summaryrefslogtreecommitdiffstats
path: root/luni/src/main/native/java_lang_StringToReal.cpp
blob: d1902af4c5ced0494b624f30eae4104efc7c0a7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "JNIHelp.h"
#include "JniConstants.h"
#include "JniException.h"
#include "ScopedUtfChars.h"
#include "cbigint.h"

/* ************************* Defines ************************* */

#define LOW_I32_FROM_VAR(u64)     LOW_I32_FROM_LONG64(u64)
#define LOW_I32_FROM_PTR(u64ptr)  LOW_I32_FROM_LONG64_PTR(u64ptr)
#define HIGH_I32_FROM_VAR(u64)    HIGH_I32_FROM_LONG64(u64)
#define HIGH_I32_FROM_PTR(u64ptr) HIGH_I32_FROM_LONG64_PTR(u64ptr)

#define MAX_DOUBLE_ACCURACY_WIDTH 17

#define DEFAULT_DOUBLE_WIDTH MAX_DOUBLE_ACCURACY_WIDTH

#define DOUBLE_INFINITE_LONGBITS (0x7FF0000000000000LL)

#define DOUBLE_MINIMUM_LONGBITS (0x1)

#define DOUBLE_MANTISSA_MASK (0x000FFFFFFFFFFFFFLL)
#define DOUBLE_EXPONENT_MASK (0x7FF0000000000000LL)
#define DOUBLE_NORMAL_MASK   (0x0010000000000000LL)

#define allocateU64(x, n) if (!((x) = reinterpret_cast<uint64_t*>(malloc((n) * sizeof(uint64_t))))) goto OutOfMemory;

/* *********************************************************** */

/* ************************ local data ************************ */
static const jdouble double_tens[] = {
  1.0,
  1.0e1,
  1.0e2,
  1.0e3,
  1.0e4,
  1.0e5,
  1.0e6,
  1.0e7,
  1.0e8,
  1.0e9,
  1.0e10,
  1.0e11,
  1.0e12,
  1.0e13,
  1.0e14,
  1.0e15,
  1.0e16,
  1.0e17,
  1.0e18,
  1.0e19,
  1.0e20,
  1.0e21,
  1.0e22
};
/* *********************************************************** */

/* ************** private function declarations ************** */
static jdouble createDouble1   (JNIEnv* env, uint64_t * f, int32_t length, jint e);
static jdouble doubleAlgorithm (JNIEnv* env, uint64_t * f, int32_t length, jint e,
                                jdouble z);
/* *********************************************************** */

#define doubleTenToTheE(e) (*(double_tens + (e)))
#define DOUBLE_LOG5_OF_TWO_TO_THE_N 23

#define sizeOfTenToTheE(e) (((e) / 19) + 1)

static jdouble createDouble(JNIEnv* env, const char* s, jint e) {
  /* assumes s is a null terminated string with at least one
   * character in it */
  uint64_t def[DEFAULT_DOUBLE_WIDTH];
  uint64_t defBackup[DEFAULT_DOUBLE_WIDTH];
  uint64_t* f;
  uint64_t* fNoOverflow;
  uint64_t* g;
  uint64_t* tempBackup;
  uint32_t overflow;
  jdouble result;
  int32_t index = 1;
  int unprocessedDigits = 0;

  f = def;
  fNoOverflow = defBackup;
  *f = 0;
  tempBackup = g = 0;
  do
    {
      if (*s >= '0' && *s <= '9')
        {
          /* Make a back up of f before appending, so that we can
           * back out of it if there is no more room, i.e. index >
           * MAX_DOUBLE_ACCURACY_WIDTH.
           */
          memcpy (fNoOverflow, f, sizeof (uint64_t) * index);
          overflow =
            simpleAppendDecimalDigitHighPrecision (f, index, *s - '0');
          if (overflow)
            {
              f[index++] = overflow;
              /* There is an overflow, but there is no more room
               * to store the result. We really only need the top 52
               * bits anyway, so we must back out of the overflow,
               * and ignore the rest of the string.
               */
              if (index >= MAX_DOUBLE_ACCURACY_WIDTH)
                {
                  index--;
                  memcpy (f, fNoOverflow, sizeof (uint64_t) * index);
                  break;
                }
              if (tempBackup)
                {
                  fNoOverflow = tempBackup;
                }
            }
        }
      else
        index = -1;
    }
  while (index > 0 && *(++s) != '\0');

  /* We've broken out of the parse loop either because we've reached
   * the end of the string or we've overflowed the maximum accuracy
   * limit of a double. If we still have unprocessed digits in the
   * given string, then there are three possible results:
   *   1. (unprocessed digits + e) == 0, in which case we simply
   *      convert the existing bits that are already parsed
   *   2. (unprocessed digits + e) < 0, in which case we simply
   *      convert the existing bits that are already parsed along
   *      with the given e
   *   3. (unprocessed digits + e) > 0 indicates that the value is
   *      simply too big to be stored as a double, so return Infinity
   */
  if ((unprocessedDigits = strlen (s)) > 0)
    {
      e += unprocessedDigits;
      if (index > -1)
        {
          if (e == 0)
            result = toDoubleHighPrecision (f, index);
          else if (e < 0)
            result = createDouble1 (env, f, index, e);
          else
            {
              DOUBLE_TO_LONGBITS (result) = DOUBLE_INFINITE_LONGBITS;
            }
        }
      else
        {
          LOW_I32_FROM_VAR  (result) = -1;
          HIGH_I32_FROM_VAR (result) = -1;
        }
    }
  else
    {
      if (index > -1)
        {
          if (e == 0)
            result = toDoubleHighPrecision (f, index);
          else
            result = createDouble1 (env, f, index, e);
        }
      else
        {
          LOW_I32_FROM_VAR  (result) = -1;
          HIGH_I32_FROM_VAR (result) = -1;
        }
    }

  return result;
}

static jdouble createDouble1(JNIEnv* env, uint64_t* f, int32_t length, jint e) {
  int32_t numBits;
  jdouble result;

  static const jint APPROX_MIN_MAGNITUDE = -309;
  static const jint APPROX_MAX_MAGNITUDE = 309;

  numBits = highestSetBitHighPrecision (f, length) + 1;
  numBits -= lowestSetBitHighPrecision (f, length);
  if (numBits < 54 && e >= 0 && e < DOUBLE_LOG5_OF_TWO_TO_THE_N)
    {
      return toDoubleHighPrecision (f, length) * doubleTenToTheE (e);
    }
  else if (numBits < 54 && e < 0 && (-e) < DOUBLE_LOG5_OF_TWO_TO_THE_N)
    {
      return toDoubleHighPrecision (f, length) / doubleTenToTheE (-e);
    }
  else if (e >= 0 && e < APPROX_MAX_MAGNITUDE)
    {
      result = toDoubleHighPrecision (f, length) * pow (10.0, e);
    }
  else if (e >= APPROX_MAX_MAGNITUDE)
    {
      /* Convert the partial result to make sure that the
       * non-exponential part is not zero. This check fixes the case
       * where the user enters 0.0e309! */
      result = toDoubleHighPrecision (f, length);
      /* Don't go straight to zero as the fact that x*0 = 0 independent of x might
         cause the algorithm to produce an incorrect result.  Instead try the min value
         first and let it fall to zero if need be. */

      if (result == 0.0)
        {
          DOUBLE_TO_LONGBITS (result) = DOUBLE_MINIMUM_LONGBITS;
        }
      else
        {
          DOUBLE_TO_LONGBITS (result) = DOUBLE_INFINITE_LONGBITS;
          return result;
        }
    }
  else if (e > APPROX_MIN_MAGNITUDE)
    {
      result = toDoubleHighPrecision (f, length) / pow (10.0, -e);
    }

  if (e <= APPROX_MIN_MAGNITUDE)
    {

      result = toDoubleHighPrecision (f, length) * pow (10.0, e + 52);
      result = result * pow (10.0, -52);

    }

  /* Don't go straight to zero as the fact that x*0 = 0 independent of x might
     cause the algorithm to produce an incorrect result.  Instead try the min value
     first and let it fall to zero if need be. */

  if (result == 0.0)
    DOUBLE_TO_LONGBITS (result) = DOUBLE_MINIMUM_LONGBITS;

  return doubleAlgorithm (env, f, length, e, result);
}

/* The algorithm for the function doubleAlgorithm() below can be found
 * in:
 *
 *      "How to Read Floating-Point Numbers Accurately", William D.
 *      Clinger, Proceedings of the ACM SIGPLAN '90 Conference on
 *      Programming Language Design and Implementation, June 20-22,
 *      1990, pp. 92-101.
 */
static jdouble doubleAlgorithm(JNIEnv* env, uint64_t* f, int32_t length, jint e, jdouble z) {
  uint64_t m;
  int32_t k, comparison, comparison2;
  uint64_t* x;
  uint64_t* y;
  uint64_t* D;
  uint64_t* D2;
  int32_t xLength, yLength, DLength, D2Length;

  x = y = D = D2 = 0;
  xLength = yLength = DLength = D2Length = 0;

  do
    {
      m = doubleMantissa (z);
      k = doubleExponent (z);

      if (x && x != f)
          free(x);

      free(y);
      free(D);
      free(D2);

      if (e >= 0 && k >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          timesTenToTheEHighPrecision (x, xLength, e);

          yLength = (k >> 6) + 2;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else if (e >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          timesTenToTheEHighPrecision (x, xLength, e);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = 1;
          allocateU64 (y, 1);
          *y = m;
        }
      else if (k >= 0)
        {
          xLength = length;
          x = f;

          yLength = sizeOfTenToTheE (-e) + 2 + (k >> 6);
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else
        {
          xLength = length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = sizeOfTenToTheE (-e) + 1;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
        }

      comparison = compareHighPrecision (x, xLength, y, yLength);
      if (comparison > 0)
        {                       /* x > y */
          DLength = xLength;
          allocateU64 (D, DLength);
          memcpy (D, x, DLength * sizeof (uint64_t));
          subtractHighPrecision (D, DLength, y, yLength);
        }
      else if (comparison)
        {                       /* y > x */
          DLength = yLength;
          allocateU64 (D, DLength);
          memcpy (D, y, DLength * sizeof (uint64_t));
          subtractHighPrecision (D, DLength, x, xLength);
        }
      else
        {                       /* y == x */
          DLength = 1;
          allocateU64 (D, 1);
          *D = 0;
        }

      D2Length = DLength + 1;
      allocateU64 (D2, D2Length);
      m <<= 1;
      multiplyHighPrecision (D, DLength, &m, 1, D2, D2Length);
      m >>= 1;

      comparison2 = compareHighPrecision (D2, D2Length, y, yLength);
      if (comparison2 < 0)
        {
          if (comparison < 0 && m == DOUBLE_NORMAL_MASK
              && DOUBLE_TO_LONGBITS(z) != DOUBLE_NORMAL_MASK)
            {
              simpleShiftLeftHighPrecision (D2, D2Length, 1);
              if (compareHighPrecision (D2, D2Length, y, yLength) > 0)
                {
                  --DOUBLE_TO_LONGBITS (z);
                }
              else
                {
                  break;
                }
            }
          else
            {
              break;
            }
        }
      else if (comparison2 == 0)
        {
          if ((LOW_U32_FROM_VAR (m) & 1) == 0)
            {
              if (comparison < 0 && m == DOUBLE_NORMAL_MASK)
                {
                  --DOUBLE_TO_LONGBITS (z);
                }
              else
                {
                  break;
                }
            }
          else if (comparison < 0)
            {
              --DOUBLE_TO_LONGBITS (z);
              break;
            }
          else
            {
              ++DOUBLE_TO_LONGBITS (z);
              break;
            }
        }
      else if (comparison < 0)
        {
          --DOUBLE_TO_LONGBITS (z);
        }
      else
        {
          if (DOUBLE_TO_LONGBITS (z) == DOUBLE_INFINITE_LONGBITS)
            break;
          ++DOUBLE_TO_LONGBITS (z);
        }
    }
  while (1);

  if (x && x != f)
     free(x);
  free(y);
  free(D);
  free(D2);
  return z;

OutOfMemory:
  if (x && x != f)
      free(x);
  free(y);
  free(D);
  free(D2);
  jniThrowOutOfMemoryError(env, NULL);
  return z;
}



#define MAX_FLOAT_ACCURACY_WIDTH 8

#define DEFAULT_FLOAT_WIDTH MAX_FLOAT_ACCURACY_WIDTH

static jfloat createFloat1(JNIEnv* env, uint64_t* f, int32_t length, jint e);
static jfloat floatAlgorithm(JNIEnv* env, uint64_t* f, int32_t length, jint e, jfloat z);

static const uint32_t float_tens[] = {
  0x3f800000,
  0x41200000,
  0x42c80000,
  0x447a0000,
  0x461c4000,
  0x47c35000,
  0x49742400,
  0x4b189680,
  0x4cbebc20,
  0x4e6e6b28,
  0x501502f9                    /* 10 ^ 10 in float */
};

#define floatTenToTheE(e) (*reinterpret_cast<const jfloat*>(float_tens + (e)))
#define FLOAT_LOG5_OF_TWO_TO_THE_N 11

#define FLOAT_INFINITE_INTBITS (0x7F800000)
#define FLOAT_MINIMUM_INTBITS (1)

#define FLOAT_MANTISSA_MASK (0x007FFFFF)
#define FLOAT_EXPONENT_MASK (0x7F800000)
#define FLOAT_NORMAL_MASK   (0x00800000)

static jfloat createFloat(JNIEnv* env, const char* s, jint e) {
  /* assumes s is a null terminated string with at least one
   * character in it */
  uint64_t def[DEFAULT_FLOAT_WIDTH];
  uint64_t defBackup[DEFAULT_FLOAT_WIDTH];
  uint64_t* f;
  uint64_t* fNoOverflow;
  uint64_t* g;
  uint64_t* tempBackup;
  uint32_t overflow;
  jfloat result;
  int32_t index = 1;
  int unprocessedDigits = 0;

  f = def;
  fNoOverflow = defBackup;
  *f = 0;
  tempBackup = g = 0;
  do
    {
      if (*s >= '0' && *s <= '9')
        {
          /* Make a back up of f before appending, so that we can
           * back out of it if there is no more room, i.e. index >
           * MAX_FLOAT_ACCURACY_WIDTH.
           */
          memcpy (fNoOverflow, f, sizeof (uint64_t) * index);
          overflow =
            simpleAppendDecimalDigitHighPrecision (f, index, *s - '0');
          if (overflow)
            {

              f[index++] = overflow;
              /* There is an overflow, but there is no more room
               * to store the result. We really only need the top 52
               * bits anyway, so we must back out of the overflow,
               * and ignore the rest of the string.
               */
              if (index >= MAX_FLOAT_ACCURACY_WIDTH)
                {
                  index--;
                  memcpy (f, fNoOverflow, sizeof (uint64_t) * index);
                  break;
                }
              if (tempBackup)
                {
                  fNoOverflow = tempBackup;
                }
            }
        }
      else
        index = -1;
    }
  while (index > 0 && *(++s) != '\0');

  /* We've broken out of the parse loop either because we've reached
   * the end of the string or we've overflowed the maximum accuracy
   * limit of a double. If we still have unprocessed digits in the
   * given string, then there are three possible results:
   *   1. (unprocessed digits + e) == 0, in which case we simply
   *      convert the existing bits that are already parsed
   *   2. (unprocessed digits + e) < 0, in which case we simply
   *      convert the existing bits that are already parsed along
   *      with the given e
   *   3. (unprocessed digits + e) > 0 indicates that the value is
   *      simply too big to be stored as a double, so return Infinity
   */
  if ((unprocessedDigits = strlen (s)) > 0)
    {
      e += unprocessedDigits;
      if (index > -1)
        {
          if (e <= 0)
            {
              result = createFloat1 (env, f, index, e);
            }
          else
            {
              FLOAT_TO_INTBITS (result) = FLOAT_INFINITE_INTBITS;
            }
        }
      else
        {
          result = INTBITS_TO_FLOAT(index);
        }
    }
  else
    {
      if (index > -1)
        {
          result = createFloat1 (env, f, index, e);
        }
      else
        {
          result = INTBITS_TO_FLOAT(index);
        }
    }

  return result;
}

static jfloat createFloat1 (JNIEnv* env, uint64_t* f, int32_t length, jint e) {
  int32_t numBits;
  jdouble dresult;
  jfloat result;

  numBits = highestSetBitHighPrecision (f, length) + 1;
  if (numBits < 25 && e >= 0 && e < FLOAT_LOG5_OF_TWO_TO_THE_N)
    {
      return ((jfloat) LOW_I32_FROM_PTR (f)) * floatTenToTheE (e);
    }
  else if (numBits < 25 && e < 0 && (-e) < FLOAT_LOG5_OF_TWO_TO_THE_N)
    {
      return ((jfloat) LOW_I32_FROM_PTR (f)) / floatTenToTheE (-e);
    }
  else if (e >= 0 && e < 39)
    {
      result = (jfloat) (toDoubleHighPrecision (f, length) * pow (10.0, (double) e));
    }
  else if (e >= 39)
    {
      /* Convert the partial result to make sure that the
       * non-exponential part is not zero. This check fixes the case
       * where the user enters 0.0e309! */
      result = (jfloat) toDoubleHighPrecision (f, length);

      if (result == 0.0)

        FLOAT_TO_INTBITS (result) = FLOAT_MINIMUM_INTBITS;
      else
        FLOAT_TO_INTBITS (result) = FLOAT_INFINITE_INTBITS;
    }
  else if (e > -309)
    {
      int dexp;
      uint32_t fmant, fovfl;
      uint64_t dmant;
      dresult = toDoubleHighPrecision (f, length) / pow (10.0, (double) -e);
      if (IS_DENORMAL_DBL (dresult))
        {
          FLOAT_TO_INTBITS (result) = 0;
          return result;
        }
      dexp = doubleExponent (dresult) + 51;
      dmant = doubleMantissa (dresult);
      /* Is it too small to be represented by a single-precision
       * float? */
      if (dexp <= -155)
        {
          FLOAT_TO_INTBITS (result) = 0;
          return result;
        }
      /* Is it a denormalized single-precision float? */
      if ((dexp <= -127) && (dexp > -155))
        {
          /* Only interested in 24 msb bits of the 53-bit double mantissa */
          fmant = (uint32_t) (dmant >> 29);
          fovfl = ((uint32_t) (dmant & 0x1FFFFFFF)) << 3;
          while ((dexp < -127) && ((fmant | fovfl) != 0))
            {
              if ((fmant & 1) != 0)
                {
                  fovfl |= 0x80000000;
                }
              fovfl >>= 1;
              fmant >>= 1;
              dexp++;
            }
          if ((fovfl & 0x80000000) != 0)
            {
              if ((fovfl & 0x7FFFFFFC) != 0)
                {
                  fmant++;
                }
              else if ((fmant & 1) != 0)
                {
                  fmant++;
                }
            }
          else if ((fovfl & 0x40000000) != 0)
            {
              if ((fovfl & 0x3FFFFFFC) != 0)
                {
                  fmant++;
                }
            }
          FLOAT_TO_INTBITS (result) = fmant;
        }
      else
        {
          result = (jfloat) dresult;
        }
    }

  /* Don't go straight to zero as the fact that x*0 = 0 independent
   * of x might cause the algorithm to produce an incorrect result.
   * Instead try the min  value first and let it fall to zero if need
   * be.
   */
  if (e <= -309 || FLOAT_TO_INTBITS (result) == 0)
    FLOAT_TO_INTBITS (result) = FLOAT_MINIMUM_INTBITS;

  return floatAlgorithm (env, f, length, e, (jfloat) result);
}

/* The algorithm for the function floatAlgorithm() below can be found
 * in:
 *
 *      "How to Read Floating-Point Numbers Accurately", William D.
 *      Clinger, Proceedings of the ACM SIGPLAN '90 Conference on
 *      Programming Language Design and Implementation, June 20-22,
 *      1990, pp. 92-101.
 */
static jfloat floatAlgorithm(JNIEnv* env, uint64_t* f, int32_t length, jint e, jfloat z) {
  uint64_t m;
  int32_t k, comparison, comparison2;
  uint64_t* x;
  uint64_t* y;
  uint64_t* D;
  uint64_t* D2;
  int32_t xLength, yLength, DLength, D2Length;

  x = y = D = D2 = 0;
  xLength = yLength = DLength = D2Length = 0;

  do
    {
      m = floatMantissa (z);
      k = floatExponent (z);

      if (x && x != f)
          free(x);

      free(y);
      free(D);
      free(D2);

      if (e >= 0 && k >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          timesTenToTheEHighPrecision (x, xLength, e);

          yLength = (k >> 6) + 2;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else if (e >= 0)
        {
          xLength = sizeOfTenToTheE (e) + length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          timesTenToTheEHighPrecision (x, xLength, e);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = 1;
          allocateU64 (y, 1);
          *y = m;
        }
      else if (k >= 0)
        {
          xLength = length;
          x = f;

          yLength = sizeOfTenToTheE (-e) + 2 + (k >> 6);
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
          simpleShiftLeftHighPrecision (y, yLength, k);
        }
      else
        {
          xLength = length + ((-k) >> 6) + 1;
          allocateU64 (x, xLength);
          memset (x + length, 0, sizeof (uint64_t) * (xLength - length));
          memcpy (x, f, sizeof (uint64_t) * length);
          simpleShiftLeftHighPrecision (x, xLength, -k);

          yLength = sizeOfTenToTheE (-e) + 1;
          allocateU64 (y, yLength);
          memset (y + 1, 0, sizeof (uint64_t) * (yLength - 1));
          *y = m;
          timesTenToTheEHighPrecision (y, yLength, -e);
        }

      comparison = compareHighPrecision (x, xLength, y, yLength);
      if (comparison > 0)
        {                       /* x > y */
          DLength = xLength;
          allocateU64 (D, DLength);
          memcpy (D, x, DLength * sizeof (uint64_t));
          subtractHighPrecision (D, DLength, y, yLength);
        }
      else if (comparison)
        {                       /* y > x */
          DLength = yLength;
          allocateU64 (D, DLength);
          memcpy (D, y, DLength * sizeof (uint64_t));
          subtractHighPrecision (D, DLength, x, xLength);
        }
      else
        {                       /* y == x */
          DLength = 1;
          allocateU64 (D, 1);
          *D = 0;
        }

      D2Length = DLength + 1;
      allocateU64 (D2, D2Length);
      m <<= 1;
      multiplyHighPrecision (D, DLength, &m, 1, D2, D2Length);
      m >>= 1;

      comparison2 = compareHighPrecision (D2, D2Length, y, yLength);
      if (comparison2 < 0)
        {
          if (comparison < 0 && m == FLOAT_NORMAL_MASK
              && FLOAT_TO_INTBITS(z) != FLOAT_NORMAL_MASK)
            {
              simpleShiftLeftHighPrecision (D2, D2Length, 1);
              if (compareHighPrecision (D2, D2Length, y, yLength) > 0)
                {
                  --FLOAT_TO_INTBITS (z);
                }
              else
                {
                  break;
                }
            }
          else
            {
              break;
            }
        }
      else if (comparison2 == 0)
        {
          if ((m & 1) == 0)
            {
              if (comparison < 0 && m == FLOAT_NORMAL_MASK)
                {
                  --FLOAT_TO_INTBITS (z);
                }
              else
                {
                  break;
                }
            }
          else if (comparison < 0)
            {
              --FLOAT_TO_INTBITS (z);
              break;
            }
          else
            {
              ++FLOAT_TO_INTBITS (z);
              break;
            }
        }
      else if (comparison < 0)
        {
          --FLOAT_TO_INTBITS (z);
        }
      else
        {
          if (FLOAT_TO_INTBITS (z) == FLOAT_EXPONENT_MASK)
            break;
          ++FLOAT_TO_INTBITS (z);
        }
    }
  while (1);

  if (x && x != f)
      free(x);
  free(y);
  free(D);
  free(D2);
  return z;

OutOfMemory:
  if (x && x != f)
      free(x);
  free(y);
  free(D);
  free(D2);
  jniThrowOutOfMemoryError(env, NULL);
  return z;
}

static jfloat StringToReal_parseFltImpl(JNIEnv* env, jclass, jstring s, jint e) {
    ScopedUtfChars str(env, s);
    if (str.c_str() == NULL) {
        return 0.0;
    }
    return createFloat(env, str.c_str(), e);
}

static jdouble StringToReal_parseDblImpl(JNIEnv* env, jclass, jstring s, jint e) {
    ScopedUtfChars str(env, s);
    if (str.c_str() == NULL) {
        return 0.0;
    }
    return createDouble(env, str.c_str(), e);
}

static JNINativeMethod gMethods[] = {
    NATIVE_METHOD(StringToReal, parseFltImpl, "(Ljava/lang/String;I)F"),
    NATIVE_METHOD(StringToReal, parseDblImpl, "(Ljava/lang/String;I)D"),
};
void register_java_lang_StringToReal(JNIEnv* env) {
    jniRegisterNativeMethods(env, "java/lang/StringToReal", gMethods, NELEM(gMethods));
}