summaryrefslogtreecommitdiffstats
path: root/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/tr1/gamma.tcc
blob: f456da32b63f08c9a508ea1c525231738d558d41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Special functions -*- C++ -*-

// Copyright (C) 2006, 2007, 2008, 2009
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/gamma.tcc
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1) Handbook of Mathematical Functions,
//       ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 6, pp. 253-266
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 213-216
//   (4) Gamma, Exploring Euler's Constant, Julian Havil,
//       Princeton, 2003.

#ifndef _TR1_GAMMA_TCC
#define _TR1_GAMMA_TCC 1

#include "special_function_util.h"

namespace std
{
namespace tr1
{
  // Implementation-space details.
  namespace __detail
  {

    /**
     *   @brief This returns Bernoulli numbers from a table or by summation
     *          for larger values.
     *
     *   Recursion is unstable.
     *
     *   @param __n the order n of the Bernoulli number.
     *   @return  The Bernoulli number of order n.
     */
    template <typename _Tp>
    _Tp __bernoulli_series(unsigned int __n)
    {

      static const _Tp __num[28] = {
        _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
        _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
        _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
        _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
        -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
        _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
        -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
        _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
        -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
        _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
        -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
        _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
      };

      if (__n == 0)
        return _Tp(1);

      if (__n == 1)
        return -_Tp(1) / _Tp(2);

      //  Take care of the rest of the odd ones.
      if (__n % 2 == 1)
        return _Tp(0);

      //  Take care of some small evens that are painful for the series.
      if (__n < 28)
        return __num[__n];


      _Tp __fact = _Tp(1);
      if ((__n / 2) % 2 == 0)
        __fact *= _Tp(-1);
      for (unsigned int __k = 1; __k <= __n; ++__k)
        __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
      __fact *= _Tp(2);

      _Tp __sum = _Tp(0);
      for (unsigned int __i = 1; __i < 1000; ++__i)
        {
          _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
          if (__term < std::numeric_limits<_Tp>::epsilon())
            break;
          __sum += __term;
        }

      return __fact * __sum;
    }


    /**
     *   @brief This returns Bernoulli number \f$B_n\f$.
     *
     *   @param __n the order n of the Bernoulli number.
     *   @return  The Bernoulli number of order n.
     */
    template<typename _Tp>
    inline _Tp
    __bernoulli(const int __n)
    {
      return __bernoulli_series<_Tp>(__n);
    }


    /**
     *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
     *          with Bernoulli number coefficients.  This is like
     *          Sterling's approximation.
     *
     *   @param __x The argument of the log of the gamma function.
     *   @return  The logarithm of the gamma function.
     */
    template<typename _Tp>
    _Tp
    __log_gamma_bernoulli(const _Tp __x)
    {
      _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
               + _Tp(0.5L) * std::log(_Tp(2)
               * __numeric_constants<_Tp>::__pi());

      const _Tp __xx = __x * __x;
      _Tp __help = _Tp(1) / __x;
      for ( unsigned int __i = 1; __i < 20; ++__i )
        {
          const _Tp __2i = _Tp(2 * __i);
          __help /= __2i * (__2i - _Tp(1)) * __xx;
          __lg += __bernoulli<_Tp>(2 * __i) * __help;
        }

      return __lg;
    }


    /**
     *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
     *          This method dominates all others on the positive axis I think.
     *
     *   @param __x The argument of the log of the gamma function.
     *   @return  The logarithm of the gamma function.
     */
    template<typename _Tp>
    _Tp
    __log_gamma_lanczos(const _Tp __x)
    {
      const _Tp __xm1 = __x - _Tp(1);

      static const _Tp __lanczos_cheb_7[9] = {
       _Tp( 0.99999999999980993227684700473478L),
       _Tp( 676.520368121885098567009190444019L),
       _Tp(-1259.13921672240287047156078755283L),
       _Tp( 771.3234287776530788486528258894L),
       _Tp(-176.61502916214059906584551354L),
       _Tp( 12.507343278686904814458936853L),
       _Tp(-0.13857109526572011689554707L),
       _Tp( 9.984369578019570859563e-6L),
       _Tp( 1.50563273514931155834e-7L)
      };

      static const _Tp __LOGROOT2PI
          = _Tp(0.9189385332046727417803297364056176L);

      _Tp __sum = __lanczos_cheb_7[0];
      for(unsigned int __k = 1; __k < 9; ++__k)
        __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);

      const _Tp __term1 = (__xm1 + _Tp(0.5L))
                        * std::log((__xm1 + _Tp(7.5L))
                       / __numeric_constants<_Tp>::__euler());
      const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
      const _Tp __result = __term1 + (__term2 - _Tp(7));

      return __result;
    }


    /**
     *   @brief Return \f$ log(|\Gamma(x)|) \f$.
     *          This will return values even for \f$ x < 0 \f$.
     *          To recover the sign of \f$ \Gamma(x) \f$ for
     *          any argument use @a __log_gamma_sign.
     *
     *   @param __x The argument of the log of the gamma function.
     *   @return  The logarithm of the gamma function.
     */
    template<typename _Tp>
    _Tp
    __log_gamma(const _Tp __x)
    {
      if (__x > _Tp(0.5L))
        return __log_gamma_lanczos(__x);
      else
        {
          const _Tp __sin_fact
                 = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
          if (__sin_fact == _Tp(0))
            std::__throw_domain_error(__N("Argument is nonpositive integer "
                                          "in __log_gamma"));
          return __numeric_constants<_Tp>::__lnpi()
                     - std::log(__sin_fact)
                     - __log_gamma_lanczos(_Tp(1) - __x);
        }
    }


    /**
     *   @brief Return the sign of \f$ \Gamma(x) \f$.
     *          At nonpositive integers zero is returned.
     *
     *   @param __x The argument of the gamma function.
     *   @return  The sign of the gamma function.
     */
    template<typename _Tp>
    _Tp
    __log_gamma_sign(const _Tp __x)
    {
      if (__x > _Tp(0))
        return _Tp(1);
      else
        {
          const _Tp __sin_fact
                  = std::sin(__numeric_constants<_Tp>::__pi() * __x);
          if (__sin_fact > _Tp(0))
            return (1);
          else if (__sin_fact < _Tp(0))
            return -_Tp(1);
          else
            return _Tp(0);
        }
    }


    /**
     *   @brief Return the logarithm of the binomial coefficient.
     *   The binomial coefficient is given by:
     *   @f[
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
     *   @f]
     *
     *   @param __n The first argument of the binomial coefficient.
     *   @param __k The second argument of the binomial coefficient.
     *   @return  The binomial coefficient.
     */
    template<typename _Tp>
    _Tp
    __log_bincoef(const unsigned int __n, const unsigned int __k)
    {
      //  Max e exponent before overflow.
      static const _Tp __max_bincoeff
                      = std::numeric_limits<_Tp>::max_exponent10
                      * std::log(_Tp(10)) - _Tp(1);
#if _GLIBCXX_USE_C99_MATH_TR1
      _Tp __coeff =  std::tr1::lgamma(_Tp(1 + __n))
                  - std::tr1::lgamma(_Tp(1 + __k))
                  - std::tr1::lgamma(_Tp(1 + __n - __k));
#else
      _Tp __coeff =  __log_gamma(_Tp(1 + __n))
                  - __log_gamma(_Tp(1 + __k))
                  - __log_gamma(_Tp(1 + __n - __k));
#endif
    }


    /**
     *   @brief Return the binomial coefficient.
     *   The binomial coefficient is given by:
     *   @f[
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
     *   @f]
     *
     *   @param __n The first argument of the binomial coefficient.
     *   @param __k The second argument of the binomial coefficient.
     *   @return  The binomial coefficient.
     */
    template<typename _Tp>
    _Tp
    __bincoef(const unsigned int __n, const unsigned int __k)
    {
      //  Max e exponent before overflow.
      static const _Tp __max_bincoeff
                      = std::numeric_limits<_Tp>::max_exponent10
                      * std::log(_Tp(10)) - _Tp(1);

      const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
      if (__log_coeff > __max_bincoeff)
        return std::numeric_limits<_Tp>::quiet_NaN();
      else
        return std::exp(__log_coeff);
    }


    /**
     *   @brief Return \f$ \Gamma(x) \f$.
     *
     *   @param __x The argument of the gamma function.
     *   @return  The gamma function.
     */
    template<typename _Tp>
    inline _Tp
    __gamma(const _Tp __x)
    {
      return std::exp(__log_gamma(__x));
    }


    /**
     *   @brief  Return the digamma function by series expansion.
     *   The digamma or @f$ \psi(x) @f$ function is defined by
     *   @f[
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
     *   @f]
     *
     *   The series is given by:
     *   @f[
     *     \psi(x) = -\gamma_E - \frac{1}{x}
     *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __psi_series(const _Tp __x)
    {
      _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
      const unsigned int __max_iter = 100000;
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
        {
          const _Tp __term = __x / (__k * (__k + __x));
          __sum += __term;
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
            break;
        }
      return __sum;
    }


    /**
     *   @brief  Return the digamma function for large argument.
     *   The digamma or @f$ \psi(x) @f$ function is defined by
     *   @f[
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
     *   @f]
     *
     *   The asymptotic series is given by:
     *   @f[
     *     \psi(x) = \ln(x) - \frac{1}{2x}
     *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __psi_asymp(const _Tp __x)
    {
      _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
      const _Tp __xx = __x * __x;
      _Tp __xp = __xx;
      const unsigned int __max_iter = 100;
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
        {
          const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
          __sum -= __term;
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
            break;
          __xp *= __xx;
        }
      return __sum;
    }


    /**
     *   @brief  Return the digamma function.
     *   The digamma or @f$ \psi(x) @f$ function is defined by
     *   @f[
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
     *   @f]
     *   For negative argument the reflection formula is used:
     *   @f[
     *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __psi(const _Tp __x)
    {
      const int __n = static_cast<int>(__x + 0.5L);
      const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
      if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x < _Tp(0))
        {
          const _Tp __pi = __numeric_constants<_Tp>::__pi();
          return __psi(_Tp(1) - __x)
               - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
        }
      else if (__x > _Tp(100))
        return __psi_asymp(__x);
      else
        return __psi_series(__x);
    }


    /**
     *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
     * 
     *   The polygamma function is related to the Hurwitz zeta function:
     *   @f[
     *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __psi(const unsigned int __n, const _Tp __x)
    {
      if (__x <= _Tp(0))
        std::__throw_domain_error(__N("Argument out of range "
                                      "in __psi"));
      else if (__n == 0)
        return __psi(__x);
      else
        {
          const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
#if _GLIBCXX_USE_C99_MATH_TR1
          const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
#else
          const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
#endif
          _Tp __result = std::exp(__ln_nfact) * __hzeta;
          if (__n % 2 == 1)
            __result = -__result;
          return __result;
        }
    }

  } // namespace std::tr1::__detail
}
}

#endif // _TR1_GAMMA_TCC