summaryrefslogtreecommitdiffstats
path: root/6/sources/cxx-stl/gnu-libstdc++/include/limits
blob: 41bf806d5eb771cc5cfadef8630c120527f6bc39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
// The template and inlines for the numeric_limits classes. -*- C++ -*- 

// Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
// 2008, 2009  Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file limits
 *  This is a Standard C++ Library header.
 */

// Note: this is not a conforming implementation.
// Written by Gabriel Dos Reis <gdr@codesourcery.com>

//
// ISO 14882:1998
// 18.2.1
//

#ifndef _GLIBCXX_NUMERIC_LIMITS
#define _GLIBCXX_NUMERIC_LIMITS 1

#pragma GCC system_header

#include <bits/c++config.h>

//
// The numeric_limits<> traits document implementation-defined aspects
// of fundamental arithmetic data types (integers and floating points).
// From Standard C++ point of view, there are 13 such types:
//   * integers
//         bool						        (1)
//         char, signed char, unsigned char			(3)
//         short, unsigned short				(2)
//         int, unsigned					(2)
//         long, unsigned long					(2)
//
//   * floating points
//         float						(1)
//         double						(1)
//         long double						(1)
//
// GNU C++ understands (where supported by the host C-library)
//   * integer
//         long long, unsigned long long			(2)
//
// which brings us to 15 fundamental arithmetic data types in GNU C++.
//
//
// Since a numeric_limits<> is a bit tricky to get right, we rely on
// an interface composed of macros which should be defined in config/os
// or config/cpu when they differ from the generic (read arbitrary)
// definitions given here.
//

// These values can be overridden in the target configuration file.
// The default values are appropriate for many 32-bit targets.

// GCC only intrinsically supports modulo integral types.  The only remaining
// integral exceptional values is division by zero.  Only targets that do not
// signal division by zero in some "hard to ignore" way should use false.
#ifndef __glibcxx_integral_traps
# define __glibcxx_integral_traps true
#endif

// float
//

// Default values.  Should be overridden in configuration files if necessary.

#ifndef __glibcxx_float_has_denorm_loss
#  define __glibcxx_float_has_denorm_loss false
#endif
#ifndef __glibcxx_float_traps
#  define __glibcxx_float_traps false
#endif
#ifndef __glibcxx_float_tinyness_before
#  define __glibcxx_float_tinyness_before false
#endif

// double

// Default values.  Should be overridden in configuration files if necessary.

#ifndef __glibcxx_double_has_denorm_loss
#  define __glibcxx_double_has_denorm_loss false
#endif
#ifndef __glibcxx_double_traps
#  define __glibcxx_double_traps false
#endif
#ifndef __glibcxx_double_tinyness_before
#  define __glibcxx_double_tinyness_before false
#endif

// long double

// Default values.  Should be overridden in configuration files if necessary.

#ifndef __glibcxx_long_double_has_denorm_loss
#  define __glibcxx_long_double_has_denorm_loss false
#endif
#ifndef __glibcxx_long_double_traps
#  define __glibcxx_long_double_traps false
#endif
#ifndef __glibcxx_long_double_tinyness_before
#  define __glibcxx_long_double_tinyness_before false
#endif

// You should not need to define any macros below this point.

#define __glibcxx_signed(T)	((T)(-1) < 0)

#define __glibcxx_min(T) \
  (__glibcxx_signed (T) ? (T)1 << __glibcxx_digits (T) : (T)0)

#define __glibcxx_max(T) \
  (__glibcxx_signed (T) ? \
   (((((T)1 << (__glibcxx_digits (T) - 1)) - 1) << 1) + 1) : ~(T)0)

#define __glibcxx_digits(T) \
  (sizeof(T) * __CHAR_BIT__ - __glibcxx_signed (T))

// The fraction 643/2136 approximates log10(2) to 7 significant digits.
#define __glibcxx_digits10(T) \
  (__glibcxx_digits (T) * 643 / 2136)


_GLIBCXX_BEGIN_NAMESPACE(std)

  /**
   *  @brief Describes the rounding style for floating-point types.
   *
   *  This is used in the std::numeric_limits class.
  */
  enum float_round_style
  {
    round_indeterminate       = -1,    ///< Self-explanatory.
    round_toward_zero         = 0,     ///< Self-explanatory.
    round_to_nearest          = 1,     ///< To the nearest representable value.
    round_toward_infinity     = 2,     ///< Self-explanatory.
    round_toward_neg_infinity = 3      ///< Self-explanatory.
  };

  /**
   *  @brief Describes the denormalization for floating-point types.
   *
   *  These values represent the presence or absence of a variable number
   *  of exponent bits.  This type is used in the std::numeric_limits class.
  */
  enum float_denorm_style
  {
    /// Indeterminate at compile time whether denormalized values are allowed.
    denorm_indeterminate = -1,
    /// The type does not allow denormalized values.
    denorm_absent        = 0,
    /// The type allows denormalized values.
    denorm_present       = 1
  };

  /**
   *  @brief Part of std::numeric_limits.
   *
   *  The @c static @c const members are usable as integral constant
   *  expressions.
   *
   *  @note This is a separate class for purposes of efficiency; you
   *        should only access these members as part of an instantiation
   *        of the std::numeric_limits class.
  */
  struct __numeric_limits_base
  {
    /** This will be true for all fundamental types (which have
        specializations), and false for everything else.  */
    static const bool is_specialized = false;

    /** The number of @c radix digits that be represented without change:  for
        integer types, the number of non-sign bits in the mantissa; for
        floating types, the number of @c radix digits in the mantissa.  */
    static const int digits = 0;
    /** The number of base 10 digits that can be represented without change. */
    static const int digits10 = 0;
    /** True if the type is signed.  */
    static const bool is_signed = false;
    /** True if the type is integer.
     *  Is this supposed to be "if the type is integral"?
    */
    static const bool is_integer = false;
    /** True if the type uses an exact representation.  "All integer types are
        exact, but not all exact types are integer.  For example, rational and
        fixed-exponent representations are exact but not integer."
        [18.2.1.2]/15  */
    static const bool is_exact = false;
    /** For integer types, specifies the base of the representation.  For
        floating types, specifies the base of the exponent representation.  */
    static const int radix = 0;

    /** The minimum negative integer such that @c radix raised to the power of
        (one less than that integer) is a normalized floating point number.  */
    static const int min_exponent = 0;
    /** The minimum negative integer such that 10 raised to that power is in
        the range of normalized floating point numbers.  */
    static const int min_exponent10 = 0;
    /** The maximum positive integer such that @c radix raised to the power of
        (one less than that integer) is a representable finite floating point
	number.  */
    static const int max_exponent = 0;
    /** The maximum positive integer such that 10 raised to that power is in
        the range of representable finite floating point numbers.  */
    static const int max_exponent10 = 0;

    /** True if the type has a representation for positive infinity.  */
    static const bool has_infinity = false;
    /** True if the type has a representation for a quiet (non-signaling)
        "Not a Number."  */
    static const bool has_quiet_NaN = false;
    /** True if the type has a representation for a signaling
        "Not a Number."  */
    static const bool has_signaling_NaN = false;
    /** See std::float_denorm_style for more information.  */
    static const float_denorm_style has_denorm = denorm_absent;
    /** "True if loss of accuracy is detected as a denormalization loss,
        rather than as an inexact result." [18.2.1.2]/42  */
    static const bool has_denorm_loss = false;

    /** True if-and-only-if the type adheres to the IEC 559 standard, also
        known as IEEE 754.  (Only makes sense for floating point types.)  */
    static const bool is_iec559 = false;
    /** "True if the set of values representable by the type is finite.   All
        built-in types are bounded, this member would be false for arbitrary
	precision types." [18.2.1.2]/54  */
    static const bool is_bounded = false;
    /** True if the type is @e modulo, that is, if it is possible to add two
        positive numbers and have a result that wraps around to a third number
        that is less.  Typically false for floating types, true for unsigned
        integers, and true for signed integers.  */
    static const bool is_modulo = false;

    /** True if trapping is implemented for this type.  */
    static const bool traps = false;
    /** True if tininess is detected before rounding.  (see IEC 559)  */
    static const bool tinyness_before = false;
    /** See std::float_round_style for more information.  This is only
        meaningful for floating types; integer types will all be
	round_toward_zero.  */
    static const float_round_style round_style = round_toward_zero;
  };

  /**
   *  @brief Properties of fundamental types.
   *
   *  This class allows a program to obtain information about the
   *  representation of a fundamental type on a given platform.  For
   *  non-fundamental types, the functions will return 0 and the data
   *  members will all be @c false.
   *
   *  _GLIBCXX_RESOLVE_LIB_DEFECTS:  DRs 201 and 184 (hi Gaby!) are
   *  noted, but not incorporated in this documented (yet).
  */
  template<typename _Tp>
    struct numeric_limits : public __numeric_limits_base
    {
      /** The minimum finite value, or for floating types with
          denormalization, the minimum positive normalized value.  */
      static _Tp min() throw() { return static_cast<_Tp>(0); }
      /** The maximum finite value.  */
      static _Tp max() throw() { return static_cast<_Tp>(0); }
      /** The @e machine @e epsilon:  the difference between 1 and the least
          value greater than 1 that is representable.  */
      static _Tp epsilon() throw() { return static_cast<_Tp>(0); }
      /** The maximum rounding error measurement (see LIA-1).  */
      static _Tp round_error() throw() { return static_cast<_Tp>(0); }
      /** The representation of positive infinity, if @c has_infinity.  */
      static _Tp infinity() throw()  { return static_cast<_Tp>(0); }
      /** The representation of a quiet "Not a Number," if @c has_quiet_NaN. */
      static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); }
      /** The representation of a signaling "Not a Number," if
          @c has_signaling_NaN. */
      static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); }
      /** The minimum positive denormalized value.  For types where
          @c has_denorm is false, this is the minimum positive normalized
	  value.  */
      static _Tp denorm_min() throw() { return static_cast<_Tp>(0); }
    };

  // Now there follow 15 explicit specializations.  Yes, 15.  Make sure
  // you get the count right.

  /// numeric_limits<bool> specialization.
  template<>
    struct numeric_limits<bool>
    {
      static const bool is_specialized = true;

      static bool min() throw()
      { return false; }
      static bool max() throw()
      { return true; }

      static const int digits = 1;
      static const int digits10 = 0;
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static bool epsilon() throw()
      { return false; }
      static bool round_error() throw()
      { return false; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static bool infinity() throw()
      { return false; }
      static bool quiet_NaN() throw()
      { return false; }
      static bool signaling_NaN() throw()
      { return false; }
      static bool denorm_min() throw()
      { return false; }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = false;

      // It is not clear what it means for a boolean type to trap.
      // This is a DR on the LWG issue list.  Here, I use integer
      // promotion semantics.
      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<char> specialization.
  template<>
    struct numeric_limits<char>
    {
      static const bool is_specialized = true;

      static char min() throw()
      { return __glibcxx_min(char); }
      static char max() throw()
      { return __glibcxx_max(char); }

      static const int digits = __glibcxx_digits (char);
      static const int digits10 = __glibcxx_digits10 (char);
      static const bool is_signed = __glibcxx_signed (char);
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static char epsilon() throw()
      { return 0; }
      static char round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static char infinity() throw()
      { return char(); }
      static char quiet_NaN() throw()
      { return char(); }
      static char signaling_NaN() throw()
      { return char(); }
      static char denorm_min() throw()
      { return static_cast<char>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<signed char> specialization.
  template<>
    struct numeric_limits<signed char>
    {
      static const bool is_specialized = true;

      static signed char min() throw()
      { return -__SCHAR_MAX__ - 1; }
      static signed char max() throw()
      { return __SCHAR_MAX__; }

      static const int digits = __glibcxx_digits (signed char);
      static const int digits10 = __glibcxx_digits10 (signed char);
      static const bool is_signed = true;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static signed char epsilon() throw()
      { return 0; }
      static signed char round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static signed char infinity() throw()
      { return static_cast<signed char>(0); }
      static signed char quiet_NaN() throw()
      { return static_cast<signed char>(0); }
      static signed char signaling_NaN() throw()
      { return static_cast<signed char>(0); }
      static signed char denorm_min() throw()
      { return static_cast<signed char>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<unsigned char> specialization.
  template<>
    struct numeric_limits<unsigned char>
    {
      static const bool is_specialized = true;

      static unsigned char min() throw()
      { return 0; }
      static unsigned char max() throw()
      { return __SCHAR_MAX__ * 2U + 1; }

      static const int digits = __glibcxx_digits (unsigned char);
      static const int digits10 = __glibcxx_digits10 (unsigned char);
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static unsigned char epsilon() throw()
      { return 0; }
      static unsigned char round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static unsigned char infinity() throw()
      { return static_cast<unsigned char>(0); }
      static unsigned char quiet_NaN() throw()
      { return static_cast<unsigned char>(0); }
      static unsigned char signaling_NaN() throw()
      { return static_cast<unsigned char>(0); }
      static unsigned char denorm_min() throw()
      { return static_cast<unsigned char>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<wchar_t> specialization.
  template<>
    struct numeric_limits<wchar_t>
    {
      static const bool is_specialized = true;

      static wchar_t min() throw()
      { return __glibcxx_min (wchar_t); }
      static wchar_t max() throw()
      { return __glibcxx_max (wchar_t); }

      static const int digits = __glibcxx_digits (wchar_t);
      static const int digits10 = __glibcxx_digits10 (wchar_t);
      static const bool is_signed = __glibcxx_signed (wchar_t);
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static wchar_t epsilon() throw()
      { return 0; }
      static wchar_t round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static wchar_t infinity() throw()
      { return wchar_t(); }
      static wchar_t quiet_NaN() throw()
      { return wchar_t(); }
      static wchar_t signaling_NaN() throw()
      { return wchar_t(); }
      static wchar_t denorm_min() throw()
      { return wchar_t(); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

#ifdef __GXX_EXPERIMENTAL_CXX0X__
  /// numeric_limits<char16_t> specialization.
  template<>
    struct numeric_limits<char16_t>
    {
      static const bool is_specialized = true;

      static char16_t min() throw()
      { return __glibcxx_min (char16_t); }
      static char16_t max() throw()
      { return __glibcxx_max (char16_t); }

      static const int digits = __glibcxx_digits (char16_t);
      static const int digits10 = __glibcxx_digits10 (char16_t);
      static const bool is_signed = __glibcxx_signed (char16_t);
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static char16_t epsilon() throw()
      { return 0; }
      static char16_t round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static char16_t infinity() throw()
      { return char16_t(); }
      static char16_t quiet_NaN() throw()
      { return char16_t(); }
      static char16_t signaling_NaN() throw()
      { return char16_t(); }
      static char16_t denorm_min() throw()
      { return char16_t(); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<char32_t> specialization.
  template<>
    struct numeric_limits<char32_t>
    {
      static const bool is_specialized = true;

      static char32_t min() throw()
      { return __glibcxx_min (char32_t); }
      static char32_t max() throw()
      { return __glibcxx_max (char32_t); }

      static const int digits = __glibcxx_digits (char32_t);
      static const int digits10 = __glibcxx_digits10 (char32_t);
      static const bool is_signed = __glibcxx_signed (char32_t);
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static char32_t epsilon() throw()
      { return 0; }
      static char32_t round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static char32_t infinity() throw()
      { return char32_t(); }
      static char32_t quiet_NaN() throw()
      { return char32_t(); }
      static char32_t signaling_NaN() throw()
      { return char32_t(); }
      static char32_t denorm_min() throw()
      { return char32_t(); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };
#endif

  /// numeric_limits<short> specialization.
  template<>
    struct numeric_limits<short>
    {
      static const bool is_specialized = true;

      static short min() throw()
      { return -__SHRT_MAX__ - 1; }
      static short max() throw()
      { return __SHRT_MAX__; }

      static const int digits = __glibcxx_digits (short);
      static const int digits10 = __glibcxx_digits10 (short);
      static const bool is_signed = true;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static short epsilon() throw()
      { return 0; }
      static short round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static short infinity() throw()
      { return short(); }
      static short quiet_NaN() throw()
      { return short(); }
      static short signaling_NaN() throw()
      { return short(); }
      static short denorm_min() throw()
      { return short(); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<unsigned short> specialization.
  template<>
    struct numeric_limits<unsigned short>
    {
      static const bool is_specialized = true;

      static unsigned short min() throw()
      { return 0; }
      static unsigned short max() throw()
      { return __SHRT_MAX__ * 2U + 1; }

      static const int digits = __glibcxx_digits (unsigned short);
      static const int digits10 = __glibcxx_digits10 (unsigned short);
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static unsigned short epsilon() throw()
      { return 0; }
      static unsigned short round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static unsigned short infinity() throw()
      { return static_cast<unsigned short>(0); }
      static unsigned short quiet_NaN() throw()
      { return static_cast<unsigned short>(0); }
      static unsigned short signaling_NaN() throw()
      { return static_cast<unsigned short>(0); }
      static unsigned short denorm_min() throw()
      { return static_cast<unsigned short>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<int> specialization.
  template<>
    struct numeric_limits<int>
    {
      static const bool is_specialized = true;

      static int min() throw()
      { return -__INT_MAX__ - 1; }
      static int max() throw()
      { return __INT_MAX__; }

      static const int digits = __glibcxx_digits (int);
      static const int digits10 = __glibcxx_digits10 (int);
      static const bool is_signed = true;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static int epsilon() throw()
      { return 0; }
      static int round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static int infinity() throw()
      { return static_cast<int>(0); }
      static int quiet_NaN() throw()
      { return static_cast<int>(0); }
      static int signaling_NaN() throw()
      { return static_cast<int>(0); }
      static int denorm_min() throw()
      { return static_cast<int>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<unsigned int> specialization.
  template<>
    struct numeric_limits<unsigned int>
    {
      static const bool is_specialized = true;

      static unsigned int min() throw()
      { return 0; }
      static unsigned int max() throw()
      { return __INT_MAX__ * 2U + 1; }

      static const int digits = __glibcxx_digits (unsigned int);
      static const int digits10 = __glibcxx_digits10 (unsigned int);
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static unsigned int epsilon() throw()
      { return 0; }
      static unsigned int round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static unsigned int infinity() throw()
      { return static_cast<unsigned int>(0); }
      static unsigned int quiet_NaN() throw()
      { return static_cast<unsigned int>(0); }
      static unsigned int signaling_NaN() throw()
      { return static_cast<unsigned int>(0); }
      static unsigned int denorm_min() throw()
      { return static_cast<unsigned int>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<long> specialization.
  template<>
    struct numeric_limits<long>
    {
      static const bool is_specialized = true;

      static long min() throw()
      { return -__LONG_MAX__ - 1; }
      static long max() throw()
      { return __LONG_MAX__; }

      static const int digits = __glibcxx_digits (long);
      static const int digits10 = __glibcxx_digits10 (long);
      static const bool is_signed = true;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static long epsilon() throw()
      { return 0; }
      static long round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static long infinity() throw()
      { return static_cast<long>(0); }
      static long quiet_NaN() throw()
      { return static_cast<long>(0); }
      static long signaling_NaN() throw()
      { return static_cast<long>(0); }
      static long denorm_min() throw()
      { return static_cast<long>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<unsigned long> specialization.
  template<>
    struct numeric_limits<unsigned long>
    {
      static const bool is_specialized = true;

      static unsigned long min() throw()
      { return 0; }
      static unsigned long max() throw()
      { return __LONG_MAX__ * 2UL + 1; }

      static const int digits = __glibcxx_digits (unsigned long);
      static const int digits10 = __glibcxx_digits10 (unsigned long);
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static unsigned long epsilon() throw()
      { return 0; }
      static unsigned long round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static unsigned long infinity() throw()
      { return static_cast<unsigned long>(0); }
      static unsigned long quiet_NaN() throw()
      { return static_cast<unsigned long>(0); }
      static unsigned long signaling_NaN() throw()
      { return static_cast<unsigned long>(0); }
      static unsigned long denorm_min() throw()
      { return static_cast<unsigned long>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<long long> specialization.
  template<>
    struct numeric_limits<long long>
    {
      static const bool is_specialized = true;

      static long long min() throw()
      { return -__LONG_LONG_MAX__ - 1; }
      static long long max() throw()
      { return __LONG_LONG_MAX__; }

      static const int digits = __glibcxx_digits (long long);
      static const int digits10 = __glibcxx_digits10 (long long);
      static const bool is_signed = true;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static long long epsilon() throw()
      { return 0; }
      static long long round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static long long infinity() throw()
      { return static_cast<long long>(0); }
      static long long quiet_NaN() throw()
      { return static_cast<long long>(0); }
      static long long signaling_NaN() throw()
      { return static_cast<long long>(0); }
      static long long denorm_min() throw()
      { return static_cast<long long>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<unsigned long long> specialization.
  template<>
    struct numeric_limits<unsigned long long>
    {
      static const bool is_specialized = true;

      static unsigned long long min() throw()
      { return 0; }
      static unsigned long long max() throw()
      { return __LONG_LONG_MAX__ * 2ULL + 1; }

      static const int digits = __glibcxx_digits (unsigned long long);
      static const int digits10 = __glibcxx_digits10 (unsigned long long);
      static const bool is_signed = false;
      static const bool is_integer = true;
      static const bool is_exact = true;
      static const int radix = 2;
      static unsigned long long epsilon() throw()
      { return 0; }
      static unsigned long long round_error() throw()
      { return 0; }

      static const int min_exponent = 0;
      static const int min_exponent10 = 0;
      static const int max_exponent = 0;
      static const int max_exponent10 = 0;

      static const bool has_infinity = false;
      static const bool has_quiet_NaN = false;
      static const bool has_signaling_NaN = false;
      static const float_denorm_style has_denorm = denorm_absent;
      static const bool has_denorm_loss = false;

      static unsigned long long infinity() throw()
      { return static_cast<unsigned long long>(0); }
      static unsigned long long quiet_NaN() throw()
      { return static_cast<unsigned long long>(0); }
      static unsigned long long signaling_NaN() throw()
      { return static_cast<unsigned long long>(0); }
      static unsigned long long denorm_min() throw()
      { return static_cast<unsigned long long>(0); }

      static const bool is_iec559 = false;
      static const bool is_bounded = true;
      static const bool is_modulo = true;

      static const bool traps = __glibcxx_integral_traps;
      static const bool tinyness_before = false;
      static const float_round_style round_style = round_toward_zero;
    };

  /// numeric_limits<float> specialization.
  template<>
    struct numeric_limits<float>
    {
      static const bool is_specialized = true;

      static float min() throw()
      { return __FLT_MIN__; }
      static float max() throw()
      { return __FLT_MAX__; }

      static const int digits = __FLT_MANT_DIG__;
      static const int digits10 = __FLT_DIG__;
      static const bool is_signed = true;
      static const bool is_integer = false;
      static const bool is_exact = false;
      static const int radix = __FLT_RADIX__;
      static float epsilon() throw()
      { return __FLT_EPSILON__; }
      static float round_error() throw()
      { return 0.5F; }

      static const int min_exponent = __FLT_MIN_EXP__;
      static const int min_exponent10 = __FLT_MIN_10_EXP__;
      static const int max_exponent = __FLT_MAX_EXP__;
      static const int max_exponent10 = __FLT_MAX_10_EXP__;

      static const bool has_infinity = __FLT_HAS_INFINITY__;
      static const bool has_quiet_NaN = __FLT_HAS_QUIET_NAN__;
      static const bool has_signaling_NaN = has_quiet_NaN;
      static const float_denorm_style has_denorm
	= bool(__FLT_HAS_DENORM__) ? denorm_present : denorm_absent;
      static const bool has_denorm_loss = __glibcxx_float_has_denorm_loss;

      static float infinity() throw()
      { return __builtin_huge_valf (); }
      static float quiet_NaN() throw()
      { return __builtin_nanf (""); }
      static float signaling_NaN() throw()
      { return __builtin_nansf (""); }
      static float denorm_min() throw()
      { return __FLT_DENORM_MIN__; }

      static const bool is_iec559
	= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
      static const bool is_bounded = true;
      static const bool is_modulo = false;

      static const bool traps = __glibcxx_float_traps;
      static const bool tinyness_before = __glibcxx_float_tinyness_before;
      static const float_round_style round_style = round_to_nearest;
    };

#undef __glibcxx_float_has_denorm_loss
#undef __glibcxx_float_traps
#undef __glibcxx_float_tinyness_before

  /// numeric_limits<double> specialization.
  template<>
    struct numeric_limits<double>
    {
      static const bool is_specialized = true;

      static double min() throw()
      { return __DBL_MIN__; }
      static double max() throw()
      { return __DBL_MAX__; }

      static const int digits = __DBL_MANT_DIG__;
      static const int digits10 = __DBL_DIG__;
      static const bool is_signed = true;
      static const bool is_integer = false;
      static const bool is_exact = false;
      static const int radix = __FLT_RADIX__;
      static double epsilon() throw()
      { return __DBL_EPSILON__; }
      static double round_error() throw()
      { return 0.5; }

      static const int min_exponent = __DBL_MIN_EXP__;
      static const int min_exponent10 = __DBL_MIN_10_EXP__;
      static const int max_exponent = __DBL_MAX_EXP__;
      static const int max_exponent10 = __DBL_MAX_10_EXP__;

      static const bool has_infinity = __DBL_HAS_INFINITY__;
      static const bool has_quiet_NaN = __DBL_HAS_QUIET_NAN__;
      static const bool has_signaling_NaN = has_quiet_NaN;
      static const float_denorm_style has_denorm
	= bool(__DBL_HAS_DENORM__) ? denorm_present : denorm_absent;
      static const bool has_denorm_loss = __glibcxx_double_has_denorm_loss;

      static double infinity() throw()
      { return __builtin_huge_val(); }
      static double quiet_NaN() throw()
      { return __builtin_nan (""); }
      static double signaling_NaN() throw()
      { return __builtin_nans (""); }
      static double denorm_min() throw()
      { return __DBL_DENORM_MIN__; }

      static const bool is_iec559
	= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
      static const bool is_bounded = true;
      static const bool is_modulo = false;

      static const bool traps = __glibcxx_double_traps;
      static const bool tinyness_before = __glibcxx_double_tinyness_before;
      static const float_round_style round_style = round_to_nearest;
    };

#undef __glibcxx_double_has_denorm_loss
#undef __glibcxx_double_traps
#undef __glibcxx_double_tinyness_before

  /// numeric_limits<long double> specialization.
  template<>
    struct numeric_limits<long double>
    {
      static const bool is_specialized = true;

      static long double min() throw()
      { return __LDBL_MIN__; }
      static long double max() throw()
      { return __LDBL_MAX__; }

      static const int digits = __LDBL_MANT_DIG__;
      static const int digits10 = __LDBL_DIG__;
      static const bool is_signed = true;
      static const bool is_integer = false;
      static const bool is_exact = false;
      static const int radix = __FLT_RADIX__;
      static long double epsilon() throw()
      { return __LDBL_EPSILON__; }
      static long double round_error() throw()
      { return 0.5L; }

      static const int min_exponent = __LDBL_MIN_EXP__;
      static const int min_exponent10 = __LDBL_MIN_10_EXP__;
      static const int max_exponent = __LDBL_MAX_EXP__;
      static const int max_exponent10 = __LDBL_MAX_10_EXP__;

      static const bool has_infinity = __LDBL_HAS_INFINITY__;
      static const bool has_quiet_NaN = __LDBL_HAS_QUIET_NAN__;
      static const bool has_signaling_NaN = has_quiet_NaN;
      static const float_denorm_style has_denorm
	= bool(__LDBL_HAS_DENORM__) ? denorm_present : denorm_absent;
      static const bool has_denorm_loss
	= __glibcxx_long_double_has_denorm_loss;

      static long double infinity() throw()
      { return __builtin_huge_vall (); }
      static long double quiet_NaN() throw()
      { return __builtin_nanl (""); }
      static long double signaling_NaN() throw()
      { return __builtin_nansl (""); }
      static long double denorm_min() throw()
      { return __LDBL_DENORM_MIN__; }

      static const bool is_iec559
	= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
      static const bool is_bounded = true;
      static const bool is_modulo = false;

      static const bool traps = __glibcxx_long_double_traps;
      static const bool tinyness_before = __glibcxx_long_double_tinyness_before;
      static const float_round_style round_style = round_to_nearest;
    };

#undef __glibcxx_long_double_has_denorm_loss
#undef __glibcxx_long_double_traps
#undef __glibcxx_long_double_tinyness_before

_GLIBCXX_END_NAMESPACE

#undef __glibcxx_signed
#undef __glibcxx_min
#undef __glibcxx_max
#undef __glibcxx_digits
#undef __glibcxx_digits10

#endif // _GLIBCXX_NUMERIC_LIMITS