, but there is no more room
               * to store the result. We really only need the top 52
               * bits anyway, so we must back out of the overflow,
               * and ignore the rest of the string.
               */
              if (index >= MAX_ACCURACY_WIDTH)
                {
                  index--;
                  memcpy (f, fNoOverflow, sizeof (U_64) * index);
                  break;
                }
              if (tempBackup)
                {
                  fNoOverflow = tempBackup;
                }
            }
        }
      else
        index = -1;
    }
  while (index > 0 && *(++s) != '\0');

  /* We've broken out of the parse loop either because we've reached
   * the end of the string or we've overflowed the maximum accuracy
   * limit of a double. If we still have unprocessed digits in the
   * given string, then there are three possible results:
   *   1. (unprocessed digits + e) == 0, in which case we simply
   *      convert the existing bits that are already parsed
   *   2. (unprocessed digits + e) < 0, in which case we simply
   *      convert the existing bits that are already parsed along
   *      with the given e
   *   3. (unprocessed digits + e) > 0 indicates that the value is
   *      simply too big to be stored as a double, so return Infinity
   */
  if ((unprocessedDigits = strlen (s)) > 0)
    {
      e += unprocessedDigits;
      if (index > -1)
        {
          if (e == 0)
            result = toDoubleHighPrecision (f, index);
          else if (e < 0)
            result = createDouble1 (env, f, index, e);
          else
            {
              DOUBLE_TO_LONGBITS (result) = INFINITE_LONGBITS;
            }
        }
      else
        {
          LOW_I32_FROM_VAR  (result) = -1;
          HIGH_I32_FROM_VAR (result) = -1;
        }
    }
  else
    {
      if (index > -1)
        {
          if (e == 0)
            result = toDoubleHighPrecision (f, index);
          else
            result = createDouble1 (env, f, index, e);
        }
      else
        {
          LOW_I32_FROM_VAR  (result) = -1;
          HIGH_I32_FROM_VAR (result) = -1;
        }
    }

  return result;

}

jdouble
createDouble1 (JNIEnv* env, U_64 * f, IDATA length, jint e)
{
  IDATA numBits;
  jdouble result;

#define APPROX_MIN_MAGNITUDE -309

#define APPROX_MAX_MAGNITUDE 309

  numBits = highestSetBitHighPrecision (f, length) + 1;
  numBits -= lowestSetBitHighPrecision (f, length);
  if (numBits < 54 && e >= 0 && e < LOG5_OF_TWO_TO_THE_N)
    {
      return toDoubleHighPrecision (f, length) * tenToTheE (e);
    }
  else if (numBits < 54 && e < 0 && (-e) < LOG5_OF_TWO_TO_THE_N)
    {
      return toDoubleHighPrecision (f, length) / tenToTheE (-e);
    }
  else if (e >= 0 && e < APPROX_MAX_MAGNITUDE)
    {
      result = toDoubleHighPrecision (f, length) * pow (10.0, e);
    }
  else if (e >= APPROX_MAX_MAGNITUDE)
    {
      /* Convert the partial result to make sure that the
       * non-exponential part is not zero. This check fixes the case
       * where the user enters 0.0e309! */
      result = toDoubleHighPrecision (f, length);
      /* Don't go straight to zero as the fact that x*0 = 0 independent of x might
         cause the algorithm to produce an incorrect result.  Instead try the min value
         first and let it fall to zero if need be. */

      if (result == 0.0)
        {
          DOUBLE_TO_LONGBITS (result) = MINIMUM_LONGBITS;
        }
      else
        {
          DOUBLE_TO_LONGBITS (result) = INFINITE_LONGBITS;
          return result;
        }
    }
  else if (e > APPROX_MIN_MAGNITUDE)
    {
      result = toDoubleHighPrecision (f, length) / pow (10.0, -e);
    }

  if (e <= APPROX_MIN_MAGNITUDE)
    {

      result = toDoubleHighPrecision (f, length) * pow (10.0, e + 52);
      result = result * pow (10.0, -52);

    }

  /* Don't go straight to zero as the fact that x*0 = 0 independent of x might
     cause the algorithm to produce an incorrect result.  Instead try the min value
     first and let it fall to zero if need be. */

  if (result == 0.0)

    DOUBLE_TO_LONGBITS (result) = MINIMUM_LONGBITS;

  return doubleAlgorithm (env, f, length, e, result);
}

#if defined(WIN32)
/* disable global optimizations on the microsoft compiler for the
 * doubleAlgorithm function otherwise it won't compile */
#pragma optimize("g",off)
#endif


/* The algorithm for the function doubleAlgorithm() below can be found
 * in:
 *
 *      "How to Read Floating-Point Numbers Accurately", William D.
 *      Clinger, Proceedings of the ACM SIGPLAN '90 Conference on
 *      Programming Language Design and Implementation, June 20-22,
 *      1990, pp. 92-101.
 *
 * There is a possibility that the function will end up in an endless
 * loop if the given approximating floating-point number (a very small
 * floating-point whose value is very close to zero) straddles between
 * two approximating integer values. We modified the algorithm slightly
 * to detect the case where it oscillates back and forth between
 * incrementing and decrementing the floating-point approximation. It
 * is currently set such that if the oscillation occurs more than twice
 * then return the original approximation.
 */
static jdouble
doubleAlgorithm (JNIEnv*, U_64 * f, IDATA length, jint e, jdouble z)
{
  U_64 m;
  IDATA k, comparison, comparison2;
  U_64 *x, *y, *D, *D2;
  IDATA xLength, yLength, DLength, D2Length, decApproxCount, incApproxCount;

  x = y = D = D2 = 0;
  xLength = yLength = DLength = D2Length = 0;
  decApproxCount = incApproxCount = 0;

  do
    {
      m = doubleMantissa (z);
      k = doubleExponent (z);

      if (x && x != f)
          free(x);

      release (y);
      release (D);
      release (D2);

      if (e >= 0 && k >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (U_64) * (xLength - length));
          memcpy (x, f, sizeof (U_64) * length);
          timesTenToTheEHighPrecision (x, xLength, e);

          yLength = (k >> 6) + 2;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (U_64) * (yLength - 1));
          *y = m;
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else if (e >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (U_64) * (xLength - length));
          memcpy (x, f, sizeof (U_64) * length);
          timesTenToTheEHighPrecision (x, xLength, e);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = 1;
          allocateU64 (y, 1);
          *y = m;
        }
      else if (k >= 0)
        {
          xLength = length;
          x = f;

          yLength = sizeOfTenToTheE (-e) + 2 + (k >> 6);
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (U_64) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else
        {
          xLength = length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (U_64) * (xLength - length));
          memcpy (x, f, sizeof (U_64) * length);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = sizeOfTenToTheE (-e) + 1;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (U_64) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
        }

      comparison = compareHighPrecision (x, xLength, y, yLength);
      if (comparison > 0)
        {                       /* x > y */
          DLength = xLength;
          allocateU64 (D, DLength);
          memcpy (D, x, DLength * sizeof (U_64));
          subtractHighPrecision (D, DLength, y, yLength);
        }
      else if (comparison)
        {                       /* y > x */
          DLength = yLength;
          allocateU64 (D, DLength);
          memcpy (D, y, DLength * sizeof (U_64));
          subtractHighPrecision (D, DLength, x, xLength);
        }
      else
        {                       /* y == x */
          DLength = 1;
          allocateU64 (D, 1);
          *D = 0;
        }

      D2Length = DLength + 1;
      allocateU64 (D2, D2Length);
      m <<= 1;
      multiplyHighPrecision (D, DLength, &m, 1, D2, D2Length);
      m >>= 1;

      comparison2 = compareHighPrecision (D2, D2Length, y, yLength);
      if (comparison2 < 0)
        {
          if (comparison < 0 && m == NORMAL_MASK)
            {
              simpleShiftLeftHighPrecision (D2, D2Length, 1);
              if (compareHighPrecision (D2, D2Length, y, yLength) > 0)
                {
                  DECREMENT_DOUBLE (z, decApproxCount, incApproxCount);
                }
              else
                {
                  break;
                }
            }
          else
            {
              break;
            }
        }
      else if (comparison2 == 0)
        {
          if ((LOW_U32_FROM_VAR (m) & 1) == 0)
            {
              if (comparison < 0 && m == NORMAL_MASK)
                {
                  DECREMENT_DOUBLE (z, decApproxCount, incApproxCount);
                }
              else
                {
                  break;
                }
            }
          else if (comparison < 0)
            {
              DECREMENT_DOUBLE (z, decApproxCount, incApproxCount);
              break;
            }
          else
            {
              INCREMENT_DOUBLE (z, decApproxCount, incApproxCount);
              break;
            }
        }
      else if (comparison < 0)
        {
          DECREMENT_DOUBLE (z, decApproxCount, incApproxCount);
        }
      else
        {
          if (DOUBLE_TO_LONGBITS (z) == INFINITE_LONGBITS)
            break;
          INCREMENT_DOUBLE (z, decApproxCount, incApproxCount);
        }
    }
  while (1);

  if (x && x != f)
     free(x);
  release (y);
  release (D);
  release (D2);
  return z;

OutOfMemory:
  if (x && x != f)
      free(x);
  release (y);
  release (y);
  release (D);
  release (D2);

  DOUBLE_TO_LONGBITS (z) = -2;

  return z;
}