summaryrefslogtreecommitdiffstats
path: root/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/bits/atomic_2.h
blob: 2815d599b4231b6addd4d383b8c3fa18f54d8acc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// -*- C++ -*- header.

// Copyright (C) 2008, 2009
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file bits/atomic_2.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _GLIBCXX_ATOMIC_2_H
#define _GLIBCXX_ATOMIC_2_H 1

#pragma GCC system_header

// _GLIBCXX_BEGIN_NAMESPACE(std)

// 2 == __atomic2 == Always lock-free
// Assumed:
// _GLIBCXX_ATOMIC_BUILTINS_1
// _GLIBCXX_ATOMIC_BUILTINS_2
// _GLIBCXX_ATOMIC_BUILTINS_4
// _GLIBCXX_ATOMIC_BUILTINS_8
namespace __atomic2
{
  /// atomic_flag
  struct atomic_flag : public __atomic_flag_base
  {
    atomic_flag() = default;
    ~atomic_flag() = default;
    atomic_flag(const atomic_flag&) = delete;
    atomic_flag& operator=(const atomic_flag&) = delete;

    // Conversion to ATOMIC_FLAG_INIT.
    atomic_flag(bool __i): __atomic_flag_base({ __i }) { }

    bool
    test_and_set(memory_order __m = memory_order_seq_cst) volatile
    {
      // Redundant synchronize if built-in for lock is a full barrier.
      if (__m != memory_order_acquire && __m != memory_order_acq_rel)
	__sync_synchronize();
      return __sync_lock_test_and_set(&_M_i, 1);
    }

    void
    clear(memory_order __m = memory_order_seq_cst) volatile
    {
      __glibcxx_assert(__m != memory_order_consume);
      __glibcxx_assert(__m != memory_order_acquire);
      __glibcxx_assert(__m != memory_order_acq_rel);

      __sync_lock_release(&_M_i);
      if (__m != memory_order_acquire && __m != memory_order_acq_rel)
	__sync_synchronize();
    }
  };


  /// 29.4.2, address types
  struct atomic_address
  {
  private:
    void* _M_i;

  public:
    atomic_address() = default;
    ~atomic_address() = default;
    atomic_address(const atomic_address&) = delete;
    atomic_address& operator=(const atomic_address&) = delete;

    atomic_address(void* __v) { _M_i = __v; }

    bool
    is_lock_free() const volatile
    { return true; }

    void
    store(void* __v, memory_order __m = memory_order_seq_cst) volatile
    {
      __glibcxx_assert(__m != memory_order_acquire);
      __glibcxx_assert(__m != memory_order_acq_rel);
      __glibcxx_assert(__m != memory_order_consume);

      if (__m == memory_order_relaxed)
	_M_i = __v;
      else
	{
	  // write_mem_barrier();
	  _M_i = __v;
	  if (__m == memory_order_seq_cst)
	    __sync_synchronize();
	}
    }

    void*
    load(memory_order __m = memory_order_seq_cst) const volatile
    {
      __glibcxx_assert(__m != memory_order_release);
      __glibcxx_assert(__m != memory_order_acq_rel);

      __sync_synchronize();
      void* __ret = _M_i;
      __sync_synchronize();
      return __ret;
    }

    void*
    exchange(void* __v, memory_order __m = memory_order_seq_cst) volatile
    {
      // XXX built-in assumes memory_order_acquire.
      return __sync_lock_test_and_set(&_M_i, __v);
    }

    bool
    compare_exchange_weak(void*& __v1, void* __v2, memory_order __m1,
			  memory_order __m2) volatile
    { return compare_exchange_strong(__v1, __v2, __m1, __m2); }

    bool
    compare_exchange_weak(void*& __v1, void* __v2,
			  memory_order __m = memory_order_seq_cst) volatile
    {
      return compare_exchange_weak(__v1, __v2, __m,
				   __calculate_memory_order(__m));
    }

    bool
    compare_exchange_strong(void*& __v1, void* __v2, memory_order __m1,
			    memory_order __m2) volatile
    {
      __glibcxx_assert(__m2 != memory_order_release);
      __glibcxx_assert(__m2 != memory_order_acq_rel);
      __glibcxx_assert(__m2 <= __m1);

      void* __v1o = __v1;
      void* __v1n = __sync_val_compare_and_swap(&_M_i, __v1o, __v2);

      // Assume extra stores (of same value) allowed in true case.
      __v1 = __v1n;
      return __v1o == __v1n;
    }

    bool
    compare_exchange_strong(void*& __v1, void* __v2,
			  memory_order __m = memory_order_seq_cst) volatile
    {
      return compare_exchange_strong(__v1, __v2, __m,
				     __calculate_memory_order(__m));
    }

    void*
    fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile
    { return __sync_fetch_and_add(&_M_i, __d); }

    void*
    fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile
    { return __sync_fetch_and_sub(&_M_i, __d); }

    operator void*() const volatile
    { return load(); }

    void*
    operator=(void* __v) // XXX volatile
    {
      store(__v);
      return __v;
    }

    void*
    operator+=(ptrdiff_t __d) volatile
    { return __sync_add_and_fetch(&_M_i, __d); }

    void*
    operator-=(ptrdiff_t __d) volatile
    { return __sync_sub_and_fetch(&_M_i, __d); }
  };

  // 29.3.1 atomic integral types
  // For each of the integral types, define atomic_[integral type] struct
  //
  // atomic_bool     bool
  // atomic_char     char
  // atomic_schar    signed char
  // atomic_uchar    unsigned char
  // atomic_short    short
  // atomic_ushort   unsigned short
  // atomic_int      int
  // atomic_uint     unsigned int
  // atomic_long     long
  // atomic_ulong    unsigned long
  // atomic_llong    long long
  // atomic_ullong   unsigned long long
  // atomic_char16_t char16_t
  // atomic_char32_t char32_t
  // atomic_wchar_t  wchar_t

  // Base type.
  // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or 8 bytes,
  // since that is what GCC built-in functions for atomic memory access work on.
  template<typename _ITp>
    struct __atomic_base
    {
    private:
      typedef _ITp 	__integral_type;

      __integral_type 	_M_i;

    public:
      __atomic_base() = default;
      ~__atomic_base() = default;
      __atomic_base(const __atomic_base&) = delete;
      __atomic_base& operator=(const __atomic_base&) = delete;

      // Requires __integral_type convertible to _M_base._M_i.
      __atomic_base(__integral_type __i) { _M_i = __i; }

      operator __integral_type() const volatile
      { return load(); }

      __integral_type
      operator=(__integral_type __i) // XXX volatile
      {
	store(__i);
	return __i;
      }

      __integral_type
      operator++(int) volatile
      { return fetch_add(1); }

      __integral_type
      operator--(int) volatile
      { return fetch_sub(1); }

      __integral_type
      operator++() volatile
      { return __sync_add_and_fetch(&_M_i, 1); }

      __integral_type
      operator--() volatile
      { return __sync_sub_and_fetch(&_M_i, 1); }

      __integral_type
      operator+=(__integral_type __i) volatile
      { return __sync_add_and_fetch(&_M_i, __i); }

      __integral_type
      operator-=(__integral_type __i) volatile
      { return __sync_sub_and_fetch(&_M_i, __i); }

      __integral_type
      operator&=(__integral_type __i) volatile
      { return __sync_and_and_fetch(&_M_i, __i); }

      __integral_type
      operator|=(__integral_type __i) volatile
      { return __sync_or_and_fetch(&_M_i, __i); }

      __integral_type
      operator^=(__integral_type __i) volatile
      { return __sync_xor_and_fetch(&_M_i, __i); }

      bool
      is_lock_free() const volatile
      { return true; }

      void
      store(__integral_type __i,
	    memory_order __m = memory_order_seq_cst) volatile
      {
	__glibcxx_assert(__m != memory_order_acquire);
	__glibcxx_assert(__m != memory_order_acq_rel);
	__glibcxx_assert(__m != memory_order_consume);

	if (__m == memory_order_relaxed)
	  _M_i = __i;
	else
	  {
	    // write_mem_barrier();
	    _M_i = __i;
	    if (__m == memory_order_seq_cst)
	      __sync_synchronize();
	  }
      }

      __integral_type
      load(memory_order __m = memory_order_seq_cst) const volatile
      {
	__glibcxx_assert(__m != memory_order_release);
	__glibcxx_assert(__m != memory_order_acq_rel);

	__sync_synchronize();
	__integral_type __ret = _M_i;
	__sync_synchronize();
	return __ret;
      }

      __integral_type
      exchange(__integral_type __i,
	       memory_order __m = memory_order_seq_cst) volatile
      {
	// XXX built-in assumes memory_order_acquire.
	return __sync_lock_test_and_set(&_M_i, __i);
      }

      bool
      compare_exchange_weak(__integral_type& __i1, __integral_type __i2,
			    memory_order __m1, memory_order __m2) volatile
      { return compare_exchange_strong(__i1, __i2, __m1, __m2); }

      bool
      compare_exchange_weak(__integral_type& __i1, __integral_type __i2,
			    memory_order __m = memory_order_seq_cst) volatile
      {
	return compare_exchange_weak(__i1, __i2, __m,
				     __calculate_memory_order(__m));
      }

      bool
      compare_exchange_strong(__integral_type& __i1, __integral_type __i2,
			      memory_order __m1, memory_order __m2) volatile
      {
	__glibcxx_assert(__m2 != memory_order_release);
	__glibcxx_assert(__m2 != memory_order_acq_rel);
	__glibcxx_assert(__m2 <= __m1);

	__integral_type __i1o = __i1;
	__integral_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2);

	// Assume extra stores (of same value) allowed in true case.
	__i1 = __i1n;
	return __i1o == __i1n;
      }

      bool
      compare_exchange_strong(__integral_type& __i1, __integral_type __i2,
			      memory_order __m = memory_order_seq_cst) volatile
      {
	return compare_exchange_strong(__i1, __i2, __m,
				       __calculate_memory_order(__m));
      }

      __integral_type
      fetch_add(__integral_type __i,
		memory_order __m = memory_order_seq_cst) volatile
      { return __sync_fetch_and_add(&_M_i, __i); }

      __integral_type
      fetch_sub(__integral_type __i,
		memory_order __m = memory_order_seq_cst) volatile
      { return __sync_fetch_and_sub(&_M_i, __i); }

      __integral_type
      fetch_and(__integral_type __i,
		memory_order __m = memory_order_seq_cst) volatile
      { return __sync_fetch_and_and(&_M_i, __i); }

      __integral_type
      fetch_or(__integral_type __i,
	       memory_order __m = memory_order_seq_cst) volatile
      { return __sync_fetch_and_or(&_M_i, __i); }

      __integral_type
      fetch_xor(__integral_type __i,
		memory_order __m = memory_order_seq_cst) volatile
      { return __sync_fetch_and_xor(&_M_i, __i); }
    };


  /// atomic_bool
  // NB: No operators or fetch-operations for this type.
  struct atomic_bool
  {
  private:
    __atomic_base<bool>	_M_base;

  public:
    atomic_bool() = default;
    ~atomic_bool() = default;
    atomic_bool(const atomic_bool&) = delete;
    atomic_bool& operator=(const atomic_bool&) = delete;

    atomic_bool(bool __i) : _M_base(__i) { }

    bool
    operator=(bool __i) // XXX volatile
    { return _M_base.operator=(__i); }

    operator bool() const volatile
    { return _M_base.load(); }

    bool
    is_lock_free() const volatile
    { return _M_base.is_lock_free(); }

    void
    store(bool __i, memory_order __m = memory_order_seq_cst) volatile
    { _M_base.store(__i, __m); }

    bool
    load(memory_order __m = memory_order_seq_cst) const volatile
    { return _M_base.load(__m); }

    bool
    exchange(bool __i, memory_order __m = memory_order_seq_cst) volatile
    { return _M_base.exchange(__i, __m); }

    bool
    compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1,
			  memory_order __m2) volatile
    { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); }

    bool
    compare_exchange_weak(bool& __i1, bool __i2,
			  memory_order __m = memory_order_seq_cst) volatile
    { return _M_base.compare_exchange_weak(__i1, __i2, __m); }

    bool
    compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1,
			    memory_order __m2) volatile
    { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); }


    bool
    compare_exchange_strong(bool& __i1, bool __i2,
			    memory_order __m = memory_order_seq_cst) volatile
    { return _M_base.compare_exchange_strong(__i1, __i2, __m); }
  };
} // namespace __atomic2

// _GLIBCXX_END_NAMESPACE

#endif