summaryrefslogtreecommitdiffstats
path: root/renderscript/include/rs_matrix.rsh
blob: 34b9532e9ddf9473fa16405a6ded152e13e79d97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/** @file rs_matrix.rsh
 *  \brief Matrix functions.
 *
 * These functions let you manipulate square matrices of rank 2x2, 3x3, and 4x4.
 * They are particularly useful for graphical transformations and are
 * compatible with OpenGL.
 *
 * A few general notes:
 *
 * \li We use a zero-based index for rows and columns.  E.g. the last element of
 * a \ref rs_matrix4x4 is found at (3, 3).
 *
 * \li RenderScript uses column-based vectors.  Transforming a vector is done by
 * postmultiplying the vector, e.g. <em>(matrix * vector)</em>, as provided by
 * \ref rsMatrixMultiply.
 *
 * \li To create a transformation matrix that performs two transformations at
 * once, multiply the two source matrices, with the first transformation as the
 * right argument.  E.g. to create a transformation matrix that applies the
 * transformation \e s1 followed by \e s2, call
 * </c>rsMatrixLoadMultiply(&combined, &s2, &s1)</c>.
 * This derives from <em>s2 * (s1 * v)</em>, which is <em>(s2 * s1) * v</em>.
 *
 * \li We have two style of functions to create transformation matrices:
 * rsMatrixLoad<em>Transformation</em> and rsMatrix<em>Transformation</em>.  The
 * former style simply stores the transformation matrix in the first argument.
 * The latter modifies a pre-existing transformation matrix so that the new
 * transformation happens first.  E.g. if you call \ref rsMatrixTranslate
 * on a matrix that already does a scaling, the resulting matrix when applied
 * to a vector will first do the translation then the scaling.
 *
 */

#ifndef __RS_MATRIX_RSH__
#define __RS_MATRIX_RSH__

/**
 * Set an element of a matrix.
 *
 * @param m The matrix that will be modified.
 * @param col The zero-based column of the element to be set.
 * @param row The zero-based row of the element to be set.
 * @param v The value to set.
 *
 * \warning The order of the column and row parameters may be
 * unexpected.
 *
 * @return void
 */
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix4x4 *m, uint32_t col, uint32_t row, float v);
/**
 * \overload
 */
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix3x3 *m, uint32_t col, uint32_t row, float v);
/**
 * \overload
 */
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix2x2 *m, uint32_t col, uint32_t row, float v);

/**
 * Returns one element of a matrix.
 *
 * @param m The matrix to extract the element from.
 * @param col The zero-based column of the element to be extracted.
 * @param row The zero-based row of the element to extracted.
 *
 * \warning The order of the column and row parameters may be
 * unexpected.
 *
 * @return float
 */
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix4x4 *m, uint32_t col, uint32_t row);
/**
 * \overload
 */
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix3x3 *m, uint32_t col, uint32_t row);
/**
 * \overload
 */
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix2x2 *m, uint32_t col, uint32_t row);

/**
 * Set the elements of a matrix to the identity matrix.
 *
 * @param m The matrix to set.
 */
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix4x4 *m);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix3x3 *m);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix2x2 *m);

/**
 * Set the elements of a matrix from an array of floats.
 *
 * The array of floats should be in row-major order, i.e. the element a
 * <em>row 0, column 0</em> should be first, followed by the element at
 * <em>row 0, column 1</em>, etc.
 *
 * @param m The matrix to set.
 * @param v The array of values to set the matrix to. These arrays should be
 * 4, 9, or 16 floats long, depending on the matrix size.
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const float *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const float *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const float *v);
/**
 * Set the elements of a matrix from another matrix.
 *
 * If the source matrix is smaller than the destination, the rest of the
 * destination is filled with elements of the identity matrix.  E.g.
 * loading a rs_matrix2x2 into a rs_matrix4x4 will give:
 *
 * \htmlonly<table>
 * <tr><td>m00</td><td>m01</td><td>0.0</td><td>0.0</td></tr>
 * <tr><td>m10</td><td>m11</td><td>0.0</td><td>0.0</td></tr>
 * <tr><td>0.0</td><td>0.0</td><td>1.0</td><td>0.0</td></tr>
 * <tr><td>0.0</td><td>0.0</td><td>0.0</td><td>1.0</td></tr>
 * </table>\endhtmlonly
 *
 * @param m The matrix to set.
 * @param v The source matrix.
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix4x4 *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix3x3 *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix2x2 *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const rs_matrix3x3 *v);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const rs_matrix2x2 *v);

/**
 * Load a rotation matrix.
 *
 * This function creates a rotation matrix.  The axis of rotation is the
 * <em>(x, y, z)</em> vector.
 *
 * To rotate a vector, multiply the vector by the created matrix
 * using \ref rsMatrixMultiply.
 *
 * See http://en.wikipedia.org/wiki/Rotation_matrix .
 *
 * @param m The matrix to set.
 * @param rot How much rotation to do, in degrees.
 * @param x The x component of the vector that is the axis of rotation.
 * @param y The y component of the vector that is the axis of rotation.
 * @param z The z component of the vector that is the axis of rotation.
 */
extern void __attribute__((overloadable))
rsMatrixLoadRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);

/**
 * Load a scale matrix.
 *
 * This function creates a scaling matrix, where each component of a
 * vector is multiplied by a number.  This number can be negative.
 *
 * To scale a vector, multiply the vector by the created matrix
 * using \ref rsMatrixMultiply.
 *
 * @param m The matrix to set.
 * @param x The multiple to scale the x components by.
 * @param y The multiple to scale the y components by.
 * @param z The multiple to scale the z components by.
 */
extern void __attribute__((overloadable))
rsMatrixLoadScale(rs_matrix4x4 *m, float x, float y, float z);

/**
 * Load a translation matrix.
 *
 * This function creates a translation matrix, where a
 * number is added to each element of a vector.
 *
 * To translate a vector, multiply the vector by the created matrix
 * using \ref rsMatrixMultiply.
 *
 * @param m The matrix to set.
 * @param x The number to add to each x component.
 * @param y The number to add to each y component.
 * @param z The number to add to each z component.
 */
extern void __attribute__((overloadable))
rsMatrixLoadTranslate(rs_matrix4x4 *m, float x, float y, float z);

/**
 * Multiply two matrices.
 *
 * Sets \e m to the matrix product of <em>lhs * rhs</em>.
 *
 * To combine two 4x4 transformaton matrices, multiply the second transformation matrix
 * by the first transformation matrix.  E.g. to create a transformation matrix that applies
 * the transformation \e s1 followed by \e s2, call
 * </c>rsMatrixLoadMultiply(&combined, &s2, &s1)</c>.
 *
 * \warning Prior to version 21, storing the result back into right matrix is not supported and
 * will result in undefined behavior.  Use rsMatrixMulitply instead.   E.g. instead of doing
 * rsMatrixLoadMultiply (&m2r, &m2r, &m2l), use rsMatrixMultiply (&m2r, &m2l).
 * rsMatrixLoadMultiply (&m2l, &m2r, &m2l) works as expected.
 *
 * @param m The matrix to set.
 * @param lhs The left matrix of the product.
 * @param rhs The right matrix of the product.
 */
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs);
/**
 * \overload
 */
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *lhs, const rs_matrix3x3 *rhs);
/**
 * \overload
 */
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *lhs, const rs_matrix2x2 *rhs);

/**
 * Multiply a matrix into another one.
 *
 * Sets \e m to the matrix product <em>m * rhs</em>.
 *
 * When combining two 4x4 transformation matrices using this function, the resulting
 * matrix will correspond to performing the \e rhs transformation first followed by
 * the original \e m transformation.
 *
 * @param m The left matrix of the product and the matrix to be set.
 * @param rhs The right matrix of the product.
 */
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *rhs);
/**
 * \overload
 */
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *rhs);
/**
 * \overload
 */
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *rhs);

/**
 * Multiply the matrix \e m with a rotation matrix.
 *
 * This function modifies a transformation matrix to first do a rotation.
 * The axis of rotation is the <em>(x, y, z)</em> vector.
 *
 * To apply this combined transformation to a vector, multiply
 * the vector by the created matrix using \ref rsMatrixMultiply.
 *
 * @param m The matrix to modify.
 * @param rot How much rotation to do, in degrees.
 * @param x The x component of the vector that is the axis of rotation.
 * @param y The y component of the vector that is the axis of rotation.
 * @param z The z component of the vector that is the axis of rotation.
 */
extern void __attribute__((overloadable))
rsMatrixRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);

/**
 * Multiply the matrix \e m with a scaling matrix.
 *
 * This function modifies a transformation matrix to first do a scaling.
 * When scaling, each component of a vector is multiplied by a number.
 * This number can be negative.
 *
 * To apply this combined transformation to a vector, multiply
 * the vector by the created matrix using \ref rsMatrixMultiply.
 *
 * @param m The matrix to modify.
 * @param x The multiple to scale the x components by.
 * @param y The multiple to scale the y components by.
 * @param z The multiple to scale the z components by.
 */
extern void __attribute__((overloadable))
rsMatrixScale(rs_matrix4x4 *m, float x, float y, float z);

/**
 * Multiply the matrix \e m with a translation matrix.
 *
 * This function modifies a transformation matrix to first
 * do a translation.  When translating, a number is added
 * to each component of a vector.
 *
 * To apply this combined transformation to a vector, multiply
 * the vector by the created matrix using \ref rsMatrixMultiply.
 *
 * @param m The matrix to modify.
 * @param x The number to add to each x component.
 * @param y The number to add to each y component.
 * @param z The number to add to each z component.
 */
extern void __attribute__((overloadable))
rsMatrixTranslate(rs_matrix4x4 *m, float x, float y, float z);

/**
 * Load an orthographic projection matrix.
 *
 * Constructs an orthographic projection matrix, transforming the box
 * identified by the six clipping planes <em>left, right, bottom, top,
 * near, far</em> into a unit cube with a corner at
 * <em>(-1, -1, -1)</em> and the opposite at <em>(1, 1, 1)</em>.
 *
 * To apply this projection to a vector, multiply the vector by the
 * created matrix using \ref rsMatrixMultiply.
 *
 * See https://en.wikipedia.org/wiki/Orthographic_projection .
 *
 * @param m The matrix to set.
 * @param left
 * @param right
 * @param bottom
 * @param top
 * @param near
 * @param far
 */
extern void __attribute__((overloadable))
rsMatrixLoadOrtho(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);

/**
 * Load a frustum projection matrix.
 *
 * Constructs a frustum projection matrix, transforming the box
 * identified by the six clipping planes <em>left, right, bottom, top,
 * near, far</em>.
 *
 * To apply this projection to a vector, multiply the vector by the
 * created matrix using \ref rsMatrixMultiply.
 *
 * @param m The matrix to set.
 * @param left
 * @param right
 * @param bottom
 * @param top
 * @param near
 * @param far
 */
extern void __attribute__((overloadable))
rsMatrixLoadFrustum(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);

/**
 * Load a perspective projection matrix.
 *
 * Constructs a perspective projection matrix, assuming a symmetrical field of view.
 *
 * To apply this projection to a vector, multiply the vector by the
 * created matrix using \ref rsMatrixMultiply.
 *
 * @param m The matrix to set.
 * @param fovy Field of view, in degrees along the Y axis.
 * @param aspect Ratio of x / y.
 * @param near The near clipping plane.
 * @param far The far clipping plane.
 */
extern void __attribute__((overloadable))
rsMatrixLoadPerspective(rs_matrix4x4* m, float fovy, float aspect, float near, float far);

#if !defined(RS_VERSION) || (RS_VERSION < 14)
/**
 * Multiply a vector by a matrix.
 *
 * Returns the post-multiplication of the vector by the matrix, ie. <em>m * in</em>.
 *
 * When multiplying a \e float3 to a \e rs_matrix4x4, the vector is expanded with (1).
 *
 * When multiplying a \e float2 to a \e rs_matrix4x4, the vector is expanded with (0, 1).
 *
 * When multiplying a \e float2 to a \e rs_matrix3x3, the vector is expanded with (0).
 *
 * This function is available in API version 10-13.  Starting with API 14,
 * the function takes a const matrix as the first argument.
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float4 in);

/**
 * \overload
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float3 in);

/**
 * \overload
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float2 in);

/**
 * \overload
 */
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float3 in);

/**
 * \overload
 */
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float2 in);

/**
 * \overload
 */
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, float2 in);
#else
/**
 * Multiply a vector by a matrix.
 *
 * Returns the post-multiplication of the vector of the matrix, i.e. <em>m * in</em>.
 *
 * When multiplying a \e float3 to a \e rs_matrix4x4, the vector is expanded with (1).
 *
 * When multiplying a \e float2 to a \e rs_matrix4x4, the vector is expanded with (0, 1).
 *
 * When multiplying a \e float2 to a \e rs_matrix3x3, the vector is expanded with (0).
 *
 * This function is available starting with API version 14.
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float4 in);

/**
 * \overload
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float3 in);

/**
 * \overload
 */
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float2 in);

/**
 * \overload
 */
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float3 in);

/**
 * \overload
 */
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float2 in);

/**
 * \overload
 */
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix2x2 *m, float2 in);
#endif


/**
 * Inverts a matrix in place.
 *
 * Returns true if the matrix was successfully inverted.
 *
 * @param m The matrix to invert.
 */
extern bool __attribute__((overloadable)) rsMatrixInverse(rs_matrix4x4 *m);

/**
 * Inverts and transpose a matrix in place.
 *
 * The matrix is first inverted then transposed.
 * Returns true if the matrix was successfully inverted.
 *
 * @param m The matrix to modify.
 */
extern bool __attribute__((overloadable)) rsMatrixInverseTranspose(rs_matrix4x4 *m);

/**
 * Transpose the matrix m in place.
 *
 * @param m The matrix to transpose.
 */
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix4x4 *m);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix3x3 *m);
/**
 * \overload
 */
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix2x2 *m);


#endif