1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.cyanogenmod.trebuchet;
import android.animation.Animator;
import android.animation.AnimatorListenerAdapter;
import android.animation.AnimatorSet;
import android.animation.TimeInterpolator;
import android.animation.ValueAnimator;
import android.animation.ValueAnimator.AnimatorUpdateListener;
import android.content.Context;
import android.content.res.Resources;
import android.content.res.TypedArray;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.PorterDuff;
import android.graphics.PorterDuffXfermode;
import android.graphics.Rect;
import android.graphics.drawable.ColorDrawable;
import android.graphics.drawable.Drawable;
import android.graphics.drawable.NinePatchDrawable;
import android.os.Parcelable;
import android.util.AttributeSet;
import android.util.Log;
import android.util.SparseArray;
import android.view.MotionEvent;
import android.view.View;
import android.view.ViewDebug;
import android.view.ViewGroup;
import android.view.animation.Animation;
import android.view.animation.DecelerateInterpolator;
import android.view.animation.LayoutAnimationController;
import com.cyanogenmod.trebuchet.FolderIcon.FolderRingAnimator;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Stack;
public class CellLayout extends ViewGroup {
private static final String TAG = "Trebuchet.CellLayout";
private Launcher mLauncher;
private int mCellWidth;
private int mCellHeight;
// Save values before applying grid-size related changes. We may need to reset it.
private int mOriginalCellWidth;
private int mOriginalCellHeight;
private int mCountX;
private int mCountY;
private int mOriginalWidthGap;
private int mOriginalHeightGap;
private int mWidthGap;
private int mHeightGap;
private int mMaxGap;
private boolean mScrollingTransformsDirty = false;
private final Rect mRect = new Rect();
private final CellInfo mCellInfo = new CellInfo();
// These are temporary variables to prevent having to allocate a new object just to
// return an (x, y) value from helper functions. Do NOT use them to maintain other state.
private final int[] mTmpXY = new int[2];
private final int[] mTmpPoint = new int[2];
int[] mTempLocation = new int[2];
boolean[][] mOccupied;
boolean[][] mTmpOccupied;
private boolean mLastDownOnOccupiedCell = false;
private OnTouchListener mInterceptTouchListener;
private ArrayList<FolderRingAnimator> mFolderOuterRings = new ArrayList<FolderRingAnimator>();
private int[] mFolderLeaveBehindCell = {-1, -1};
private int mForegroundAlpha = 0;
private float mBackgroundAlpha;
private float mBackgroundAlphaMultiplier = 1.0f;
private Drawable mNormalBackground;
private Drawable mActiveGlowBackground;
private Drawable mOverScrollForegroundDrawable;
private Drawable mOverScrollLeft;
private Drawable mOverScrollRight;
private Rect mBackgroundRect;
private Rect mForegroundRect;
private int mForegroundPadding;
// If we're actively dragging something over this screen, mIsDragOverlapping is true
private boolean mIsDragOverlapping = false;
private final Point mDragCenter = new Point();
// These arrays are used to implement the drag visualization on x-large screens.
// They are used as circular arrays, indexed by mDragOutlineCurrent.
private Rect[] mDragOutlines = new Rect[4];
private float[] mDragOutlineAlphas = new float[mDragOutlines.length];
private InterruptibleInOutAnimator[] mDragOutlineAnims =
new InterruptibleInOutAnimator[mDragOutlines.length];
// Used as an index into the above 3 arrays; indicates which is the most current value.
private int mDragOutlineCurrent = 0;
private final Paint mDragOutlinePaint = new Paint();
private BubbleTextView mPressedOrFocusedIcon;
private HashMap<CellLayout.LayoutParams, Animator> mReorderAnimators = new
HashMap<CellLayout.LayoutParams, Animator>();
private HashMap<View, ReorderHintAnimation>
mShakeAnimators = new HashMap<View, ReorderHintAnimation>();
private boolean mItemPlacementDirty = false;
// When a drag operation is in progress, holds the nearest cell to the touch point
private final int[] mDragCell = new int[2];
private boolean mDragging = false;
private TimeInterpolator mEaseOutInterpolator;
private ShortcutAndWidgetContainer mShortcutsAndWidgets;
private float mChildrenScale = 1f;
public static final int MODE_DRAG_OVER = 0;
public static final int MODE_ON_DROP = 1;
public static final int MODE_ON_DROP_EXTERNAL = 2;
public static final int MODE_ACCEPT_DROP = 3;
private static final boolean DESTRUCTIVE_REORDER = false;
private static final boolean DEBUG_VISUALIZE_OCCUPIED = false;
static final int LANDSCAPE = 0;
static final int PORTRAIT = 1;
private static final float REORDER_HINT_MAGNITUDE = 0.12f;
private static final int REORDER_ANIMATION_DURATION = 150;
private float mReorderHintAnimationMagnitude;
private ArrayList<View> mIntersectingViews = new ArrayList<View>();
private Rect mOccupiedRect = new Rect();
private int[] mDirectionVector = new int[2];
int[] mPreviousReorderDirection = new int[2];
private static final int INVALID_DIRECTION = -100;
private DropTarget.DragEnforcer mDragEnforcer;
private final static PorterDuffXfermode sAddBlendMode =
new PorterDuffXfermode(PorterDuff.Mode.ADD);
private final static Paint sPaint = new Paint();
public CellLayout(Context context) {
this(context, null);
}
public CellLayout(Context context, AttributeSet attrs) {
this(context, attrs, 0);
}
public CellLayout(Context context, AttributeSet attrs, int defStyle) {
super(context, attrs, defStyle);
mDragEnforcer = new DropTarget.DragEnforcer(context);
// A ViewGroup usually does not draw, but CellLayout needs to draw a rectangle to show
// the user where a dragged item will land when dropped.
setWillNotDraw(false);
mLauncher = (Launcher) context;
TypedArray a = context.obtainStyledAttributes(attrs, R.styleable.CellLayout, defStyle, 0);
mCellWidth = mOriginalCellWidth = a.getDimensionPixelSize(R.styleable.CellLayout_cellWidth, 10);
mCellHeight = mOriginalCellHeight = a.getDimensionPixelSize(R.styleable.CellLayout_cellHeight, 10);
mWidthGap = mOriginalWidthGap = a.getDimensionPixelSize(R.styleable.CellLayout_widthGap, 0);
mHeightGap = mOriginalHeightGap = a.getDimensionPixelSize(R.styleable.CellLayout_heightGap, 0);
mMaxGap = a.getDimensionPixelSize(R.styleable.CellLayout_maxGap, 0);
mCountX = LauncherModel.getWorkspaceCellCountX();
mCountY = LauncherModel.getWorkspaceCellCountY();
mOccupied = new boolean[mCountX][mCountY];
mTmpOccupied = new boolean[mCountX][mCountY];
mPreviousReorderDirection[0] = INVALID_DIRECTION;
mPreviousReorderDirection[1] = INVALID_DIRECTION;
a.recycle();
setAlwaysDrawnWithCacheEnabled(false);
final Resources res = getResources();
mNormalBackground = res.getDrawable(R.drawable.homescreen_blue_normal_holo);
mActiveGlowBackground = res.getDrawable(R.drawable.homescreen_blue_strong_holo);
mOverScrollLeft = res.getDrawable(R.drawable.overscroll_glow_left);
mOverScrollRight = res.getDrawable(R.drawable.overscroll_glow_right);
mForegroundPadding =
res.getDimensionPixelSize(R.dimen.workspace_overscroll_drawable_padding);
mReorderHintAnimationMagnitude = (REORDER_HINT_MAGNITUDE *
res.getDimensionPixelSize(R.dimen.app_icon_size));
mNormalBackground.setFilterBitmap(true);
mActiveGlowBackground.setFilterBitmap(true);
// Initialize the data structures used for the drag visualization.
mEaseOutInterpolator = new DecelerateInterpolator(2.5f); // Quint ease out
mDragCell[0] = mDragCell[1] = -1;
for (int i = 0; i < mDragOutlines.length; i++) {
mDragOutlines[i] = new Rect(-1, -1, -1, -1);
}
// When dragging things around the home screens, we show a green outline of
// where the item will land. The outlines gradually fade out, leaving a trail
// behind the drag path.
// Set up all the animations that are used to implement this fading.
final int duration = res.getInteger(R.integer.config_dragOutlineFadeTime);
final float fromAlphaValue = 0;
final float toAlphaValue = (float)res.getInteger(R.integer.config_dragOutlineMaxAlpha);
Arrays.fill(mDragOutlineAlphas, fromAlphaValue);
for (int i = 0; i < mDragOutlineAnims.length; i++) {
final InterruptibleInOutAnimator anim =
new InterruptibleInOutAnimator(duration, fromAlphaValue, toAlphaValue);
anim.getAnimator().setInterpolator(mEaseOutInterpolator);
final int thisIndex = i;
anim.getAnimator().addUpdateListener(new AnimatorUpdateListener() {
public void onAnimationUpdate(ValueAnimator animation) {
final Bitmap outline = (Bitmap)anim.getTag();
// If an animation is started and then stopped very quickly, we can still
// get spurious updates we've cleared the tag. Guard against this.
if (outline == null) {
@SuppressWarnings("all") // suppress dead code warning
final boolean debug = false;
if (debug) {
Object val = animation.getAnimatedValue();
Log.d(TAG, "anim " + thisIndex + " update: " + val +
", isStopped " + anim.isStopped());
}
// Try to prevent it from continuing to run
animation.cancel();
} else {
mDragOutlineAlphas[thisIndex] = (Float) animation.getAnimatedValue();
CellLayout.this.invalidate(mDragOutlines[thisIndex]);
}
}
});
// The animation holds a reference to the drag outline bitmap as long is it's
// running. This way the bitmap can be GCed when the animations are complete.
anim.getAnimator().addListener(new AnimatorListenerAdapter() {
@Override
public void onAnimationEnd(Animator animation) {
if ((Float) ((ValueAnimator) animation).getAnimatedValue() == 0f) {
anim.setTag(null);
}
}
});
mDragOutlineAnims[i] = anim;
}
mBackgroundRect = new Rect();
mForegroundRect = new Rect();
mShortcutsAndWidgets = new ShortcutAndWidgetContainer(context);
if (!LauncherApplication.isScreenLarge()){
mCellWidth = (mCellWidth * res.getInteger(R.integer.default_cell_count_x)) / mCountX;
mCellHeight = (mCellHeight * res.getInteger(R.integer.default_cell_count_y)) / mCountY;
}
mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap);
addView(mShortcutsAndWidgets);
}
static int widthInPortrait(Resources r, int numCells) {
// We use this method from Workspace to figure out how many rows/columns Launcher should
// have. We ignore the left/right padding on CellLayout because it turns out in our design
// the padding extends outside the visible screen size, but it looked fine anyway.
int cellWidth = r.getDimensionPixelSize(R.dimen.workspace_cell_width);
int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap),
r.getDimensionPixelSize(R.dimen.workspace_height_gap));
return minGap * (numCells - 1) + cellWidth * numCells;
}
static int heightInLandscape(Resources r, int numCells) {
// We use this method from Workspace to figure out how many rows/columns Launcher should
// have. We ignore the left/right padding on CellLayout because it turns out in our design
// the padding extends outside the visible screen size, but it looked fine anyway.
int cellHeight = r.getDimensionPixelSize(R.dimen.workspace_cell_height);
int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap),
r.getDimensionPixelSize(R.dimen.workspace_height_gap));
return minGap * (numCells - 1) + cellHeight * numCells;
}
public void enableHardwareLayers() {
mShortcutsAndWidgets.setLayerType(LAYER_TYPE_HARDWARE, sPaint);
}
public void disableHardwareLayers() {
mShortcutsAndWidgets.setLayerType(LAYER_TYPE_NONE, sPaint);
}
public void buildHardwareLayer() {
mShortcutsAndWidgets.buildLayer();
}
public void setChildrenScale(float childrenScale) {
mChildrenScale = childrenScale;
}
public float getChildrenScale() {
return mChildrenScale;
}
public void setGridSize(int x, int y) {
mCountX = x;
mCountY = y;
mOccupied = new boolean[mCountX][mCountY];
mTmpOccupied = new boolean[mCountX][mCountY];
mTempRectStack.clear();
// Reset scaling if the grid has been modified. This is a folder or the hotseat
mCellWidth = mOriginalCellWidth;
mCellHeight = mOriginalCellHeight;
mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap);
requestLayout();
}
void setCellDimensions(int cellWidth, int cellHeight, int widthGap, int heightGap) {
mCellWidth = cellWidth;
mCellHeight = cellHeight;
mWidthGap = widthGap;
mHeightGap = heightGap;
mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap);
requestLayout();
}
private void invalidateBubbleTextView(BubbleTextView icon) {
final int padding = icon.getPressedOrFocusedBackgroundPadding();
invalidate(icon.getLeft() + getPaddingLeft() - padding,
icon.getTop() + getPaddingTop() - padding,
icon.getRight() + getPaddingLeft() + padding,
icon.getBottom() + getPaddingTop() + padding);
}
void setOverScrollAmount(float r, boolean left) {
if (left && mOverScrollForegroundDrawable != mOverScrollLeft) {
mOverScrollForegroundDrawable = mOverScrollLeft;
} else if (!left && mOverScrollForegroundDrawable != mOverScrollRight) {
mOverScrollForegroundDrawable = mOverScrollRight;
}
mForegroundAlpha = Math.round((r * 255));
mOverScrollForegroundDrawable.setAlpha(mForegroundAlpha);
invalidate();
}
void setPressedOrFocusedIcon(BubbleTextView icon) {
// We draw the pressed or focused BubbleTextView's background in CellLayout because it
// requires an expanded clip rect (due to the glow's blur radius)
BubbleTextView oldIcon = mPressedOrFocusedIcon;
mPressedOrFocusedIcon = icon;
if (oldIcon != null) {
invalidateBubbleTextView(oldIcon);
}
if (mPressedOrFocusedIcon != null) {
invalidateBubbleTextView(mPressedOrFocusedIcon);
}
}
void setIsDragOverlapping(boolean isDragOverlapping) {
if (mIsDragOverlapping != isDragOverlapping) {
mIsDragOverlapping = isDragOverlapping;
invalidate();
}
}
boolean getIsDragOverlapping() {
return mIsDragOverlapping;
}
protected void setOverscrollTransformsDirty(boolean dirty) {
mScrollingTransformsDirty = dirty;
}
protected void resetOverscrollTransforms() {
if (mScrollingTransformsDirty) {
setOverscrollTransformsDirty(false);
setTranslationX(0);
setRotationY(0);
// It doesn't matter if we pass true or false here, the important thing is that we
// pass 0, which results in the overscroll drawable not being drawn any more.
setOverScrollAmount(0, false);
setPivotX(getMeasuredWidth() / 2);
setPivotY(getMeasuredHeight() / 2);
setCameraDistance(1280 * LauncherApplication.getScreenDensity());
}
}
public void scaleRect(Rect r, float scale) {
if (scale != 1.0f) {
r.left = (int) (r.left * scale + 0.5f);
r.top = (int) (r.top * scale + 0.5f);
r.right = (int) (r.right * scale + 0.5f);
r.bottom = (int) (r.bottom * scale + 0.5f);
}
}
Rect temp = new Rect();
void scaleRectAboutCenter(Rect in, Rect out, float scale) {
int cx = in.centerX();
int cy = in.centerY();
out.set(in);
out.offset(-cx, -cy);
scaleRect(out, scale);
out.offset(cx, cy);
}
@Override
protected void onDraw(Canvas canvas) {
// When we're large, we are either drawn in a "hover" state (ie when dragging an item to
// a neighboring page) or with just a normal background (if backgroundAlpha > 0.0f)
// When we're small, we are either drawn normally or in the "accepts drops" state (during
// a drag). However, we also drag the mini hover background *over* one of those two
// backgrounds
if (mBackgroundAlpha > 0.0f) {
Drawable bg;
if (mIsDragOverlapping) {
// In the mini case, we draw the active_glow bg *over* the active background
bg = mActiveGlowBackground;
} else {
bg = mNormalBackground;
}
bg.setAlpha((int) (mBackgroundAlpha * mBackgroundAlphaMultiplier * 255));
bg.setBounds(mBackgroundRect);
bg.draw(canvas);
}
final Paint paint = mDragOutlinePaint;
for (int i = 0; i < mDragOutlines.length; i++) {
final float alpha = mDragOutlineAlphas[i];
if (alpha > 0) {
final Rect r = mDragOutlines[i];
scaleRectAboutCenter(r, temp, getChildrenScale());
final Bitmap b = (Bitmap) mDragOutlineAnims[i].getTag();
paint.setAlpha((int)(alpha + .5f));
canvas.drawBitmap(b, null, temp, paint);
}
}
// We draw the pressed or focused BubbleTextView's background in CellLayout because it
// requires an expanded clip rect (due to the glow's blur radius)
if (mPressedOrFocusedIcon != null) {
final int padding = mPressedOrFocusedIcon.getPressedOrFocusedBackgroundPadding();
final Bitmap b = mPressedOrFocusedIcon.getPressedOrFocusedBackground();
if (b != null) {
canvas.drawBitmap(b,
mPressedOrFocusedIcon.getLeft() + getPaddingLeft() - padding,
mPressedOrFocusedIcon.getTop() + getPaddingTop() - padding,
null);
}
}
if (DEBUG_VISUALIZE_OCCUPIED) {
int[] pt = new int[2];
ColorDrawable cd = new ColorDrawable(Color.RED);
cd.setBounds(0, 0, mCellWidth, mCellHeight);
for (int i = 0; i < mCountX; i++) {
for (int j = 0; j < mCountY; j++) {
if (mOccupied[i][j]) {
cellToPoint(i, j, pt);
canvas.save();
canvas.translate(pt[0], pt[1]);
cd.draw(canvas);
canvas.restore();
}
}
}
}
int previewOffset = FolderRingAnimator.sPreviewSize;
// The folder outer / inner ring image(s)
for (FolderRingAnimator ringAnimator : mFolderOuterRings) {
// Draw outer ring
Drawable d = FolderRingAnimator.sSharedOuterRingDrawable;
int width = (int) ringAnimator.getOuterRingSize();
int height = width;
cellToPoint(ringAnimator.mCellX, ringAnimator.mCellY, mTempLocation);
int centerX = mTempLocation[0] + mCellWidth / 2;
int centerY = mTempLocation[1] + previewOffset / 2;
canvas.save();
canvas.translate(centerX - width / 2, centerY - height / 2);
d.setBounds(0, 0, width, height);
d.draw(canvas);
canvas.restore();
// Draw inner ring
d = FolderRingAnimator.sSharedInnerRingDrawable;
width = (int) ringAnimator.getInnerRingSize();
height = width;
cellToPoint(ringAnimator.mCellX, ringAnimator.mCellY, mTempLocation);
centerX = mTempLocation[0] + mCellWidth / 2;
centerY = mTempLocation[1] + previewOffset / 2;
canvas.save();
canvas.translate(centerX - width / 2, centerY - width / 2);
d.setBounds(0, 0, width, height);
d.draw(canvas);
canvas.restore();
}
if (mFolderLeaveBehindCell[0] >= 0 && mFolderLeaveBehindCell[1] >= 0) {
Drawable d = FolderIcon.sSharedFolderLeaveBehind;
int width = d.getIntrinsicWidth();
int height = d.getIntrinsicHeight();
cellToPoint(mFolderLeaveBehindCell[0], mFolderLeaveBehindCell[1], mTempLocation);
int centerX = mTempLocation[0] + mCellWidth / 2;
int centerY = mTempLocation[1] + previewOffset / 2;
canvas.save();
canvas.translate(centerX - width / 2, centerY - width / 2);
d.setBounds(0, 0, width, height);
d.draw(canvas);
canvas.restore();
}
}
@Override
protected void dispatchDraw(Canvas canvas) {
super.dispatchDraw(canvas);
if (mForegroundAlpha > 0) {
mOverScrollForegroundDrawable.setBounds(mForegroundRect);
Paint p = ((NinePatchDrawable) mOverScrollForegroundDrawable).getPaint();
p.setXfermode(sAddBlendMode);
mOverScrollForegroundDrawable.draw(canvas);
p.setXfermode(null);
}
}
public void showFolderAccept(FolderRingAnimator fra) {
mFolderOuterRings.add(fra);
}
public void hideFolderAccept(FolderRingAnimator fra) {
if (mFolderOuterRings.contains(fra)) {
mFolderOuterRings.remove(fra);
}
invalidate();
}
public void setFolderLeaveBehindCell(int x, int y) {
mFolderLeaveBehindCell[0] = x;
mFolderLeaveBehindCell[1] = y;
invalidate();
}
public void clearFolderLeaveBehind() {
mFolderLeaveBehindCell[0] = -1;
mFolderLeaveBehindCell[1] = -1;
invalidate();
}
@Override
public boolean shouldDelayChildPressedState() {
return false;
}
public void restoreInstanceState(SparseArray<Parcelable> states) {
dispatchRestoreInstanceState(states);
}
@Override
public void cancelLongPress() {
super.cancelLongPress();
// Cancel long press for all children
final int count = getChildCount();
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
child.cancelLongPress();
}
}
public void setOnInterceptTouchListener(View.OnTouchListener listener) {
mInterceptTouchListener = listener;
}
int getCountX() {
return mCountX;
}
int getCountY() {
return mCountY;
}
public boolean addViewToCellLayout(View child, int index, int childId, LayoutParams params,
boolean markCells) {
final LayoutParams lp = params;
if (child instanceof BubbleTextView) {
BubbleTextView bubbleChild = (BubbleTextView) child;
Resources res = getResources();
bubbleChild.setTextColor(res.getColor(R.color.workspace_icon_text_color));
}
child.setScaleX(getChildrenScale());
child.setScaleY(getChildrenScale());
// Generate an id for each view, this assumes we have at most 256x256 cells
// per workspace screen
if (lp.cellX >= 0 && lp.cellX <= mCountX - 1 && lp.cellY >= 0 && lp.cellY <= mCountY - 1) {
// If the horizontal or vertical span is set to -1, it is taken to
// mean that it spans the extent of the CellLayout
if (lp.cellHSpan < 0) lp.cellHSpan = mCountX;
if (lp.cellVSpan < 0) lp.cellVSpan = mCountY;
child.setId(childId);
mShortcutsAndWidgets.addView(child, index, lp);
if (markCells) markCellsAsOccupiedForView(child);
return true;
}
return false;
}
@Override
public void removeAllViews() {
clearOccupiedCells();
mShortcutsAndWidgets.removeAllViews();
}
@Override
public void removeAllViewsInLayout() {
if (mShortcutsAndWidgets.getChildCount() > 0) {
clearOccupiedCells();
mShortcutsAndWidgets.removeAllViewsInLayout();
}
}
public void removeViewWithoutMarkingCells(View view) {
mShortcutsAndWidgets.removeView(view);
}
@Override
public void removeView(View view) {
markCellsAsUnoccupiedForView(view);
mShortcutsAndWidgets.removeView(view);
}
@Override
public void removeViewAt(int index) {
markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(index));
mShortcutsAndWidgets.removeViewAt(index);
}
@Override
public void removeViewInLayout(View view) {
markCellsAsUnoccupiedForView(view);
mShortcutsAndWidgets.removeViewInLayout(view);
}
@Override
public void removeViews(int start, int count) {
for (int i = start; i < start + count; i++) {
markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i));
}
mShortcutsAndWidgets.removeViews(start, count);
}
@Override
public void removeViewsInLayout(int start, int count) {
for (int i = start; i < start + count; i++) {
markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i));
}
mShortcutsAndWidgets.removeViewsInLayout(start, count);
}
@Override
protected void onAttachedToWindow() {
super.onAttachedToWindow();
mCellInfo.screen = ((ViewGroup) getParent()).indexOfChild(this);
}
public void setTagToCellInfoForPoint(int touchX, int touchY) {
final CellInfo cellInfo = mCellInfo;
Rect frame = mRect;
final int x = touchX + getScrollX();
final int y = touchY + getScrollY();
final int count = mShortcutsAndWidgets.getChildCount();
boolean found = false;
for (int i = count - 1; i >= 0; i--) {
final View child = mShortcutsAndWidgets.getChildAt(i);
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
if ((child.getVisibility() == VISIBLE || child.getAnimation() != null) &&
lp.isLockedToGrid) {
child.getHitRect(frame);
float scale = child.getScaleX();
frame = new Rect(child.getLeft(), child.getTop(), child.getRight(),
child.getBottom());
// The child hit rect is relative to the CellLayoutChildren parent, so we need to
// offset that by this CellLayout's padding to test an (x,y) point that is relative
// to this view.
frame.offset(getPaddingLeft(), getPaddingTop());
frame.inset((int) (frame.width() * (1f - scale) / 2),
(int) (frame.height() * (1f - scale) / 2));
if (frame.contains(x, y)) {
cellInfo.cell = child;
cellInfo.cellX = lp.cellX;
cellInfo.cellY = lp.cellY;
cellInfo.spanX = lp.cellHSpan;
cellInfo.spanY = lp.cellVSpan;
found = true;
break;
}
}
}
mLastDownOnOccupiedCell = found;
if (!found) {
final int cellXY[] = mTmpXY;
pointToCellExact(x, y, cellXY);
cellInfo.cell = null;
cellInfo.cellX = cellXY[0];
cellInfo.cellY = cellXY[1];
cellInfo.spanX = 1;
cellInfo.spanY = 1;
}
setTag(cellInfo);
}
@Override
public boolean onInterceptTouchEvent(MotionEvent ev) {
// First we clear the tag to ensure that on every touch down we start with a fresh slate,
// even in the case where we return early. Not clearing here was causing bugs whereby on
// long-press we'd end up picking up an item from a previous drag operation.
final int action = ev.getAction();
if (action == MotionEvent.ACTION_DOWN) {
clearTagCellInfo();
}
if (mInterceptTouchListener != null && mInterceptTouchListener.onTouch(this, ev)) {
return true;
}
if (action == MotionEvent.ACTION_DOWN) {
setTagToCellInfoForPoint((int) ev.getX(), (int) ev.getY());
}
return false;
}
private void clearTagCellInfo() {
final CellInfo cellInfo = mCellInfo;
cellInfo.cell = null;
cellInfo.cellX = -1;
cellInfo.cellY = -1;
cellInfo.spanX = 0;
cellInfo.spanY = 0;
setTag(cellInfo);
}
public CellInfo getTag() {
return (CellInfo) super.getTag();
}
/**
* Given a point, return the cell that strictly encloses that point
* @param x X coordinate of the point
* @param y Y coordinate of the point
* @param result Array of 2 ints to hold the x and y coordinate of the cell
*/
void pointToCellExact(int x, int y, int[] result) {
final int hStartPadding = getPaddingLeft();
final int vStartPadding = getPaddingTop();
result[0] = (x - hStartPadding) / (mCellWidth + mWidthGap);
result[1] = (y - vStartPadding) / (mCellHeight + mHeightGap);
final int xAxis = mCountX;
final int yAxis = mCountY;
if (result[0] < 0) result[0] = 0;
if (result[0] >= xAxis) result[0] = xAxis - 1;
if (result[1] < 0) result[1] = 0;
if (result[1] >= yAxis) result[1] = yAxis - 1;
}
/**
* Given a point, return the cell that most closely encloses that point
* @param x X coordinate of the point
* @param y Y coordinate of the point
* @param result Array of 2 ints to hold the x and y coordinate of the cell
*/
void pointToCellRounded(int x, int y, int[] result) {
pointToCellExact(x + (mCellWidth / 2), y + (mCellHeight / 2), result);
}
/**
* Given a cell coordinate, return the point that represents the upper left corner of that cell
*
* @param cellX X coordinate of the cell
* @param cellY Y coordinate of the cell
*
* @param result Array of 2 ints to hold the x and y coordinate of the point
*/
void cellToPoint(int cellX, int cellY, int[] result) {
final int hStartPadding = getPaddingLeft();
final int vStartPadding = getPaddingTop();
result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap);
result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap);
}
/**
* Given a cell coordinate, return the point that represents the center of the cell
*
* @param cellX X coordinate of the cell
* @param cellY Y coordinate of the cell
*
* @param result Array of 2 ints to hold the x and y coordinate of the point
*/
void cellToCenterPoint(int cellX, int cellY, int[] result) {
regionToCenterPoint(cellX, cellY, 1, 1, result);
}
/**
* Given a cell coordinate and span return the point that represents the center of the regio
*
* @param cellX X coordinate of the cell
* @param cellY Y coordinate of the cell
*
* @param result Array of 2 ints to hold the x and y coordinate of the point
*/
void regionToCenterPoint(int cellX, int cellY, int spanX, int spanY, int[] result) {
final int hStartPadding = getPaddingLeft();
final int vStartPadding = getPaddingTop();
result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap) +
(spanX * mCellWidth + (spanX - 1) * mWidthGap) / 2;
result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap) +
(spanY * mCellHeight + (spanY - 1) * mHeightGap) / 2;
}
/**
* Given a cell coordinate and span fills out a corresponding pixel rect
*
* @param cellX X coordinate of the cell
* @param cellY Y coordinate of the cell
* @param result Rect in which to write the result
*/
void regionToRect(int cellX, int cellY, int spanX, int spanY, Rect result) {
final int hStartPadding = getPaddingLeft();
final int vStartPadding = getPaddingTop();
final int left = hStartPadding + cellX * (mCellWidth + mWidthGap);
final int top = vStartPadding + cellY * (mCellHeight + mHeightGap);
result.set(left, top, left + (spanX * mCellWidth + (spanX - 1) * mWidthGap),
top + (spanY * mCellHeight + (spanY - 1) * mHeightGap));
}
public float getDistanceFromCell(float x, float y, int[] cell) {
cellToCenterPoint(cell[0], cell[1], mTmpPoint);
return (float) Math.sqrt( Math.pow(x - mTmpPoint[0], 2) +
Math.pow(y - mTmpPoint[1], 2));
}
void setCellGaps(int widthGap, int heightGap) {
mWidthGap = mOriginalWidthGap = widthGap;
mHeightGap = mOriginalHeightGap = heightGap;
}
int getCellWidth() {
return mCellWidth;
}
int getCellHeight() {
return mCellHeight;
}
int getWidthGap() {
return mWidthGap;
}
int getHeightGap() {
return mHeightGap;
}
Rect getContentRect(Rect r) {
if (r == null) {
r = new Rect();
}
int left = getPaddingLeft();
int top = getPaddingTop();
int right = left + getWidth() - getPaddingLeft() - getPaddingRight();
int bottom = top + getHeight() - getPaddingTop() - getPaddingBottom();
r.set(left, top, right, bottom);
return r;
}
static void getMetrics(Rect metrics, Resources res, int measureWidth, int measureHeight,
int countX, int countY, int orientation) {
int numWidthGaps = countX - 1;
int numHeightGaps = countY - 1;
int widthGap;
int heightGap;
int cellWidth;
int cellHeight;
int paddingLeft;
int paddingRight;
int paddingTop;
int paddingBottom;
int maxGap = res.getDimensionPixelSize(R.dimen.workspace_max_gap);
if (orientation == LANDSCAPE) {
cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_land);
cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_land);
widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_land);
heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_land);
paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_land);
paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_land);
paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_land);
paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_land);
} else {
// PORTRAIT
cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_port);
cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_port);
widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_port);
heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_port);
paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_port);
paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_port);
paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_port);
paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_port);
}
if (widthGap < 0 || heightGap < 0) {
int hSpace = measureWidth - paddingLeft - paddingRight;
int vSpace = measureHeight - paddingTop - paddingBottom;
int hFreeSpace = hSpace - (countX * cellWidth);
int vFreeSpace = vSpace - (countY * cellHeight);
widthGap = Math.min(maxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0);
heightGap = Math.min(maxGap, numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0);
}
metrics.set(cellWidth, cellHeight, widthGap, heightGap);
}
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec);
int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec);
int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec);
int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec);
if (widthSpecMode == MeasureSpec.UNSPECIFIED || heightSpecMode == MeasureSpec.UNSPECIFIED) {
throw new RuntimeException("CellLayout cannot have UNSPECIFIED dimensions");
}
int numWidthGaps = mCountX - 1;
int numHeightGaps = mCountY - 1;
if (mOriginalWidthGap < 0 || mOriginalHeightGap < 0) {
int hSpace = widthSpecSize - getPaddingLeft() - getPaddingRight();
int vSpace = heightSpecSize - getPaddingTop() - getPaddingBottom();
int hFreeSpace = hSpace - (mCountX * mCellWidth);
int vFreeSpace = vSpace - (mCountY * mCellHeight);
mWidthGap = Math.min(mMaxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0);
mHeightGap = Math.min(mMaxGap,numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0);
mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap);
} else {
mWidthGap = mOriginalWidthGap;
mHeightGap = mOriginalHeightGap;
}
// Initial values correspond to widthSpecMode == MeasureSpec.EXACTLY
int newWidth = widthSpecSize;
int newHeight = heightSpecSize;
if (widthSpecMode == MeasureSpec.AT_MOST) {
newWidth = getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) +
((mCountX - 1) * mWidthGap);
newHeight = getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) +
((mCountY - 1) * mHeightGap);
setMeasuredDimension(newWidth, newHeight);
}
int count = getChildCount();
for (int i = 0; i < count; i++) {
View child = getChildAt(i);
int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(newWidth - getPaddingLeft() -
getPaddingRight(), MeasureSpec.EXACTLY);
int childheightMeasureSpec = MeasureSpec.makeMeasureSpec(newHeight - getPaddingTop() -
getPaddingBottom(), MeasureSpec.EXACTLY);
child.measure(childWidthMeasureSpec, childheightMeasureSpec);
}
setMeasuredDimension(newWidth, newHeight);
}
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
int count = getChildCount();
for (int i = 0; i < count; i++) {
View child = getChildAt(i);
child.layout(getPaddingLeft(), getPaddingTop(),
r - l - getPaddingRight(), b - t - getPaddingBottom());
}
}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
mBackgroundRect.set(0, 0, w, h);
mForegroundRect.set(mForegroundPadding, mForegroundPadding,
w - mForegroundPadding, h - mForegroundPadding);
}
@Override
protected void setChildrenDrawingCacheEnabled(boolean enabled) {
mShortcutsAndWidgets.setChildrenDrawingCacheEnabled(enabled);
}
@Override
protected void setChildrenDrawnWithCacheEnabled(boolean enabled) {
mShortcutsAndWidgets.setChildrenDrawnWithCacheEnabled(enabled);
}
public float getBackgroundAlpha() {
return mBackgroundAlpha;
}
public void setBackgroundAlphaMultiplier(float multiplier) {
if (mBackgroundAlphaMultiplier != multiplier) {
mBackgroundAlphaMultiplier = multiplier;
invalidate();
}
}
public float getBackgroundAlphaMultiplier() {
return mBackgroundAlphaMultiplier;
}
public void setBackgroundAlpha(float alpha) {
if (mBackgroundAlpha != alpha) {
mBackgroundAlpha = alpha;
invalidate();
}
}
public void setShortcutAndWidgetAlpha(float alpha) {
final int childCount = getChildCount();
for (int i = 0; i < childCount; i++) {
getChildAt(i).setAlpha(alpha);
}
}
public ShortcutAndWidgetContainer getShortcutsAndWidgets() {
if (getChildCount() > 0) {
return (ShortcutAndWidgetContainer) getChildAt(0);
}
return null;
}
public View getChildAt(int x, int y) {
return mShortcutsAndWidgets.getChildAt(x, y);
}
public boolean animateChildToPosition(final View child, int cellX, int cellY, int duration,
int delay, boolean permanent, boolean adjustOccupied) {
ShortcutAndWidgetContainer clc = getShortcutsAndWidgets();
boolean[][] occupied = mOccupied;
if (!permanent) {
occupied = mTmpOccupied;
}
if (clc.indexOfChild(child) != -1) {
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
final ItemInfo info = (ItemInfo) child.getTag();
// We cancel any existing animations
if (mReorderAnimators.containsKey(lp)) {
mReorderAnimators.get(lp).cancel();
mReorderAnimators.remove(lp);
}
final int oldX = lp.x;
final int oldY = lp.y;
if (adjustOccupied) {
occupied[lp.cellX][lp.cellY] = false;
occupied[cellX][cellY] = true;
}
lp.isLockedToGrid = true;
if (permanent) {
lp.cellX = info.cellX = cellX;
lp.cellY = info.cellY = cellY;
} else {
lp.tmpCellX = cellX;
lp.tmpCellY = cellY;
}
clc.setupLp(lp);
lp.isLockedToGrid = false;
final int newX = lp.x;
final int newY = lp.y;
lp.x = oldX;
lp.y = oldY;
// Exit early if we're not actually moving the view
if (oldX == newX && oldY == newY) {
lp.isLockedToGrid = true;
return true;
}
ValueAnimator va = LauncherAnimUtils.ofFloat(0f, 1f);
va.setDuration(duration);
mReorderAnimators.put(lp, va);
va.addUpdateListener(new AnimatorUpdateListener() {
@Override
public void onAnimationUpdate(ValueAnimator animation) {
float r = (Float) animation.getAnimatedValue();
lp.x = (int) ((1 - r) * oldX + r * newX);
lp.y = (int) ((1 - r) * oldY + r * newY);
child.requestLayout();
}
});
va.addListener(new AnimatorListenerAdapter() {
boolean cancelled = false;
public void onAnimationEnd(Animator animation) {
// If the animation was cancelled, it means that another animation
// has interrupted this one, and we don't want to lock the item into
// place just yet.
if (!cancelled) {
lp.isLockedToGrid = true;
child.requestLayout();
}
if (mReorderAnimators.containsKey(lp)) {
mReorderAnimators.remove(lp);
}
}
public void onAnimationCancel(Animator animation) {
cancelled = true;
}
});
va.setStartDelay(delay);
va.start();
return true;
}
return false;
}
/**
* Estimate where the top left cell of the dragged item will land if it is dropped.
*
* @param originX The X value of the top left corner of the item
* @param originY The Y value of the top left corner of the item
* @param spanX The number of horizontal cells that the item spans
* @param spanY The number of vertical cells that the item spans
* @param result The estimated drop cell X and Y.
*/
void estimateDropCell(int originX, int originY, int spanX, int spanY, int[] result) {
final int countX = mCountX;
final int countY = mCountY;
// pointToCellRounded takes the top left of a cell but will pad that with
// cellWidth/2 and cellHeight/2 when finding the matching cell
pointToCellRounded(originX, originY, result);
// If the item isn't fully on this screen, snap to the edges
int rightOverhang = result[0] + spanX - countX;
if (rightOverhang > 0) {
result[0] -= rightOverhang; // Snap to right
}
result[0] = Math.max(0, result[0]); // Snap to left
int bottomOverhang = result[1] + spanY - countY;
if (bottomOverhang > 0) {
result[1] -= bottomOverhang; // Snap to bottom
}
result[1] = Math.max(0, result[1]); // Snap to top
}
void visualizeDropLocation(View v, Bitmap dragOutline, int originX, int originY, int cellX,
int cellY, int spanX, int spanY, boolean resize, Point dragOffset, Rect dragRegion) {
final int oldDragCellX = mDragCell[0];
final int oldDragCellY = mDragCell[1];
if (v != null && dragOffset == null) {
mDragCenter.set(originX + (v.getWidth() / 2), originY + (v.getHeight() / 2));
} else {
mDragCenter.set(originX, originY);
}
if (dragOutline == null && v == null) {
return;
}
if (cellX != oldDragCellX || cellY != oldDragCellY) {
mDragCell[0] = cellX;
mDragCell[1] = cellY;
// Find the top left corner of the rect the object will occupy
final int[] topLeft = mTmpPoint;
cellToPoint(cellX, cellY, topLeft);
int left = topLeft[0];
int top = topLeft[1];
if (v != null && dragOffset == null) {
// When drawing the drag outline, it did not account for margin offsets
// added by the view's parent.
MarginLayoutParams lp = (MarginLayoutParams) v.getLayoutParams();
left += lp.leftMargin;
top += lp.topMargin;
// Offsets due to the size difference between the View and the dragOutline.
// There is a size difference to account for the outer blur, which may lie
// outside the bounds of the view.
top += (v.getHeight() - dragOutline.getHeight()) / 2;
// We center about the x axis
left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap)
- dragOutline.getWidth()) / 2;
} else {
if (dragOffset != null && dragRegion != null) {
// Center the drag region *horizontally* in the cell and apply a drag
// outline offset
left += dragOffset.x + ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap)
- dragRegion.width()) / 2;
top += dragOffset.y;
} else {
// Center the drag outline in the cell
left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap)
- dragOutline.getWidth()) / 2;
top += ((mCellHeight * spanY) + ((spanY - 1) * mHeightGap)
- dragOutline.getHeight()) / 2;
}
}
final int oldIndex = mDragOutlineCurrent;
mDragOutlineAnims[oldIndex].animateOut();
mDragOutlineCurrent = (oldIndex + 1) % mDragOutlines.length;
Rect r = mDragOutlines[mDragOutlineCurrent];
r.set(left, top, left + dragOutline.getWidth(), top + dragOutline.getHeight());
if (resize) {
cellToRect(cellX, cellY, spanX, spanY, r);
}
mDragOutlineAnims[mDragOutlineCurrent].setTag(dragOutline);
mDragOutlineAnims[mDragOutlineCurrent].animateIn();
}
}
public void clearDragOutlines() {
final int oldIndex = mDragOutlineCurrent;
mDragOutlineAnims[oldIndex].animateOut();
mDragCell[0] = mDragCell[1] = -1;
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param result Array in which to place the result, or null (in which case a new array will
* be allocated)
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestVacantArea(int pixelX, int pixelY, int spanX, int spanY,
int[] result) {
return findNearestVacantArea(pixelX, pixelY, spanX, spanY, null, result);
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param minSpanX The minimum horizontal span required
* @param minSpanY The minimum vertical span required
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param result Array in which to place the result, or null (in which case a new array will
* be allocated)
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX,
int spanY, int[] result, int[] resultSpan) {
return findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null,
result, resultSpan);
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param ignoreOccupied If true, the result can be an occupied cell
* @param result Array in which to place the result, or null (in which case a new array will
* be allocated)
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestArea(int pixelX, int pixelY, int spanX, int spanY, View ignoreView,
boolean ignoreOccupied, int[] result) {
return findNearestArea(pixelX, pixelY, spanX, spanY,
spanX, spanY, ignoreView, ignoreOccupied, result, null, mOccupied);
}
private final Stack<Rect> mTempRectStack = new Stack<Rect>();
private void lazyInitTempRectStack() {
if (mTempRectStack.isEmpty()) {
for (int i = 0; i < mCountX * mCountY; i++) {
mTempRectStack.push(new Rect());
}
}
}
private void recycleTempRects(Stack<Rect> used) {
while (!used.isEmpty()) {
mTempRectStack.push(used.pop());
}
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param minSpanX The minimum horizontal span required
* @param minSpanY The minimum vertical span required
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param ignoreOccupied If true, the result can be an occupied cell
* @param result Array in which to place the result, or null (in which case a new array will
* be allocated)
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY,
View ignoreView, boolean ignoreOccupied, int[] result, int[] resultSpan,
boolean[][] occupied) {
lazyInitTempRectStack();
// mark space take by ignoreView as available (method checks if ignoreView is null)
markCellsAsUnoccupiedForView(ignoreView, occupied);
// For items with a spanX / spanY > 1, the passed in point (pixelX, pixelY) corresponds
// to the center of the item, but we are searching based on the top-left cell, so
// we translate the point over to correspond to the top-left.
pixelX -= (mCellWidth + mWidthGap) * (spanX - 1) / 2f;
pixelY -= (mCellHeight + mHeightGap) * (spanY - 1) / 2f;
// Keep track of best-scoring drop area
final int[] bestXY = result != null ? result : new int[2];
double bestDistance = Double.MAX_VALUE;
final Rect bestRect = new Rect(-1, -1, -1, -1);
final Stack<Rect> validRegions = new Stack<Rect>();
final int countX = mCountX;
final int countY = mCountY;
if (minSpanX <= 0 || minSpanY <= 0 || spanX <= 0 || spanY <= 0 ||
spanX < minSpanX || spanY < minSpanY) {
return bestXY;
}
for (int y = 0; y < countY - (minSpanY - 1); y++) {
inner:
for (int x = 0; x < countX - (minSpanX - 1); x++) {
int ySize = -1;
int xSize = -1;
if (ignoreOccupied) {
// First, let's see if this thing fits anywhere
for (int i = 0; i < minSpanX; i++) {
for (int j = 0; j < minSpanY; j++) {
if (occupied[x + i][y + j]) {
continue inner;
}
}
}
xSize = minSpanX;
ySize = minSpanY;
// We know that the item will fit at _some_ acceptable size, now let's see
// how big we can make it. We'll alternate between incrementing x and y spans
// until we hit a limit.
boolean incX = true;
boolean hitMaxX = xSize >= spanX;
boolean hitMaxY = ySize >= spanY;
while (!(hitMaxX && hitMaxY)) {
if (incX && !hitMaxX) {
for (int j = 0; j < ySize; j++) {
if (x + xSize > countX -1 || occupied[x + xSize][y + j]) {
// We can't move out horizontally
hitMaxX = true;
}
}
if (!hitMaxX) {
xSize++;
}
} else if (!hitMaxY) {
for (int i = 0; i < xSize; i++) {
if (y + ySize > countY - 1 || occupied[x + i][y + ySize]) {
// We can't move out vertically
hitMaxY = true;
}
}
if (!hitMaxY) {
ySize++;
}
}
hitMaxX |= xSize >= spanX;
hitMaxY |= ySize >= spanY;
incX = !incX;
}
}
final int[] cellXY = mTmpXY;
cellToCenterPoint(x, y, cellXY);
// We verify that the current rect is not a sub-rect of any of our previous
// candidates. In this case, the current rect is disqualified in favour of the
// containing rect.
Rect currentRect = mTempRectStack.pop();
currentRect.set(x, y, x + xSize, y + ySize);
boolean contained = false;
for (Rect r : validRegions) {
if (r.contains(currentRect)) {
contained = true;
break;
}
}
validRegions.push(currentRect);
double distance = Math.sqrt(Math.pow(cellXY[0] - pixelX, 2)
+ Math.pow(cellXY[1] - pixelY, 2));
if ((distance <= bestDistance && !contained) ||
currentRect.contains(bestRect)) {
bestDistance = distance;
bestXY[0] = x;
bestXY[1] = y;
if (resultSpan != null) {
resultSpan[0] = xSize;
resultSpan[1] = ySize;
}
bestRect.set(currentRect);
}
}
}
// re-mark space taken by ignoreView as occupied
markCellsAsOccupiedForView(ignoreView, occupied);
// Return -1, -1 if no suitable location found
if (bestDistance == Double.MAX_VALUE) {
bestXY[0] = -1;
bestXY[1] = -1;
}
recycleTempRects(validRegions);
return bestXY;
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location, and will also weigh in a suggested direction vector of the
* desired location. This method computers distance based on unit grid distances,
* not pixel distances.
*
* @param cellX The X cell nearest to which you want to search for a vacant area.
* @param cellY The Y cell nearest which you want to search for a vacant area.
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param direction The favored direction in which the views should move from x, y
* @param exactDirectionOnly If this parameter is true, then only solutions where the direction
* matches exactly. Otherwise we find the best matching direction.
* @param occoupied The array which represents which cells in the CellLayout are occupied
* @param blockOccupied The array which represents which cells in the specified block (cellX,
* cellY, spanX, spanY) are occupied. This is used when try to move a group of views.
* @param result Array in which to place the result, or null (in which case a new array will
* be allocated)
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction,
boolean[][] occupied, boolean blockOccupied[][], int[] result) {
// Keep track of best-scoring drop area
final int[] bestXY = result != null ? result : new int[2];
float bestDistance = Float.MAX_VALUE;
int bestDirectionScore = Integer.MIN_VALUE;
final int countX = mCountX;
final int countY = mCountY;
for (int y = 0; y < countY - (spanY - 1); y++) {
inner:
for (int x = 0; x < countX - (spanX - 1); x++) {
// First, let's see if this thing fits anywhere
for (int i = 0; i < spanX; i++) {
for (int j = 0; j < spanY; j++) {
if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) {
continue inner;
}
}
}
float distance = (float)
Math.sqrt((x - cellX) * (x - cellX) + (y - cellY) * (y - cellY));
int[] curDirection = mTmpPoint;
computeDirectionVector(x - cellX, y - cellY, curDirection);
// The direction score is just the dot product of the two candidate direction
// and that passed in.
int curDirectionScore = direction[0] * curDirection[0] +
direction[1] * curDirection[1];
boolean exactDirectionOnly = false;
boolean directionMatches = direction[0] == curDirection[0] &&
direction[0] == curDirection[0];
if ((directionMatches || !exactDirectionOnly) &&
Float.compare(distance, bestDistance) < 0 || (Float.compare(distance,
bestDistance) == 0 && curDirectionScore > bestDirectionScore)) {
bestDistance = distance;
bestDirectionScore = curDirectionScore;
bestXY[0] = x;
bestXY[1] = y;
}
}
}
// Return -1, -1 if no suitable location found
if (bestDistance == Float.MAX_VALUE) {
bestXY[0] = -1;
bestXY[1] = -1;
}
return bestXY;
}
private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop,
int[] direction, ItemConfiguration currentState) {
CellAndSpan c = currentState.map.get(v);
boolean success = false;
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false);
markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true);
findNearestArea(c.x, c.y, c.spanX, c.spanY, direction, mTmpOccupied, null, mTempLocation);
if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
c.x = mTempLocation[0];
c.y = mTempLocation[1];
success = true;
}
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true);
return success;
}
/**
* This helper class defines a cluster of views. It helps with defining complex edges
* of the cluster and determining how those edges interact with other views. The edges
* essentially define a fine-grained boundary around the cluster of views -- like a more
* precise version of a bounding box.
*/
private class ViewCluster {
final static int LEFT = 0;
final static int TOP = 1;
final static int RIGHT = 2;
final static int BOTTOM = 3;
ArrayList<View> views;
ItemConfiguration config;
Rect boundingRect = new Rect();
int[] leftEdge = new int[mCountY];
int[] rightEdge = new int[mCountY];
int[] topEdge = new int[mCountX];
int[] bottomEdge = new int[mCountX];
boolean leftEdgeDirty, rightEdgeDirty, topEdgeDirty, bottomEdgeDirty, boundingRectDirty;
@SuppressWarnings("unchecked")
public ViewCluster(ArrayList<View> views, ItemConfiguration config) {
this.views = (ArrayList<View>) views.clone();
this.config = config;
resetEdges();
}
void resetEdges() {
for (int i = 0; i < mCountX; i++) {
topEdge[i] = -1;
bottomEdge[i] = -1;
}
for (int i = 0; i < mCountY; i++) {
leftEdge[i] = -1;
rightEdge[i] = -1;
}
leftEdgeDirty = true;
rightEdgeDirty = true;
bottomEdgeDirty = true;
topEdgeDirty = true;
boundingRectDirty = true;
}
void computeEdge(int which, int[] edge) {
int count = views.size();
for (int i = 0; i < count; i++) {
CellAndSpan cs = config.map.get(views.get(i));
switch (which) {
case LEFT:
int left = cs.x;
for (int j = cs.y; j < cs.y + cs.spanY; j++) {
if (left < edge[j] || edge[j] < 0) {
edge[j] = left;
}
}
break;
case RIGHT:
int right = cs.x + cs.spanX;
for (int j = cs.y; j < cs.y + cs.spanY; j++) {
if (right > edge[j]) {
edge[j] = right;
}
}
break;
case TOP:
int top = cs.y;
for (int j = cs.x; j < cs.x + cs.spanX; j++) {
if (top < edge[j] || edge[j] < 0) {
edge[j] = top;
}
}
break;
case BOTTOM:
int bottom = cs.y + cs.spanY;
for (int j = cs.x; j < cs.x + cs.spanX; j++) {
if (bottom > edge[j]) {
edge[j] = bottom;
}
}
break;
}
}
}
boolean isViewTouchingEdge(View v, int whichEdge) {
CellAndSpan cs = config.map.get(v);
int[] edge = getEdge(whichEdge);
switch (whichEdge) {
case LEFT:
for (int i = cs.y; i < cs.y + cs.spanY; i++) {
if (edge[i] == cs.x + cs.spanX) {
return true;
}
}
break;
case RIGHT:
for (int i = cs.y; i < cs.y + cs.spanY; i++) {
if (edge[i] == cs.x) {
return true;
}
}
break;
case TOP:
for (int i = cs.x; i < cs.x + cs.spanX; i++) {
if (edge[i] == cs.y + cs.spanY) {
return true;
}
}
break;
case BOTTOM:
for (int i = cs.x; i < cs.x + cs.spanX; i++) {
if (edge[i] == cs.y) {
return true;
}
}
break;
}
return false;
}
void shift(int whichEdge, int delta) {
for (View v: views) {
CellAndSpan c = config.map.get(v);
switch (whichEdge) {
case LEFT:
c.x -= delta;
break;
case RIGHT:
c.x += delta;
break;
case TOP:
c.y -= delta;
break;
case BOTTOM:
default:
c.y += delta;
break;
}
}
resetEdges();
}
public void addView(View v) {
views.add(v);
resetEdges();
}
public Rect getBoundingRect() {
if (boundingRectDirty) {
boolean first = true;
for (View v: views) {
CellAndSpan c = config.map.get(v);
if (first) {
boundingRect.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY);
first = false;
} else {
boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY);
}
}
}
return boundingRect;
}
public int[] getEdge(int which) {
switch (which) {
case LEFT:
return getLeftEdge();
case RIGHT:
return getRightEdge();
case TOP:
return getTopEdge();
case BOTTOM:
default:
return getBottomEdge();
}
}
public int[] getLeftEdge() {
if (leftEdgeDirty) {
computeEdge(LEFT, leftEdge);
}
return leftEdge;
}
public int[] getRightEdge() {
if (rightEdgeDirty) {
computeEdge(RIGHT, rightEdge);
}
return rightEdge;
}
public int[] getTopEdge() {
if (topEdgeDirty) {
computeEdge(TOP, topEdge);
}
return topEdge;
}
public int[] getBottomEdge() {
if (bottomEdgeDirty) {
computeEdge(BOTTOM, bottomEdge);
}
return bottomEdge;
}
PositionComparator comparator = new PositionComparator();
class PositionComparator implements Comparator<View> {
int whichEdge = 0;
public int compare(View left, View right) {
CellAndSpan l = config.map.get(left);
CellAndSpan r = config.map.get(right);
switch (whichEdge) {
case LEFT:
return (r.x + r.spanX) - (l.x + l.spanX);
case RIGHT:
return l.x - r.x;
case TOP:
return (r.y + r.spanY) - (l.y + l.spanY);
case BOTTOM:
default:
return l.y - r.y;
}
}
}
public void sortConfigurationForEdgePush(int edge) {
comparator.whichEdge = edge;
Collections.sort(config.sortedViews, comparator);
}
}
private boolean pushViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
int[] direction, View dragView, ItemConfiguration currentState) {
ViewCluster cluster = new ViewCluster(views, currentState);
Rect clusterRect = cluster.getBoundingRect();
int whichEdge;
int pushDistance;
boolean fail = false;
// Determine the edge of the cluster that will be leading the push and how far
// the cluster must be shifted.
if (direction[0] < 0) {
whichEdge = ViewCluster.LEFT;
pushDistance = clusterRect.right - rectOccupiedByPotentialDrop.left;
} else if (direction[0] > 0) {
whichEdge = ViewCluster.RIGHT;
pushDistance = rectOccupiedByPotentialDrop.right - clusterRect.left;
} else if (direction[1] < 0) {
whichEdge = ViewCluster.TOP;
pushDistance = clusterRect.bottom - rectOccupiedByPotentialDrop.top;
} else {
whichEdge = ViewCluster.BOTTOM;
pushDistance = rectOccupiedByPotentialDrop.bottom - clusterRect.top;
}
// Break early for invalid push distance.
if (pushDistance <= 0) {
return false;
}
// Mark the occupied state as false for the group of views we want to move.
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false);
}
// We save the current configuration -- if we fail to find a solution we will revert
// to the initial state. The process of finding a solution modifies the configuration
// in place, hence the need for revert in the failure case.
currentState.save();
// The pushing algorithm is simplified by considering the views in the order in which
// they would be pushed by the cluster. For example, if the cluster is leading with its
// left edge, we consider sort the views by their right edge, from right to left.
cluster.sortConfigurationForEdgePush(whichEdge);
while (pushDistance > 0 && !fail) {
for (View v: currentState.sortedViews) {
// For each view that isn't in the cluster, we see if the leading edge of the
// cluster is contacting the edge of that view. If so, we add that view to the
// cluster.
if (!cluster.views.contains(v) && v != dragView) {
if (cluster.isViewTouchingEdge(v, whichEdge)) {
LayoutParams lp = (LayoutParams) v.getLayoutParams();
if (!lp.canReorder) {
// The push solution includes the all apps button, this is not viable.
fail = true;
break;
}
cluster.addView(v);
CellAndSpan c = currentState.map.get(v);
// Adding view to cluster, mark it as not occupied.
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false);
}
}
}
pushDistance--;
// The cluster has been completed, now we move the whole thing over in the appropriate
// direction.
cluster.shift(whichEdge, 1);
}
boolean foundSolution = false;
clusterRect = cluster.getBoundingRect();
// Due to the nature of the algorithm, the only check required to verify a valid solution
// is to ensure that completed shifted cluster lies completely within the cell layout.
if (!fail && clusterRect.left >= 0 && clusterRect.right <= mCountX && clusterRect.top >= 0 &&
clusterRect.bottom <= mCountY) {
foundSolution = true;
} else {
currentState.restore();
}
// In either case, we set the occupied array as marked for the location of the views
for (View v: cluster.views) {
CellAndSpan c = currentState.map.get(v);
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true);
}
return foundSolution;
}
private boolean addViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
int[] direction, View dragView, ItemConfiguration currentState) {
if (views.size() == 0) return true;
boolean success = false;
Rect boundingRect = null;
// We construct a rect which represents the entire group of views passed in
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
if (boundingRect == null) {
boundingRect = new Rect(c.x, c.y, c.x + c.spanX, c.y + c.spanY);
} else {
boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY);
}
}
// Mark the occupied state as false for the group of views we want to move.
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false);
}
boolean[][] blockOccupied = new boolean[boundingRect.width()][boundingRect.height()];
int top = boundingRect.top;
int left = boundingRect.left;
// We mark more precisely which parts of the bounding rect are truly occupied, allowing
// for interlocking.
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
markCellsForView(c.x - left, c.y - top, c.spanX, c.spanY, blockOccupied, true);
}
markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true);
findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(),
boundingRect.height(), direction, mTmpOccupied, blockOccupied, mTempLocation);
// If we successfuly found a location by pushing the block of views, we commit it
if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
int deltaX = mTempLocation[0] - boundingRect.left;
int deltaY = mTempLocation[1] - boundingRect.top;
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
c.x += deltaX;
c.y += deltaY;
}
success = true;
}
// In either case, we set the occupied array as marked for the location of the views
for (View v: views) {
CellAndSpan c = currentState.map.get(v);
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true);
}
return success;
}
private void markCellsForRect(Rect r, boolean[][] occupied, boolean value) {
markCellsForView(r.left, r.top, r.width(), r.height(), occupied, value);
}
// This method tries to find a reordering solution which satisfies the push mechanic by trying
// to push items in each of the cardinal directions, in an order based on the direction vector
// passed.
private boolean attemptPushInDirection(ArrayList<View> intersectingViews, Rect occupied,
int[] direction, View ignoreView, ItemConfiguration solution) {
if ((Math.abs(direction[0]) + Math.abs(direction[1])) > 1) {
// If the direction vector has two non-zero components, we try pushing
// separately in each of the components.
int temp = direction[1];
direction[1] = 0;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
direction[1] = temp;
temp = direction[0];
direction[0] = 0;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// Revert the direction
direction[0] = temp;
// Now we try pushing in each component of the opposite direction
direction[0] *= -1;
direction[1] *= -1;
temp = direction[1];
direction[1] = 0;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
direction[1] = temp;
temp = direction[0];
direction[0] = 0;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// revert the direction
direction[0] = temp;
direction[0] *= -1;
direction[1] *= -1;
} else {
// If the direction vector has a single non-zero component, we push first in the
// direction of the vector
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// Then we try the opposite direction
direction[0] *= -1;
direction[1] *= -1;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// Switch the direction back
direction[0] *= -1;
direction[1] *= -1;
// If we have failed to find a push solution with the above, then we try
// to find a solution by pushing along the perpendicular axis.
// Swap the components
int temp = direction[1];
direction[1] = direction[0];
direction[0] = temp;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// Then we try the opposite direction
direction[0] *= -1;
direction[1] *= -1;
if (pushViewsToTempLocation(intersectingViews, occupied, direction,
ignoreView, solution)) {
return true;
}
// Switch the direction back
direction[0] *= -1;
direction[1] *= -1;
// Swap the components back
temp = direction[1];
direction[1] = direction[0];
direction[0] = temp;
}
return false;
}
private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction,
View ignoreView, ItemConfiguration solution) {
// Return early if get invalid cell positions
if (cellX < 0 || cellY < 0) return false;
mIntersectingViews.clear();
mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY);
// Mark the desired location of the view currently being dragged.
if (ignoreView != null) {
CellAndSpan c = solution.map.get(ignoreView);
if (c != null) {
c.x = cellX;
c.y = cellY;
}
}
Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY);
Rect r1 = new Rect();
for (View child: solution.map.keySet()) {
if (child == ignoreView) continue;
CellAndSpan c = solution.map.get(child);
LayoutParams lp = (LayoutParams) child.getLayoutParams();
r1.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY);
if (Rect.intersects(r0, r1)) {
if (!lp.canReorder) {
return false;
}
mIntersectingViews.add(child);
}
}
// First we try to find a solution which respects the push mechanic. That is,
// we try to find a solution such that no displaced item travels through another item
// without also displacing that item.
if (attemptPushInDirection(mIntersectingViews, mOccupiedRect, direction, ignoreView,
solution)) {
return true;
}
// Next we try moving the views as a block, but without requiring the push mechanic.
if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction, ignoreView,
solution)) {
return true;
}
// Ok, they couldn't move as a block, let's move them individually
for (View v : mIntersectingViews) {
if (!addViewToTempLocation(v, mOccupiedRect, direction, solution)) {
return false;
}
}
return true;
}
/*
* Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between
* the provided point and the provided cell
*/
private void computeDirectionVector(float deltaX, float deltaY, int[] result) {
double angle = Math.atan(((float) deltaY) / deltaX);
result[0] = 0;
result[1] = 0;
if (Math.abs(Math.cos(angle)) > 0.5f) {
result[0] = (int) Math.signum(deltaX);
}
if (Math.abs(Math.sin(angle)) > 0.5f) {
result[1] = (int) Math.signum(deltaY);
}
}
private void copyOccupiedArray(boolean[][] occupied) {
for (int i = 0; i < mCountX; i++) {
System.arraycopy(mOccupied[i], 0, occupied[i], 0, mCountY);
}
}
ItemConfiguration simpleSwap(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX,
int spanY, int[] direction, View dragView, boolean decX, ItemConfiguration solution) {
// Copy the current state into the solution. This solution will be manipulated as necessary.
copyCurrentStateToSolution(solution, false);
// Copy the current occupied array into the temporary occupied array. This array will be
// manipulated as necessary to find a solution.
copyOccupiedArray(mTmpOccupied);
// We find the nearest cell into which we would place the dragged item, assuming there's
// nothing in its way.
int result[] = new int[2];
result = findNearestArea(pixelX, pixelY, spanX, spanY, result);
// First we try the exact nearest position of the item being dragged,
// we will then want to try to move this around to other neighbouring positions
boolean success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView,
solution);
if (!success) {
// We try shrinking the widget down to size in an alternating pattern, shrink 1 in
// x, then 1 in y etc.
if (spanX > minSpanX && (minSpanY == spanY || decX)) {
return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY, direction,
dragView, false, solution);
} else if (spanY > minSpanY) {
return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1, direction,
dragView, true, solution);
}
solution.isSolution = false;
} else {
solution.isSolution = true;
solution.dragViewX = result[0];
solution.dragViewY = result[1];
solution.dragViewSpanX = spanX;
solution.dragViewSpanY = spanY;
}
return solution;
}
private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) {
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
LayoutParams lp = (LayoutParams) child.getLayoutParams();
CellAndSpan c;
if (temp) {
c = new CellAndSpan(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan);
} else {
c = new CellAndSpan(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan);
}
solution.add(child, c);
}
}
private void copySolutionToTempState(ItemConfiguration solution, View dragView) {
for (int i = 0; i < mCountX; i++) {
for (int j = 0; j < mCountY; j++) {
mTmpOccupied[i][j] = false;
}
}
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
if (child == dragView) continue;
LayoutParams lp = (LayoutParams) child.getLayoutParams();
CellAndSpan c = solution.map.get(child);
if (c != null) {
lp.tmpCellX = c.x;
lp.tmpCellY = c.y;
lp.cellHSpan = c.spanX;
lp.cellVSpan = c.spanY;
markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true);
}
}
markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX,
solution.dragViewSpanY, mTmpOccupied, true);
}
private void animateItemsToSolution(ItemConfiguration solution, View dragView, boolean
commitDragView) {
boolean[][] occupied = DESTRUCTIVE_REORDER ? mOccupied : mTmpOccupied;
for (int i = 0; i < mCountX; i++) {
for (int j = 0; j < mCountY; j++) {
occupied[i][j] = false;
}
}
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
if (child == dragView) continue;
CellAndSpan c = solution.map.get(child);
if (c != null) {
animateChildToPosition(child, c.x, c.y, REORDER_ANIMATION_DURATION, 0,
DESTRUCTIVE_REORDER, false);
markCellsForView(c.x, c.y, c.spanX, c.spanY, occupied, true);
}
}
if (commitDragView) {
markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX,
solution.dragViewSpanY, occupied, true);
}
}
// This method starts or changes the reorder hint animations
private void beginOrAdjustHintAnimations(ItemConfiguration solution, View dragView, int delay) {
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
if (child == dragView) continue;
CellAndSpan c = solution.map.get(child);
LayoutParams lp = (LayoutParams) child.getLayoutParams();
if (c != null) {
ReorderHintAnimation rha = new ReorderHintAnimation(child, lp.cellX, lp.cellY,
c.x, c.y, c.spanX, c.spanY);
rha.animate();
}
}
}
// Class which represents the reorder hint animations. These animations show that an item is
// in a temporary state, and hint at where the item will return to.
class ReorderHintAnimation {
View child;
float finalDeltaX;
float finalDeltaY;
float initDeltaX;
float initDeltaY;
float finalScale;
float initScale;
private static final int DURATION = 300;
Animator a;
public ReorderHintAnimation(View child, int cellX0, int cellY0, int cellX1, int cellY1,
int spanX, int spanY) {
regionToCenterPoint(cellX0, cellY0, spanX, spanY, mTmpPoint);
final int x0 = mTmpPoint[0];
final int y0 = mTmpPoint[1];
regionToCenterPoint(cellX1, cellY1, spanX, spanY, mTmpPoint);
final int x1 = mTmpPoint[0];
final int y1 = mTmpPoint[1];
final int dX = x1 - x0;
final int dY = y1 - y0;
finalDeltaX = 0;
finalDeltaY = 0;
if (dX == dY && dX == 0) {
} else {
if (dY == 0) {
finalDeltaX = - Math.signum(dX) * mReorderHintAnimationMagnitude;
} else if (dX == 0) {
finalDeltaY = - Math.signum(dY) * mReorderHintAnimationMagnitude;
} else {
double angle = Math.atan( (float) (dY) / dX);
finalDeltaX = (int) (- Math.signum(dX) *
Math.abs(Math.cos(angle) * mReorderHintAnimationMagnitude));
finalDeltaY = (int) (- Math.signum(dY) *
Math.abs(Math.sin(angle) * mReorderHintAnimationMagnitude));
}
}
initDeltaX = child.getTranslationX();
initDeltaY = child.getTranslationY();
finalScale = getChildrenScale() - 4.0f / child.getWidth();
initScale = child.getScaleX();
this.child = child;
}
void animate() {
if (mShakeAnimators.containsKey(child)) {
ReorderHintAnimation oldAnimation = mShakeAnimators.get(child);
oldAnimation.cancel();
mShakeAnimators.remove(child);
if (finalDeltaX == 0 && finalDeltaY == 0) {
completeAnimationImmediately();
return;
}
}
if (finalDeltaX == 0 && finalDeltaY == 0) {
return;
}
ValueAnimator va = LauncherAnimUtils.ofFloat(0f, 1f);
a = va;
va.setRepeatMode(ValueAnimator.REVERSE);
va.setRepeatCount(ValueAnimator.INFINITE);
va.setDuration(DURATION);
va.setStartDelay((int) (Math.random() * 60));
va.addUpdateListener(new AnimatorUpdateListener() {
@Override
public void onAnimationUpdate(ValueAnimator animation) {
float r = (Float) animation.getAnimatedValue();
float x = r * finalDeltaX + (1 - r) * initDeltaX;
float y = r * finalDeltaY + (1 - r) * initDeltaY;
child.setTranslationX(x);
child.setTranslationY(y);
float s = r * finalScale + (1 - r) * initScale;
child.setScaleX(s);
child.setScaleY(s);
}
});
va.addListener(new AnimatorListenerAdapter() {
public void onAnimationRepeat(Animator animation) {
// We make sure to end only after a full period
initDeltaX = 0;
initDeltaY = 0;
initScale = getChildrenScale();
}
});
mShakeAnimators.put(child, this);
va.start();
}
private void cancel() {
if (a != null) {
a.cancel();
}
}
private void completeAnimationImmediately() {
if (a != null) {
a.cancel();
}
AnimatorSet s = LauncherAnimUtils.createAnimatorSet();
a = s;
s.playTogether(
LauncherAnimUtils.ofFloat(child, "scaleX", getChildrenScale()),
LauncherAnimUtils.ofFloat(child, "scaleY", getChildrenScale()),
LauncherAnimUtils.ofFloat(child, "translationX", 0f),
LauncherAnimUtils.ofFloat(child, "translationY", 0f)
);
s.setDuration(REORDER_ANIMATION_DURATION);
s.setInterpolator(new android.view.animation.DecelerateInterpolator(1.5f));
s.start();
}
}
private void completeAndClearReorderHintAnimations() {
for (ReorderHintAnimation a: mShakeAnimators.values()) {
a.completeAnimationImmediately();
}
mShakeAnimators.clear();
}
private void commitTempPlacement() {
for (int i = 0; i < mCountX; i++) {
System.arraycopy(mTmpOccupied[i], 0, mOccupied[i], 0, mCountY);
}
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
LayoutParams lp = (LayoutParams) child.getLayoutParams();
ItemInfo info = (ItemInfo) child.getTag();
// We do a null check here because the item info can be null in the case of the
// AllApps button in the hotseat.
if (info != null) {
if (info.cellX != lp.tmpCellX || info.cellY != lp.tmpCellY ||
info.spanX != lp.cellHSpan || info.spanY != lp.cellVSpan) {
info.requiresDbUpdate = true;
}
info.cellX = lp.cellX = lp.tmpCellX;
info.cellY = lp.cellY = lp.tmpCellY;
info.spanX = lp.cellHSpan;
info.spanY = lp.cellVSpan;
}
}
mLauncher.getWorkspace().updateItemLocationsInDatabase(this);
}
public void setUseTempCoords(boolean useTempCoords) {
int childCount = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < childCount; i++) {
LayoutParams lp = (LayoutParams) mShortcutsAndWidgets.getChildAt(i).getLayoutParams();
lp.useTmpCoords = useTempCoords;
}
}
ItemConfiguration findConfigurationNoShuffle(int pixelX, int pixelY, int minSpanX, int minSpanY,
int spanX, int spanY, ItemConfiguration solution) {
int[] result = new int[2];
int[] resultSpan = new int[2];
findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, result,
resultSpan);
if (result[0] >= 0 && result[1] >= 0) {
copyCurrentStateToSolution(solution, false);
solution.dragViewX = result[0];
solution.dragViewY = result[1];
solution.dragViewSpanX = resultSpan[0];
solution.dragViewSpanY = resultSpan[1];
solution.isSolution = true;
} else {
solution.isSolution = false;
}
return solution;
}
public void prepareChildForDrag(View child) {
markCellsAsUnoccupiedForView(child);
}
/* This seems like it should be obvious and straight-forward, but when the direction vector
needs to match with the notion of the dragView pushing other views, we have to employ
a slightly more subtle notion of the direction vector. The question is what two points is
the vector between? The center of the dragView and its desired destination? Not quite, as
this doesn't necessarily coincide with the interaction of the dragView and items occupying
those cells. Instead we use some heuristics to often lock the vector to up, down, left
or right, which helps make pushing feel right.
*/
private void getDirectionVectorForDrop(int dragViewCenterX, int dragViewCenterY, int spanX,
int spanY, View dragView, int[] resultDirection) {
int[] targetDestination = new int[2];
findNearestArea(dragViewCenterX, dragViewCenterY, spanX, spanY, targetDestination);
Rect dragRect = new Rect();
regionToRect(targetDestination[0], targetDestination[1], spanX, spanY, dragRect);
dragRect.offset(dragViewCenterX - dragRect.centerX(), dragViewCenterY - dragRect.centerY());
Rect dropRegionRect = new Rect();
getViewsIntersectingRegion(targetDestination[0], targetDestination[1], spanX, spanY,
dragView, dropRegionRect, mIntersectingViews);
int dropRegionSpanX = dropRegionRect.width();
int dropRegionSpanY = dropRegionRect.height();
regionToRect(dropRegionRect.left, dropRegionRect.top, dropRegionRect.width(),
dropRegionRect.height(), dropRegionRect);
int deltaX = (dropRegionRect.centerX() - dragViewCenterX) / spanX;
int deltaY = (dropRegionRect.centerY() - dragViewCenterY) / spanY;
if (dropRegionSpanX == mCountX || spanX == mCountX) {
deltaX = 0;
}
if (dropRegionSpanY == mCountY || spanY == mCountY) {
deltaY = 0;
}
if (deltaX == 0 && deltaY == 0) {
// No idea what to do, give a random direction.
resultDirection[0] = 1;
resultDirection[1] = 0;
} else {
computeDirectionVector(deltaX, deltaY, resultDirection);
}
}
// For a given cell and span, fetch the set of views intersecting the region.
private void getViewsIntersectingRegion(int cellX, int cellY, int spanX, int spanY,
View dragView, Rect boundingRect, ArrayList<View> intersectingViews) {
if (boundingRect != null) {
boundingRect.set(cellX, cellY, cellX + spanX, cellY + spanY);
}
intersectingViews.clear();
Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY);
Rect r1 = new Rect();
final int count = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < count; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
if (child == dragView) continue;
LayoutParams lp = (LayoutParams) child.getLayoutParams();
r1.set(lp.cellX, lp.cellY, lp.cellX + lp.cellHSpan, lp.cellY + lp.cellVSpan);
if (Rect.intersects(r0, r1)) {
mIntersectingViews.add(child);
if (boundingRect != null) {
boundingRect.union(r1);
}
}
}
}
boolean isNearestDropLocationOccupied(int pixelX, int pixelY, int spanX, int spanY,
View dragView, int[] result) {
result = findNearestArea(pixelX, pixelY, spanX, spanY, result);
getViewsIntersectingRegion(result[0], result[1], spanX, spanY, dragView, null,
mIntersectingViews);
return !mIntersectingViews.isEmpty();
}
void revertTempState() {
if (!isItemPlacementDirty() || DESTRUCTIVE_REORDER) return;
final int count = mShortcutsAndWidgets.getChildCount();
for (int i = 0; i < count; i++) {
View child = mShortcutsAndWidgets.getChildAt(i);
LayoutParams lp = (LayoutParams) child.getLayoutParams();
if (lp.tmpCellX != lp.cellX || lp.tmpCellY != lp.cellY) {
lp.tmpCellX = lp.cellX;
lp.tmpCellY = lp.cellY;
animateChildToPosition(child, lp.cellX, lp.cellY, REORDER_ANIMATION_DURATION,
0, false, false);
}
}
completeAndClearReorderHintAnimations();
setItemPlacementDirty(false);
}
boolean createAreaForResize(int cellX, int cellY, int spanX, int spanY,
View dragView, int[] direction, boolean commit) {
int[] pixelXY = new int[2];
regionToCenterPoint(cellX, cellY, spanX, spanY, pixelXY);
// First we determine if things have moved enough to cause a different layout
ItemConfiguration swapSolution = simpleSwap(pixelXY[0], pixelXY[1], spanX, spanY,
spanX, spanY, direction, dragView, true, new ItemConfiguration());
setUseTempCoords(true);
if (swapSolution != null && swapSolution.isSolution) {
// If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother
// committing anything or animating anything as we just want to determine if a solution
// exists
copySolutionToTempState(swapSolution, dragView);
setItemPlacementDirty(true);
animateItemsToSolution(swapSolution, dragView, commit);
if (commit) {
commitTempPlacement();
completeAndClearReorderHintAnimations();
setItemPlacementDirty(false);
} else {
beginOrAdjustHintAnimations(swapSolution, dragView,
REORDER_ANIMATION_DURATION);
}
mShortcutsAndWidgets.requestLayout();
}
return swapSolution.isSolution;
}
int[] createArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY,
View dragView, int[] result, int resultSpan[], int mode) {
// First we determine if things have moved enough to cause a different layout
result = findNearestArea(pixelX, pixelY, spanX, spanY, result);
if (resultSpan == null) {
resultSpan = new int[2];
}
// When we are checking drop validity or actually dropping, we don't recompute the
// direction vector, since we want the solution to match the preview, and it's possible
// that the exact position of the item has changed to result in a new reordering outcome.
if ((mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL || mode == MODE_ACCEPT_DROP)
&& mPreviousReorderDirection[0] != INVALID_DIRECTION) {
mDirectionVector[0] = mPreviousReorderDirection[0];
mDirectionVector[1] = mPreviousReorderDirection[1];
// We reset this vector after drop
if (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) {
mPreviousReorderDirection[0] = INVALID_DIRECTION;
mPreviousReorderDirection[1] = INVALID_DIRECTION;
}
} else {
getDirectionVectorForDrop(pixelX, pixelY, spanX, spanY, dragView, mDirectionVector);
mPreviousReorderDirection[0] = mDirectionVector[0];
mPreviousReorderDirection[1] = mDirectionVector[1];
}
ItemConfiguration swapSolution = simpleSwap(pixelX, pixelY, minSpanX, minSpanY,
spanX, spanY, mDirectionVector, dragView, true, new ItemConfiguration());
// We attempt the approach which doesn't shuffle views at all
ItemConfiguration noShuffleSolution = findConfigurationNoShuffle(pixelX, pixelY, minSpanX,
minSpanY, spanX, spanY, new ItemConfiguration());
ItemConfiguration finalSolution = null;
if (swapSolution.isSolution && swapSolution.area() >= noShuffleSolution.area()) {
finalSolution = swapSolution;
} else if (noShuffleSolution.isSolution) {
finalSolution = noShuffleSolution;
}
boolean foundSolution = true;
if (!DESTRUCTIVE_REORDER) {
setUseTempCoords(true);
}
if (finalSolution != null) {
result[0] = finalSolution.dragViewX;
result[1] = finalSolution.dragViewY;
resultSpan[0] = finalSolution.dragViewSpanX;
resultSpan[1] = finalSolution.dragViewSpanY;
// If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother
// committing anything or animating anything as we just want to determine if a solution
// exists
if (mode == MODE_DRAG_OVER || mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) {
if (!DESTRUCTIVE_REORDER) {
copySolutionToTempState(finalSolution, dragView);
}
setItemPlacementDirty(true);
animateItemsToSolution(finalSolution, dragView, mode == MODE_ON_DROP);
if (!DESTRUCTIVE_REORDER &&
(mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL)) {
commitTempPlacement();
completeAndClearReorderHintAnimations();
setItemPlacementDirty(false);
} else {
beginOrAdjustHintAnimations(finalSolution, dragView,
REORDER_ANIMATION_DURATION);
}
}
} else {
foundSolution = false;
result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1;
}
if ((mode == MODE_ON_DROP || !foundSolution) && !DESTRUCTIVE_REORDER) {
setUseTempCoords(false);
}
mShortcutsAndWidgets.requestLayout();
return result;
}
void setItemPlacementDirty(boolean dirty) {
mItemPlacementDirty = dirty;
}
boolean isItemPlacementDirty() {
return mItemPlacementDirty;
}
private class ItemConfiguration {
HashMap<View, CellAndSpan> map = new HashMap<View, CellAndSpan>();
private HashMap<View, CellAndSpan> savedMap = new HashMap<View, CellAndSpan>();
ArrayList<View> sortedViews = new ArrayList<View>();
boolean isSolution = false;
int dragViewX, dragViewY, dragViewSpanX, dragViewSpanY;
void save() {
// Copy current state into savedMap
for (View v: map.keySet()) {
map.get(v).copy(savedMap.get(v));
}
}
void restore() {
// Restore current state from savedMap
for (View v: savedMap.keySet()) {
savedMap.get(v).copy(map.get(v));
}
}
void add(View v, CellAndSpan cs) {
map.put(v, cs);
savedMap.put(v, new CellAndSpan());
sortedViews.add(v);
}
int area() {
return dragViewSpanX * dragViewSpanY;
}
}
private class CellAndSpan {
int x, y;
int spanX, spanY;
public CellAndSpan() {
}
public void copy(CellAndSpan copy) {
copy.x = x;
copy.y = y;
copy.spanX = spanX;
copy.spanY = spanY;
}
public CellAndSpan(int x, int y, int spanX, int spanY) {
this.x = x;
this.y = y;
this.spanX = spanX;
this.spanY = spanY;
}
public String toString() {
return "(" + x + ", " + y + ": " + spanX + ", " + spanY + ")";
}
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param ignoreView Considers space occupied by this view as unoccupied
* @param result Previously returned value to possibly recycle.
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestVacantArea(
int pixelX, int pixelY, int spanX, int spanY, View ignoreView, int[] result) {
return findNearestArea(pixelX, pixelY, spanX, spanY, ignoreView, true, result);
}
/**
* Find a vacant area that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param minSpanX The minimum horizontal span required
* @param minSpanY The minimum vertical span required
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param ignoreView Considers space occupied by this view as unoccupied
* @param result Previously returned value to possibly recycle.
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY,
int spanX, int spanY, View ignoreView, int[] result, int[] resultSpan) {
return findNearestArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, ignoreView, true,
result, resultSpan, mOccupied);
}
/**
* Find a starting cell position that will fit the given bounds nearest the requested
* cell location. Uses Euclidean distance to score multiple vacant areas.
*
* @param pixelX The X location at which you want to search for a vacant area.
* @param pixelY The Y location at which you want to search for a vacant area.
* @param spanX Horizontal span of the object.
* @param spanY Vertical span of the object.
* @param ignoreView Considers space occupied by this view as unoccupied
* @param result Previously returned value to possibly recycle.
* @return The X, Y cell of a vacant area that can contain this object,
* nearest the requested location.
*/
int[] findNearestArea(
int pixelX, int pixelY, int spanX, int spanY, int[] result) {
return findNearestArea(pixelX, pixelY, spanX, spanY, null, false, result);
}
boolean existsEmptyCell() {
return findCellForSpan(null, 1, 1);
}
/**
* Finds the upper-left coordinate of the first rectangle in the grid that can
* hold a cell of the specified dimensions. If intersectX and intersectY are not -1,
* then this method will only return coordinates for rectangles that contain the cell
* (intersectX, intersectY)
*
* @param cellXY The array that will contain the position of a vacant cell if such a cell
* can be found.
* @param spanX The horizontal span of the cell we want to find.
* @param spanY The vertical span of the cell we want to find.
*
* @return True if a vacant cell of the specified dimension was found, false otherwise.
*/
boolean findCellForSpan(int[] cellXY, int spanX, int spanY) {
return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, null, mOccupied);
}
/**
* Like above, but ignores any cells occupied by the item "ignoreView"
*
* @param cellXY The array that will contain the position of a vacant cell if such a cell
* can be found.
* @param spanX The horizontal span of the cell we want to find.
* @param spanY The vertical span of the cell we want to find.
* @param ignoreView The home screen item we should treat as not occupying any space
* @return
*/
boolean findCellForSpanIgnoring(int[] cellXY, int spanX, int spanY, View ignoreView) {
return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1,
ignoreView, mOccupied);
}
/**
* Like above, but if intersectX and intersectY are not -1, then this method will try to
* return coordinates for rectangles that contain the cell [intersectX, intersectY]
*
* @param spanX The horizontal span of the cell we want to find.
* @param spanY The vertical span of the cell we want to find.
* @param ignoreView The home screen item we should treat as not occupying any space
* @param intersectX The X coordinate of the cell that we should try to overlap
* @param intersectX The Y coordinate of the cell that we should try to overlap
*
* @return True if a vacant cell of the specified dimension was found, false otherwise.
*/
boolean findCellForSpanThatIntersects(int[] cellXY, int spanX, int spanY,
int intersectX, int intersectY) {
return findCellForSpanThatIntersectsIgnoring(
cellXY, spanX, spanY, intersectX, intersectY, null, mOccupied);
}
/**
* The superset of the above two methods
*/
boolean findCellForSpanThatIntersectsIgnoring(int[] cellXY, int spanX, int spanY,
int intersectX, int intersectY, View ignoreView, boolean occupied[][]) {
// mark space take by ignoreView as available (method checks if ignoreView is null)
markCellsAsUnoccupiedForView(ignoreView, occupied);
boolean foundCell = false;
while (true) {
int startX = 0;
if (intersectX >= 0) {
startX = Math.max(startX, intersectX - (spanX - 1));
}
int endX = mCountX - (spanX - 1);
if (intersectX >= 0) {
endX = Math.min(endX, intersectX + (spanX - 1) + (spanX == 1 ? 1 : 0));
}
int startY = 0;
if (intersectY >= 0) {
startY = Math.max(startY, intersectY - (spanY - 1));
}
int endY = mCountY - (spanY - 1);
if (intersectY >= 0) {
endY = Math.min(endY, intersectY + (spanY - 1) + (spanY == 1 ? 1 : 0));
}
for (int y = startY; y < endY && !foundCell; y++) {
inner:
for (int x = startX; x < endX; x++) {
for (int i = 0; i < spanX; i++) {
for (int j = 0; j < spanY; j++) {
if (occupied[x + i][y + j]) {
// small optimization: we can skip to after the column we just found
// an occupied cell
x += i;
continue inner;
}
}
}
if (cellXY != null) {
cellXY[0] = x;
cellXY[1] = y;
}
foundCell = true;
break;
}
}
if (intersectX == -1 && intersectY == -1) {
break;
} else {
// if we failed to find anything, try again but without any requirements of
// intersecting
intersectX = -1;
intersectY = -1;
}
}
// re-mark space taken by ignoreView as occupied
markCellsAsOccupiedForView(ignoreView, occupied);
return foundCell;
}
/**
* A drag event has begun over this layout.
* It may have begun over this layout (in which case onDragChild is called first),
* or it may have begun on another layout.
*/
void onDragEnter() {
mDragEnforcer.onDragEnter();
mDragging = true;
}
/**
* Called when drag has left this CellLayout or has been completed (successfully or not)
*/
void onDragExit() {
mDragEnforcer.onDragExit();
// This can actually be called when we aren't in a drag, e.g. when adding a new
// item to this layout via the customize drawer.
// Guard against that case.
if (mDragging) {
mDragging = false;
}
// Invalidate the drag data
mDragCell[0] = mDragCell[1] = -1;
mDragOutlineAnims[mDragOutlineCurrent].animateOut();
mDragOutlineCurrent = (mDragOutlineCurrent + 1) % mDragOutlineAnims.length;
revertTempState();
setIsDragOverlapping(false);
}
/**
* Mark a child as having been dropped.
* At the beginning of the drag operation, the child may have been on another
* screen, but it is re-parented before this method is called.
*
* @param child The child that is being dropped
*/
void onDropChild(View child) {
if (child != null) {
LayoutParams lp = (LayoutParams) child.getLayoutParams();
lp.dropped = true;
child.requestLayout();
}
}
/**
* Computes a bounding rectangle for a range of cells
*
* @param cellX X coordinate of upper left corner expressed as a cell position
* @param cellY Y coordinate of upper left corner expressed as a cell position
* @param cellHSpan Width in cells
* @param cellVSpan Height in cells
* @param resultRect Rect into which to put the results
*/
public void cellToRect(int cellX, int cellY, int cellHSpan, int cellVSpan, Rect resultRect) {
final int cellWidth = mCellWidth;
final int cellHeight = mCellHeight;
final int widthGap = mWidthGap;
final int heightGap = mHeightGap;
final int hStartPadding = getPaddingLeft();
final int vStartPadding = getPaddingTop();
int width = cellHSpan * cellWidth + ((cellHSpan - 1) * widthGap);
int height = cellVSpan * cellHeight + ((cellVSpan - 1) * heightGap);
int x = hStartPadding + cellX * (cellWidth + widthGap);
int y = vStartPadding + cellY * (cellHeight + heightGap);
resultRect.set(x, y, x + width, y + height);
}
/**
* Computes the required horizontal and vertical cell spans to always
* fit the given rectangle.
*
* @param width Width in pixels
* @param height Height in pixels
* @param result An array of length 2 in which to store the result (may be null).
*/
public int[] rectToCell(int width, int height, int[] result) {
return rectToCell(getResources(), width, height, result);
}
public static int[] rectToCell(Resources resources, int width, int height, int[] result) {
// Always assume we're working with the smallest span to make sure we
// reserve enough space in both orientations.
int actualWidth = resources.getDimensionPixelSize(R.dimen.workspace_cell_width);
int actualHeight = resources.getDimensionPixelSize(R.dimen.workspace_cell_height);
int smallerSize = Math.min(actualWidth, actualHeight);
// Always round up to next largest cell
int spanX = (int) Math.ceil(width / (float) smallerSize);
int spanY = (int) Math.ceil(height / (float) smallerSize);
if (result == null) {
return new int[] { spanX, spanY };
}
result[0] = spanX;
result[1] = spanY;
return result;
}
public int[] cellSpansToSize(int hSpans, int vSpans) {
int[] size = new int[2];
size[0] = hSpans * mCellWidth + (hSpans - 1) * mWidthGap;
size[1] = vSpans * mCellHeight + (vSpans - 1) * mHeightGap;
return size;
}
/**
* Calculate the grid spans needed to fit given item
*/
public void calculateSpans(ItemInfo info) {
final int minWidth;
final int minHeight;
if (info instanceof LauncherAppWidgetInfo) {
minWidth = ((LauncherAppWidgetInfo) info).minWidth;
minHeight = ((LauncherAppWidgetInfo) info).minHeight;
} else if (info instanceof PendingAddWidgetInfo) {
minWidth = ((PendingAddWidgetInfo) info).minWidth;
minHeight = ((PendingAddWidgetInfo) info).minHeight;
} else {
// It's not a widget, so it must be 1x1
info.spanX = info.spanY = 1;
return;
}
int[] spans = rectToCell(minWidth, minHeight, null);
info.spanX = spans[0];
info.spanY = spans[1];
}
/**
* Find the first vacant cell, if there is one.
*
* @param vacant Holds the x and y coordinate of the vacant cell
* @param spanX Horizontal cell span.
* @param spanY Vertical cell span.
*
* @return True if a vacant cell was found
*/
public boolean getVacantCell(int[] vacant, int spanX, int spanY) {
return findVacantCell(vacant, spanX, spanY, mCountX, mCountY, mOccupied);
}
static boolean findVacantCell(int[] vacant, int spanX, int spanY,
int xCount, int yCount, boolean[][] occupied) {
for (int y = 0; y < yCount; y++) {
for (int x = 0; x < xCount; x++) {
boolean available = !occupied[x][y];
out: for (int i = x; i < x + spanX - 1 && x < xCount; i++) {
for (int j = y; j < y + spanY - 1 && y < yCount; j++) {
available = available && !occupied[i][j];
if (!available) break out;
}
}
if (available) {
vacant[0] = x;
vacant[1] = y;
return true;
}
}
}
return false;
}
private void clearOccupiedCells() {
for (int x = 0; x < mCountX; x++) {
for (int y = 0; y < mCountY; y++) {
mOccupied[x][y] = false;
}
}
}
public void onMove(View view, int newCellX, int newCellY, int newSpanX, int newSpanY) {
markCellsAsUnoccupiedForView(view);
markCellsForView(newCellX, newCellY, newSpanX, newSpanY, mOccupied, true);
}
public void markCellsAsOccupiedForView(View view) {
markCellsAsOccupiedForView(view, mOccupied);
}
public void markCellsAsOccupiedForView(View view, boolean[][] occupied) {
if (view == null || view.getParent() != mShortcutsAndWidgets) return;
LayoutParams lp = (LayoutParams) view.getLayoutParams();
markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, true);
}
public void markCellsAsUnoccupiedForView(View view) {
markCellsAsUnoccupiedForView(view, mOccupied);
}
public void markCellsAsUnoccupiedForView(View view, boolean occupied[][]) {
if (view == null || view.getParent() != mShortcutsAndWidgets) return;
LayoutParams lp = (LayoutParams) view.getLayoutParams();
markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, false);
}
private void markCellsForView(int cellX, int cellY, int spanX, int spanY, boolean[][] occupied,
boolean value) {
if (cellX < 0 || cellY < 0) return;
for (int x = cellX; x < cellX + spanX && x < mCountX; x++) {
for (int y = cellY; y < cellY + spanY && y < mCountY; y++) {
occupied[x][y] = value;
}
}
}
public int getDesiredWidth() {
return getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) +
(Math.max((mCountX - 1), 0) * mWidthGap);
}
public int getDesiredHeight() {
return getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) +
(Math.max((mCountY - 1), 0) * mHeightGap);
}
public boolean isOccupied(int x, int y) {
if (x < mCountX && y < mCountY) {
return mOccupied[x][y];
} else {
throw new RuntimeException("Position exceeds the bound of this CellLayout");
}
}
@Override
public ViewGroup.LayoutParams generateLayoutParams(AttributeSet attrs) {
return new CellLayout.LayoutParams(getContext(), attrs);
}
@Override
protected boolean checkLayoutParams(ViewGroup.LayoutParams p) {
return p instanceof CellLayout.LayoutParams;
}
@Override
protected ViewGroup.LayoutParams generateLayoutParams(ViewGroup.LayoutParams p) {
return new CellLayout.LayoutParams(p);
}
public static class CellLayoutAnimationController extends LayoutAnimationController {
public CellLayoutAnimationController(Animation animation, float delay) {
super(animation, delay);
}
@Override
protected long getDelayForView(View view) {
return (int) (Math.random() * 150);
}
}
public static class LayoutParams extends ViewGroup.MarginLayoutParams {
/**
* Horizontal location of the item in the grid.
*/
@ViewDebug.ExportedProperty
public int cellX;
/**
* Vertical location of the item in the grid.
*/
@ViewDebug.ExportedProperty
public int cellY;
/**
* Temporary horizontal location of the item in the grid during reorder
*/
public int tmpCellX;
/**
* Temporary vertical location of the item in the grid during reorder
*/
public int tmpCellY;
/**
* Indicates that the temporary coordinates should be used to layout the items
*/
public boolean useTmpCoords;
/**
* Number of cells spanned horizontally by the item.
*/
@ViewDebug.ExportedProperty
public int cellHSpan;
/**
* Number of cells spanned vertically by the item.
*/
@ViewDebug.ExportedProperty
public int cellVSpan;
/**
* Indicates whether the item will set its x, y, width and height parameters freely,
* or whether these will be computed based on cellX, cellY, cellHSpan and cellVSpan.
*/
public boolean isLockedToGrid = true;
/**
* Indicates whether this item can be reordered. Always true except in the case of the
* the AllApps button.
*/
public boolean canReorder = true;
// X coordinate of the view in the layout.
@ViewDebug.ExportedProperty
int x;
// Y coordinate of the view in the layout.
@ViewDebug.ExportedProperty
int y;
boolean dropped;
public LayoutParams(Context c, AttributeSet attrs) {
super(c, attrs);
cellHSpan = 1;
cellVSpan = 1;
}
public LayoutParams(ViewGroup.LayoutParams source) {
super(source);
cellHSpan = 1;
cellVSpan = 1;
}
public LayoutParams(LayoutParams source) {
super(source);
this.cellX = source.cellX;
this.cellY = source.cellY;
this.cellHSpan = source.cellHSpan;
this.cellVSpan = source.cellVSpan;
}
public LayoutParams(int cellX, int cellY, int cellHSpan, int cellVSpan) {
super(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT);
this.cellX = cellX;
this.cellY = cellY;
this.cellHSpan = cellHSpan;
this.cellVSpan = cellVSpan;
}
public void setup(int cellWidth, int cellHeight, int widthGap, int heightGap) {
if (isLockedToGrid) {
final int myCellHSpan = cellHSpan;
final int myCellVSpan = cellVSpan;
final int myCellX = useTmpCoords ? tmpCellX : cellX;
final int myCellY = useTmpCoords ? tmpCellY : cellY;
width = myCellHSpan * cellWidth + ((myCellHSpan - 1) * widthGap) -
leftMargin - rightMargin;
height = myCellVSpan * cellHeight + ((myCellVSpan - 1) * heightGap) -
topMargin - bottomMargin;
x = myCellX * (cellWidth + widthGap) + leftMargin;
y = myCellY * (cellHeight + heightGap) + topMargin;
}
}
public String toString() {
return "(" + this.cellX + ", " + this.cellY + ")";
}
public void setWidth(int width) {
this.width = width;
}
public int getWidth() {
return width;
}
public void setHeight(int height) {
this.height = height;
}
public int getHeight() {
return height;
}
public void setX(int x) {
this.x = x;
}
public int getX() {
return x;
}
public void setY(int y) {
this.y = y;
}
public int getY() {
return y;
}
}
// This class stores info for two purposes:
// 1. When dragging items (mDragInfo in Workspace), we store the View, its cellX & cellY,
// its spanX, spanY, and the screen it is on
// 2. When long clicking on an empty cell in a CellLayout, we save information about the
// cellX and cellY coordinates and which page was clicked. We then set this as a tag on
// the CellLayout that was long clicked
static final class CellInfo {
View cell;
int cellX = -1;
int cellY = -1;
int spanX;
int spanY;
int screen;
long container;
@Override
public String toString() {
return "Cell[view=" + (cell == null ? "null" : cell.getClass())
+ ", x=" + cellX + ", y=" + cellY + "]";
}
}
public boolean lastDownOnOccupiedCell() {
return mLastDownOnOccupiedCell;
}
}
|