summaryrefslogtreecommitdiffstats
path: root/libmincrypt
diff options
context:
space:
mode:
authorKenny Root <kroot@google.com>2013-10-10 18:07:20 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2013-10-10 18:07:20 +0000
commitaab1670b7071e90786c6a23d404cb03f3e316568 (patch)
treebcfc0cb36a291dc188e334e6ab124f1adfbbc933 /libmincrypt
parent9b8a929dc4375b91dde2e8d34df1b0b485ae3b23 (diff)
parentdb0850c3b637faaa7cbe1bab2e6c91ad2af35426 (diff)
downloadsystem_core-aab1670b7071e90786c6a23d404cb03f3e316568.zip
system_core-aab1670b7071e90786c6a23d404cb03f3e316568.tar.gz
system_core-aab1670b7071e90786c6a23d404cb03f3e316568.tar.bz2
Merge "Add support for ECDSA P-256 with SHA256"
Diffstat (limited to 'libmincrypt')
-rw-r--r--libmincrypt/Android.mk10
-rw-r--r--libmincrypt/dsa_sig.c125
-rw-r--r--libmincrypt/p256.c375
-rw-r--r--libmincrypt/p256_ec.c1279
-rw-r--r--libmincrypt/p256_ecdsa.c56
-rw-r--r--libmincrypt/test/Android.mk9
-rw-r--r--libmincrypt/test/ecdsa_test.c278
-rw-r--r--libmincrypt/tools/Android.mk3
-rw-r--r--libmincrypt/tools/DumpPublicKey.java111
9 files changed, 2233 insertions, 13 deletions
diff --git a/libmincrypt/Android.mk b/libmincrypt/Android.mk
index 090d0e5..7906986 100644
--- a/libmincrypt/Android.mk
+++ b/libmincrypt/Android.mk
@@ -1,18 +1,18 @@
# Copyright 2008 The Android Open Source Project
#
LOCAL_PATH := $(call my-dir)
-include $(CLEAR_VARS)
+include $(CLEAR_VARS)
LOCAL_MODULE := libmincrypt
-LOCAL_SRC_FILES := rsa.c sha.c sha256.c
+LOCAL_SRC_FILES := dsa_sig.c p256.c p256_ec.c p256_ecdsa.c rsa.c sha.c sha256.c
+LOCAL_CFLAGS := -Wall -Werror
include $(BUILD_STATIC_LIBRARY)
include $(CLEAR_VARS)
-
LOCAL_MODULE := libmincrypt
-LOCAL_SRC_FILES := rsa.c sha.c sha256.c
+LOCAL_SRC_FILES := dsa_sig.c p256.c p256_ec.c p256_ecdsa.c rsa.c sha.c sha256.c
+LOCAL_CFLAGS := -Wall -Werror
include $(BUILD_HOST_STATIC_LIBRARY)
-
include $(LOCAL_PATH)/tools/Android.mk \
$(LOCAL_PATH)/test/Android.mk
diff --git a/libmincrypt/dsa_sig.c b/libmincrypt/dsa_sig.c
new file mode 100644
index 0000000..8df6cf7
--- /dev/null
+++ b/libmincrypt/dsa_sig.c
@@ -0,0 +1,125 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <string.h>
+
+#include "mincrypt/p256.h"
+
+/**
+ * Trims off the leading zero bytes and copy it to a buffer aligning it to the end.
+ */
+static inline int trim_to_p256_bytes(unsigned char dst[P256_NBYTES], unsigned char *src,
+ int src_len) {
+ int dst_offset;
+ while (*src == '\0' && src_len > 0) {
+ src++;
+ src_len--;
+ }
+ if (src_len > P256_NBYTES || src_len < 1) {
+ return 0;
+ }
+ dst_offset = P256_NBYTES - src_len;
+ memset(dst, 0, dst_offset);
+ memcpy(dst + dst_offset, src, src_len);
+ return 1;
+}
+
+/**
+ * Unpacks the ASN.1 DSA signature sequence.
+ */
+int dsa_sig_unpack(unsigned char* sig, int sig_len, p256_int* r_int, p256_int* s_int) {
+ /*
+ * Structure is:
+ * 0x30 0xNN SEQUENCE + s_length
+ * 0x02 0xNN INTEGER + r_length
+ * 0xAA 0xBB .. r_length bytes of "r" (offset 4)
+ * 0x02 0xNN INTEGER + s_length
+ * 0xMM 0xNN .. s_length bytes of "s" (offset 6 + r_len)
+ */
+ int seq_len;
+ unsigned char r_bytes[P256_NBYTES];
+ unsigned char s_bytes[P256_NBYTES];
+ int r_len;
+ int s_len;
+
+ memset(r_bytes, 0, sizeof(r_bytes));
+ memset(s_bytes, 0, sizeof(s_bytes));
+
+ /*
+ * Must have at least:
+ * 2 bytes sequence header and length
+ * 2 bytes R integer header and length
+ * 1 byte of R
+ * 2 bytes S integer header and length
+ * 1 byte of S
+ *
+ * 8 bytes total
+ */
+ if (sig_len < 8 || sig[0] != 0x30 || sig[2] != 0x02) {
+ return 0;
+ }
+
+ seq_len = sig[1];
+ if ((seq_len <= 0) || (seq_len + 2 != sig_len)) {
+ return 0;
+ }
+
+ r_len = sig[3];
+ /*
+ * Must have at least:
+ * 2 bytes for R header and length
+ * 2 bytes S integer header and length
+ * 1 byte of S
+ */
+ if ((r_len < 1) || (r_len > seq_len - 5) || (sig[4 + r_len] != 0x02)) {
+ return 0;
+ }
+ s_len = sig[5 + r_len];
+
+ /**
+ * Must have:
+ * 2 bytes for R header and length
+ * r_len bytes for R
+ * 2 bytes S integer header and length
+ */
+ if ((s_len < 1) || (s_len != seq_len - 4 - r_len)) {
+ return 0;
+ }
+
+ /*
+ * ASN.1 encoded integers are zero-padded for positive integers. Make sure we have
+ * a correctly-sized buffer and that the resulting integer isn't too large.
+ */
+ if (!trim_to_p256_bytes(r_bytes, &sig[4], r_len)
+ || !trim_to_p256_bytes(s_bytes, &sig[6 + r_len], s_len)) {
+ return 0;
+ }
+
+ p256_from_bin(r_bytes, r_int);
+ p256_from_bin(s_bytes, s_int);
+
+ return 1;
+}
diff --git a/libmincrypt/p256.c b/libmincrypt/p256.c
new file mode 100644
index 0000000..1608d37
--- /dev/null
+++ b/libmincrypt/p256.c
@@ -0,0 +1,375 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+// This is an implementation of the P256 elliptic curve group. It's written to
+// be portable 32-bit, although it's still constant-time.
+//
+// WARNING: Implementing these functions in a constant-time manner is far from
+// obvious. Be careful when touching this code.
+//
+// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdio.h>
+
+#include "mincrypt/p256.h"
+
+const p256_int SECP256r1_n = // curve order
+ {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}};
+
+const p256_int SECP256r1_p = // curve field size
+ {{-1, -1, -1, 0, 0, 0, 1, -1 }};
+
+const p256_int SECP256r1_b = // curve b
+ {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0,
+ 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}};
+
+static const p256_int p256_one = P256_ONE;
+
+void p256_init(p256_int* a) {
+ memset(a, 0, sizeof(*a));
+}
+
+void p256_clear(p256_int* a) { p256_init(a); }
+
+int p256_get_bit(const p256_int* scalar, int bit) {
+ return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
+ >> (bit & (P256_BITSPERDIGIT - 1))) & 1;
+}
+
+int p256_is_zero(const p256_int* a) {
+ int i, result = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
+ return !result;
+}
+
+// top, c[] += a[] * b
+// Returns new top
+static p256_digit mulAdd(const p256_int* a,
+ p256_digit b,
+ p256_digit top,
+ p256_digit* c) {
+ int i;
+ p256_ddigit carry = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += *c;
+ carry += (p256_ddigit)P256_DIGIT(a, i) * b;
+ *c++ = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)carry;
+}
+
+// top, c[] -= top_a, a[]
+static p256_digit subTop(p256_digit top_a,
+ const p256_digit* a,
+ p256_digit top_c,
+ p256_digit* c) {
+ int i;
+ p256_sddigit borrow = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += *c;
+ borrow -= *a++;
+ *c++ = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ borrow += top_c;
+ borrow -= top_a;
+ top_c = (p256_digit)borrow;
+ assert((borrow >> P256_BITSPERDIGIT) == 0);
+ return top_c;
+}
+
+// top, c[] -= MOD[] & mask (0 or -1)
+// returns new top.
+static p256_digit subM(const p256_int* MOD,
+ p256_digit top,
+ p256_digit* c,
+ p256_digit mask) {
+ int i;
+ p256_sddigit borrow = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += *c;
+ borrow -= P256_DIGIT(MOD, i) & mask;
+ *c++ = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)borrow;
+}
+
+// top, c[] += MOD[] & mask (0 or -1)
+// returns new top.
+static p256_digit addM(const p256_int* MOD,
+ p256_digit top,
+ p256_digit* c,
+ p256_digit mask) {
+ int i;
+ p256_ddigit carry = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += *c;
+ carry += P256_DIGIT(MOD, i) & mask;
+ *c++ = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)carry;
+}
+
+// c = a * b mod MOD. c can be a and/or b.
+void p256_modmul(const p256_int* MOD,
+ const p256_int* a,
+ const p256_digit top_b,
+ const p256_int* b,
+ p256_int* c) {
+ p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
+ p256_digit top = 0;
+ int i;
+
+ // Multiply/add into tmp.
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ if (i) tmp[i + P256_NDIGITS - 1] = top;
+ top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
+ }
+
+ // Multiply/add top digit
+ tmp[i + P256_NDIGITS - 1] = top;
+ top = mulAdd(a, top_b, 0, tmp + i);
+
+ // Reduce tmp, digit by digit.
+ for (; i >= 0; --i) {
+ p256_digit reducer[P256_NDIGITS] = { 0 };
+ p256_digit top_reducer;
+
+ // top can be any value at this point.
+ // Guestimate reducer as top * MOD, since msw of MOD is -1.
+ top_reducer = mulAdd(MOD, top, 0, reducer);
+
+ // Subtract reducer from top | tmp.
+ top = subTop(top_reducer, reducer, top, tmp + i);
+
+ // top is now either 0 or 1. Make it 0, fixed-timing.
+ assert(top <= 1);
+
+ top = subM(MOD, top, tmp + i, ~(top - 1));
+
+ assert(top == 0);
+
+ // We have now reduced the top digit off tmp. Fetch new top digit.
+ top = tmp[i + P256_NDIGITS - 1];
+ }
+
+ // tmp might still be larger than MOD, yet same bit length.
+ // Make sure it is less, fixed-timing.
+ addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));
+
+ memcpy(c, tmp, P256_NBYTES);
+}
+int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; }
+int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }
+
+p256_digit p256_shl(const p256_int* a, int n, p256_int* b) {
+ int i;
+ p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);
+
+ n %= P256_BITSPERDIGIT;
+ for (i = P256_NDIGITS - 1; i > 0; --i) {
+ p256_digit accu = (P256_DIGIT(a, i) << n);
+ accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);
+
+ top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT);
+
+ return top;
+}
+
+void p256_shr(const p256_int* a, int n, p256_int* b) {
+ int i;
+
+ n %= P256_BITSPERDIGIT;
+ for (i = 0; i < P256_NDIGITS - 1; ++i) {
+ p256_digit accu = (P256_DIGIT(a, i) >> n);
+ accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
+}
+
+static void p256_shr1(const p256_int* a, int highbit, p256_int* b) {
+ int i;
+
+ for (i = 0; i < P256_NDIGITS - 1; ++i) {
+ p256_digit accu = (P256_DIGIT(a, i) >> 1);
+ accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
+ (highbit << (P256_BITSPERDIGIT - 1));
+}
+
+// Return -1, 0, 1 for a < b, a == b or a > b respectively.
+int p256_cmp(const p256_int* a, const p256_int* b) {
+ int i;
+ p256_sddigit borrow = 0;
+ p256_digit notzero = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
+ // Track whether any result digit is ever not zero.
+ // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
+ notzero |= !!((p256_digit)borrow);
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return (int)borrow | notzero;
+}
+
+// c = a - b. Returns borrow: 0 or -1.
+int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) {
+ int i;
+ p256_sddigit borrow = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
+ if (c) P256_DIGIT(c, i) = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return (int)borrow;
+}
+
+// c = a + b. Returns carry: 0 or 1.
+int p256_add(const p256_int* a, const p256_int* b, p256_int* c) {
+ int i;
+ p256_ddigit carry = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
+ if (c) P256_DIGIT(c, i) = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return (int)carry;
+}
+
+// b = a + d. Returns carry, 0 or 1.
+int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) {
+ int i;
+ p256_ddigit carry = d;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += (p256_ddigit)P256_DIGIT(a, i);
+ if (b) P256_DIGIT(b, i) = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return (int)carry;
+}
+
+// b = 1/a mod MOD, binary euclid.
+void p256_modinv_vartime(const p256_int* MOD,
+ const p256_int* a,
+ p256_int* b) {
+ p256_int R = P256_ZERO;
+ p256_int S = P256_ONE;
+ p256_int U = *MOD;
+ p256_int V = *a;
+
+ for (;;) {
+ if (p256_is_even(&U)) {
+ p256_shr1(&U, 0, &U);
+ if (p256_is_even(&R)) {
+ p256_shr1(&R, 0, &R);
+ } else {
+ // R = (R+MOD)/2
+ p256_shr1(&R, p256_add(&R, MOD, &R), &R);
+ }
+ } else if (p256_is_even(&V)) {
+ p256_shr1(&V, 0, &V);
+ if (p256_is_even(&S)) {
+ p256_shr1(&S, 0, &S);
+ } else {
+ // S = (S+MOD)/2
+ p256_shr1(&S, p256_add(&S, MOD, &S) , &S);
+ }
+ } else { // U,V both odd.
+ if (!p256_sub(&V, &U, NULL)) {
+ p256_sub(&V, &U, &V);
+ if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S);
+ if (p256_is_zero(&V)) break; // done.
+ } else {
+ p256_sub(&U, &V, &U);
+ if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R);
+ }
+ }
+ }
+
+ p256_mod(MOD, &R, b);
+}
+
+void p256_mod(const p256_int* MOD,
+ const p256_int* in,
+ p256_int* out) {
+ if (out != in) *out = *in;
+ addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
+}
+
+// Verify y^2 == x^3 - 3x + b mod p
+// and 0 < x < p and 0 < y < p
+int p256_is_valid_point(const p256_int* x, const p256_int* y) {
+ p256_int y2, x3;
+
+ if (p256_cmp(&SECP256r1_p, x) <= 0 ||
+ p256_cmp(&SECP256r1_p, y) <= 0 ||
+ p256_is_zero(x) ||
+ p256_is_zero(y)) return 0;
+
+ p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2
+
+ p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2
+ p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x
+ if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b
+ p256_sub(&x3, &SECP256r1_p, &x3);
+
+ return p256_cmp(&y2, &x3) == 0;
+}
+
+void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) {
+ int i;
+ const uint8_t* p = &src[0];
+
+ for (i = P256_NDIGITS - 1; i >= 0; --i) {
+ P256_DIGIT(dst, i) =
+ (p[0] << 24) |
+ (p[1] << 16) |
+ (p[2] << 8) |
+ p[3];
+ p += 4;
+ }
+}
diff --git a/libmincrypt/p256_ec.c b/libmincrypt/p256_ec.c
new file mode 100644
index 0000000..90262cc
--- /dev/null
+++ b/libmincrypt/p256_ec.c
@@ -0,0 +1,1279 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+// This is an implementation of the P256 elliptic curve group. It's written to
+// be portable 32-bit, although it's still constant-time.
+//
+// WARNING: Implementing these functions in a constant-time manner is far from
+// obvious. Be careful when touching this code.
+//
+// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
+
+#include <stdint.h>
+#include <stdio.h>
+
+#include <string.h>
+#include <stdlib.h>
+
+#include "mincrypt/p256.h"
+
+typedef uint8_t u8;
+typedef uint32_t u32;
+typedef int32_t s32;
+typedef uint64_t u64;
+
+/* Our field elements are represented as nine 32-bit limbs.
+ *
+ * The value of an felem (field element) is:
+ * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
+ *
+ * That is, each limb is alternately 29 or 28-bits wide in little-endian
+ * order.
+ *
+ * This means that an felem hits 2**257, rather than 2**256 as we would like. A
+ * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
+ * when multiplying as terms end up one bit short of a limb which would require
+ * much bit-shifting to correct.
+ *
+ * Finally, the values stored in an felem are in Montgomery form. So the value
+ * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
+ */
+typedef u32 limb;
+#define NLIMBS 9
+typedef limb felem[NLIMBS];
+
+static const limb kBottom28Bits = 0xfffffff;
+static const limb kBottom29Bits = 0x1fffffff;
+
+/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
+ * 28-bit words. */
+static const felem kOne = {
+ 2, 0, 0, 0xffff800,
+ 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
+ 0
+};
+static const felem kZero = {0};
+static const felem kP = {
+ 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
+ 0, 0, 0x200000, 0xf000000,
+ 0xfffffff
+};
+static const felem k2P = {
+ 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
+ 0, 0, 0x400000, 0xe000000,
+ 0x1fffffff
+};
+/* kPrecomputed contains precomputed values to aid the calculation of scalar
+ * multiples of the base point, G. It's actually two, equal length, tables
+ * concatenated.
+ *
+ * The first table contains (x,y) felem pairs for 16 multiples of the base
+ * point, G.
+ *
+ * Index | Index (binary) | Value
+ * 0 | 0000 | 0G (all zeros, omitted)
+ * 1 | 0001 | G
+ * 2 | 0010 | 2**64G
+ * 3 | 0011 | 2**64G + G
+ * 4 | 0100 | 2**128G
+ * 5 | 0101 | 2**128G + G
+ * 6 | 0110 | 2**128G + 2**64G
+ * 7 | 0111 | 2**128G + 2**64G + G
+ * 8 | 1000 | 2**192G
+ * 9 | 1001 | 2**192G + G
+ * 10 | 1010 | 2**192G + 2**64G
+ * 11 | 1011 | 2**192G + 2**64G + G
+ * 12 | 1100 | 2**192G + 2**128G
+ * 13 | 1101 | 2**192G + 2**128G + G
+ * 14 | 1110 | 2**192G + 2**128G + 2**64G
+ * 15 | 1111 | 2**192G + 2**128G + 2**64G + G
+ *
+ * The second table follows the same style, but the terms are 2**32G,
+ * 2**96G, 2**160G, 2**224G.
+ *
+ * This is ~2KB of data. */
+static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
+ 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
+ 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
+ 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
+ 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
+ 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
+ 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
+ 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
+ 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
+ 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
+ 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
+ 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
+ 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
+ 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
+ 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
+ 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
+ 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
+ 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
+ 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
+ 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
+ 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
+ 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
+ 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
+ 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
+ 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
+ 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
+ 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
+ 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
+ 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
+ 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
+ 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
+ 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
+ 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
+ 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
+ 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
+ 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
+ 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
+ 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
+ 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
+ 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
+ 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
+ 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
+ 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
+ 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
+ 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
+ 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
+ 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
+ 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
+ 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
+ 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
+ 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
+ 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
+ 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
+ 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
+ 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
+ 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
+ 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
+ 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
+ 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
+ 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
+ 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
+};
+
+
+/* Field element operations: */
+
+/* NON_ZERO_TO_ALL_ONES returns:
+ * 0xffffffff for 0 < x <= 2**31
+ * 0 for x == 0 or x > 2**31.
+ *
+ * x must be a u32 or an equivalent type such as limb. */
+#define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1)
+
+/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
+ * which is a term at 2**257.
+ *
+ * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
+ * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */
+static void felem_reduce_carry(felem inout, limb carry) {
+ const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
+
+ inout[0] += carry << 1;
+ inout[3] += 0x10000000 & carry_mask;
+ /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
+ * previous line therefore this doesn't underflow. */
+ inout[3] -= carry << 11;
+ inout[4] += (0x20000000 - 1) & carry_mask;
+ inout[5] += (0x10000000 - 1) & carry_mask;
+ inout[6] += (0x20000000 - 1) & carry_mask;
+ inout[6] -= carry << 22;
+ /* This may underflow if carry is non-zero but, if so, we'll fix it in the
+ * next line. */
+ inout[7] -= 1 & carry_mask;
+ inout[7] += carry << 25;
+}
+
+/* felem_sum sets out = in+in2.
+ *
+ * On entry, in[i]+in2[i] must not overflow a 32-bit word.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
+static void felem_sum(felem out, const felem in, const felem in2) {
+ limb carry = 0;
+ unsigned i;
+
+ for (i = 0;; i++) {
+ out[i] = in[i] + in2[i];
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] = in[i] + in2[i];
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
+#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
+#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
+#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
+#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
+#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
+
+/* zero31 is 0 mod p. */
+static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 };
+
+/* felem_diff sets out = in-in2.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+ * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_diff(felem out, const felem in, const felem in2) {
+ limb carry = 0;
+ unsigned i;
+
+ for (i = 0;; i++) {
+ out[i] = in[i] - in2[i];
+ out[i] += zero31[i];
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] = in[i] - in2[i];
+ out[i] += zero31[i];
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
+ * with the same 29,28,... bit positions as an felem.
+ *
+ * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
+ * Since we just multiplied two Montgomery values together, the result is
+ * x*y*R*R mod p. We wish to divide by R in order for the result also to be
+ * in Montgomery form.
+ *
+ * On entry: tmp[i] < 2**64
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
+static void felem_reduce_degree(felem out, u64 tmp[17]) {
+ /* The following table may be helpful when reading this code:
+ *
+ * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
+ * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
+ * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
+ * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */
+ limb tmp2[18], carry, x, xMask;
+ unsigned i;
+
+ /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
+ * felem. So the top of an element of tmp might overlap with another
+ * element two positions down. The following loop eliminates this
+ * overlap. */
+ tmp2[0] = (limb)(tmp[0] & kBottom29Bits);
+
+ /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
+ * and hint to the compiler that it can do a single-word shift by selecting
+ * the right register rather than doing a double-word shift and truncating
+ * afterwards. */
+ tmp2[1] = ((limb) tmp[0]) >> 29;
+ tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits;
+ tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
+ carry = tmp2[1] >> 28;
+ tmp2[1] &= kBottom28Bits;
+
+ for (i = 2; i < 17; i++) {
+ tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
+ tmp2[i] += ((limb)(tmp[i - 1])) >> 28;
+ tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
+ tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
+ tmp2[i] += carry;
+ carry = tmp2[i] >> 29;
+ tmp2[i] &= kBottom29Bits;
+
+ i++;
+ if (i == 17)
+ break;
+ tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
+ tmp2[i] += ((limb)(tmp[i - 1])) >> 29;
+ tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
+ tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
+ tmp2[i] += carry;
+ carry = tmp2[i] >> 28;
+ tmp2[i] &= kBottom28Bits;
+ }
+
+ tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25;
+ tmp2[17] += ((limb)(tmp[16])) >> 29;
+ tmp2[17] += (((limb)(tmp[16] >> 32)) << 3);
+ tmp2[17] += carry;
+
+ /* Montgomery elimination of terms.
+ *
+ * Since R is 2**257, we can divide by R with a bitwise shift if we can
+ * ensure that the right-most 257 bits are all zero. We can make that true by
+ * adding multiplies of p without affecting the value.
+ *
+ * So we eliminate limbs from right to left. Since the bottom 29 bits of p
+ * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
+ * We can do that for 8 further limbs and then right shift to eliminate the
+ * extra factor of R. */
+ for (i = 0;; i += 2) {
+ tmp2[i + 1] += tmp2[i] >> 29;
+ x = tmp2[i] & kBottom29Bits;
+ xMask = NON_ZERO_TO_ALL_ONES(x);
+ tmp2[i] = 0;
+
+ /* The bounds calculations for this loop are tricky. Each iteration of
+ * the loop eliminates two words by adding values to words to their
+ * right.
+ *
+ * The following table contains the amounts added to each word (as an
+ * offset from the value of i at the top of the loop). The amounts are
+ * accounted for from the first and second half of the loop separately
+ * and are written as, for example, 28 to mean a value <2**28.
+ *
+ * Word: 3 4 5 6 7 8 9 10
+ * Added in top half: 28 11 29 21 29 28
+ * 28 29
+ * 29
+ * Added in bottom half: 29 10 28 21 28 28
+ * 29
+ *
+ * The value that is currently offset 7 will be offset 5 for the next
+ * iteration and then offset 3 for the iteration after that. Therefore
+ * the total value added will be the values added at 7, 5 and 3.
+ *
+ * The following table accumulates these values. The sums at the bottom
+ * are written as, for example, 29+28, to mean a value < 2**29+2**28.
+ *
+ * Word: 3 4 5 6 7 8 9 10 11 12 13
+ * 28 11 10 29 21 29 28 28 28 28 28
+ * 29 28 11 28 29 28 29 28 29 28
+ * 29 28 21 21 29 21 29 21
+ * 10 29 28 21 28 21 28
+ * 28 29 28 29 28 29 28
+ * 11 10 29 10 29 10
+ * 29 28 11 28 11
+ * 29 29
+ * --------------------------------------------
+ * 30+ 31+ 30+ 31+ 30+
+ * 28+ 29+ 28+ 29+ 21+
+ * 21+ 28+ 21+ 28+ 10
+ * 10 21+ 10 21+
+ * 11 11
+ *
+ * So the greatest amount is added to tmp2[10] and tmp2[12]. If
+ * tmp2[10/12] has an initial value of <2**29, then the maximum value
+ * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
+ * as required. */
+ tmp2[i + 3] += (x << 10) & kBottom28Bits;
+ tmp2[i + 4] += (x >> 18);
+
+ tmp2[i + 6] += (x << 21) & kBottom29Bits;
+ tmp2[i + 7] += x >> 8;
+
+ /* At position 200, which is the starting bit position for word 7, we
+ * have a factor of 0xf000000 = 2**28 - 2**24. */
+ tmp2[i + 7] += 0x10000000 & xMask;
+ /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
+ tmp2[i + 8] += (x - 1) & xMask;
+ tmp2[i + 7] -= (x << 24) & kBottom28Bits;
+ tmp2[i + 8] -= x >> 4;
+
+ tmp2[i + 8] += 0x20000000 & xMask;
+ tmp2[i + 8] -= x;
+ tmp2[i + 8] += (x << 28) & kBottom29Bits;
+ tmp2[i + 9] += ((x >> 1) - 1) & xMask;
+
+ if (i+1 == NLIMBS)
+ break;
+ tmp2[i + 2] += tmp2[i + 1] >> 28;
+ x = tmp2[i + 1] & kBottom28Bits;
+ xMask = NON_ZERO_TO_ALL_ONES(x);
+ tmp2[i + 1] = 0;
+
+ tmp2[i + 4] += (x << 11) & kBottom29Bits;
+ tmp2[i + 5] += (x >> 18);
+
+ tmp2[i + 7] += (x << 21) & kBottom28Bits;
+ tmp2[i + 8] += x >> 7;
+
+ /* At position 199, which is the starting bit of the 8th word when
+ * dealing with a context starting on an odd word, we have a factor of
+ * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
+ * word from i+1 is i+8. */
+ tmp2[i + 8] += 0x20000000 & xMask;
+ tmp2[i + 9] += (x - 1) & xMask;
+ tmp2[i + 8] -= (x << 25) & kBottom29Bits;
+ tmp2[i + 9] -= x >> 4;
+
+ tmp2[i + 9] += 0x10000000 & xMask;
+ tmp2[i + 9] -= x;
+ tmp2[i + 10] += (x - 1) & xMask;
+ }
+
+ /* We merge the right shift with a carry chain. The words above 2**257 have
+ * widths of 28,29,... which we need to correct when copying them down. */
+ carry = 0;
+ for (i = 0; i < 8; i++) {
+ /* The maximum value of tmp2[i + 9] occurs on the first iteration and
+ * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
+ * therefore safe. */
+ out[i] = tmp2[i + 9];
+ out[i] += carry;
+ out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ out[i] = tmp2[i + 9] >> 1;
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ out[8] = tmp2[17];
+ out[8] += carry;
+ carry = out[8] >> 29;
+ out[8] &= kBottom29Bits;
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_square sets out=in*in.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_square(felem out, const felem in) {
+ u64 tmp[17];
+
+ tmp[0] = ((u64) in[0]) * in[0];
+ tmp[1] = ((u64) in[0]) * (in[1] << 1);
+ tmp[2] = ((u64) in[0]) * (in[2] << 1) +
+ ((u64) in[1]) * (in[1] << 1);
+ tmp[3] = ((u64) in[0]) * (in[3] << 1) +
+ ((u64) in[1]) * (in[2] << 1);
+ tmp[4] = ((u64) in[0]) * (in[4] << 1) +
+ ((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2];
+ tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) *
+ (in[4] << 1) + ((u64) in[2]) * (in[3] << 1);
+ tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) *
+ (in[5] << 2) + ((u64) in[2]) * (in[4] << 1) +
+ ((u64) in[3]) * (in[3] << 1);
+ tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) *
+ (in[6] << 1) + ((u64) in[2]) * (in[5] << 1) +
+ ((u64) in[3]) * (in[4] << 1);
+ /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
+ * which is < 2**64 as required. */
+ tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) *
+ (in[7] << 2) + ((u64) in[2]) * (in[6] << 1) +
+ ((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4];
+ tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) *
+ (in[7] << 1) + ((u64) in[3]) * (in[6] << 1) +
+ ((u64) in[4]) * (in[5] << 1);
+ tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) *
+ (in[7] << 2) + ((u64) in[4]) * (in[6] << 1) +
+ ((u64) in[5]) * (in[5] << 1);
+ tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) *
+ (in[7] << 1) + ((u64) in[5]) * (in[6] << 1);
+ tmp[12] = ((u64) in[4]) * (in[8] << 1) +
+ ((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6];
+ tmp[13] = ((u64) in[5]) * (in[8] << 1) +
+ ((u64) in[6]) * (in[7] << 1);
+ tmp[14] = ((u64) in[6]) * (in[8] << 1) +
+ ((u64) in[7]) * (in[7] << 1);
+ tmp[15] = ((u64) in[7]) * (in[8] << 1);
+ tmp[16] = ((u64) in[8]) * in[8];
+
+ felem_reduce_degree(out, tmp);
+}
+
+/* felem_mul sets out=in*in2.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+ * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_mul(felem out, const felem in, const felem in2) {
+ u64 tmp[17];
+
+ tmp[0] = ((u64) in[0]) * in2[0];
+ tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
+ ((u64) in[1]) * (in2[0] << 0);
+ tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) *
+ (in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0);
+ tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) *
+ (in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) +
+ ((u64) in[3]) * (in2[0] << 0);
+ tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) *
+ (in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) +
+ ((u64) in[3]) * (in2[1] << 1) +
+ ((u64) in[4]) * (in2[0] << 0);
+ tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) *
+ (in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) +
+ ((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) *
+ (in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0);
+ tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) *
+ (in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) +
+ ((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) *
+ (in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) +
+ ((u64) in[6]) * (in2[0] << 0);
+ tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) *
+ (in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) +
+ ((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) *
+ (in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) +
+ ((u64) in[6]) * (in2[1] << 0) +
+ ((u64) in[7]) * (in2[0] << 0);
+ /* tmp[8] has the greatest value but doesn't overflow. See logic in
+ * felem_square. */
+ tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) *
+ (in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) +
+ ((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) *
+ (in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) +
+ ((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) *
+ (in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0);
+ tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) *
+ (in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) +
+ ((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) *
+ (in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) +
+ ((u64) in[7]) * (in2[2] << 0) +
+ ((u64) in[8]) * (in2[1] << 0);
+ tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) *
+ (in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) +
+ ((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) *
+ (in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) +
+ ((u64) in[8]) * (in2[2] << 0);
+ tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) *
+ (in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) +
+ ((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) *
+ (in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0);
+ tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) *
+ (in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) +
+ ((u64) in[7]) * (in2[5] << 1) +
+ ((u64) in[8]) * (in2[4] << 0);
+ tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) *
+ (in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) +
+ ((u64) in[8]) * (in2[5] << 0);
+ tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) *
+ (in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0);
+ tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
+ ((u64) in[8]) * (in2[7] << 0);
+ tmp[16] = ((u64) in[8]) * (in2[8] << 0);
+
+ felem_reduce_degree(out, tmp);
+}
+
+static void felem_assign(felem out, const felem in) {
+ memcpy(out, in, sizeof(felem));
+}
+
+/* felem_inv calculates |out| = |in|^{-1}
+ *
+ * Based on Fermat's Little Theorem:
+ * a^p = a (mod p)
+ * a^{p-1} = 1 (mod p)
+ * a^{p-2} = a^{-1} (mod p)
+ */
+static void felem_inv(felem out, const felem in) {
+ felem ftmp, ftmp2;
+ /* each e_I will hold |in|^{2^I - 1} */
+ felem e2, e4, e8, e16, e32, e64;
+ unsigned i;
+
+ felem_square(ftmp, in); /* 2^1 */
+ felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
+ felem_assign(e2, ftmp);
+ felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
+ felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
+ felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
+ felem_assign(e4, ftmp);
+ felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
+ felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
+ felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
+ felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
+ felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
+ felem_assign(e8, ftmp);
+ for (i = 0; i < 8; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^16 - 2^8 */
+ felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
+ felem_assign(e16, ftmp);
+ for (i = 0; i < 16; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^32 - 2^16 */
+ felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
+ felem_assign(e32, ftmp);
+ for (i = 0; i < 32; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^64 - 2^32 */
+ felem_assign(e64, ftmp);
+ felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
+ for (i = 0; i < 192; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^256 - 2^224 + 2^192 */
+
+ felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
+ for (i = 0; i < 16; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^80 - 2^16 */
+ felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
+ for (i = 0; i < 8; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^88 - 2^8 */
+ felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
+ for (i = 0; i < 4; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^92 - 2^4 */
+ felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
+ felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
+ felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
+ felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
+ felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
+ felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
+ felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
+
+ felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
+}
+
+/* felem_scalar_3 sets out=3*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_scalar_3(felem out) {
+ limb carry = 0;
+ unsigned i;
+
+ for (i = 0;; i++) {
+ out[i] *= 3;
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] *= 3;
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_scalar_4 sets out=4*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_scalar_4(felem out) {
+ limb carry = 0, next_carry;
+ unsigned i;
+
+ for (i = 0;; i++) {
+ next_carry = out[i] >> 27;
+ out[i] <<= 2;
+ out[i] &= kBottom29Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 29);
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ next_carry = out[i] >> 26;
+ out[i] <<= 2;
+ out[i] &= kBottom28Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 28);
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_scalar_8 sets out=8*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
+static void felem_scalar_8(felem out) {
+ limb carry = 0, next_carry;
+ unsigned i;
+
+ for (i = 0;; i++) {
+ next_carry = out[i] >> 26;
+ out[i] <<= 3;
+ out[i] &= kBottom29Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 29);
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ next_carry = out[i] >> 25;
+ out[i] <<= 3;
+ out[i] &= kBottom28Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 28);
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
+ * time depending on the value of |in|. */
+static char felem_is_zero_vartime(const felem in) {
+ limb carry;
+ int i;
+ limb tmp[NLIMBS];
+
+ felem_assign(tmp, in);
+
+ /* First, reduce tmp to a minimal form. */
+ do {
+ carry = 0;
+ for (i = 0;; i++) {
+ tmp[i] += carry;
+ carry = tmp[i] >> 29;
+ tmp[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ tmp[i] += carry;
+ carry = tmp[i] >> 28;
+ tmp[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(tmp, carry);
+ } while (carry);
+
+ /* tmp < 2**257, so the only possible zero values are 0, p and 2p. */
+ return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
+ memcmp(tmp, kP, sizeof(tmp)) == 0 ||
+ memcmp(tmp, k2P, sizeof(tmp)) == 0;
+}
+
+
+/* Group operations:
+ *
+ * Elements of the elliptic curve group are represented in Jacobian
+ * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
+ * Jacobian form. */
+
+/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */
+static void point_double(felem x_out, felem y_out, felem z_out, const felem x,
+ const felem y, const felem z) {
+ felem delta, gamma, alpha, beta, tmp, tmp2;
+
+ felem_square(delta, z);
+ felem_square(gamma, y);
+ felem_mul(beta, x, gamma);
+
+ felem_sum(tmp, x, delta);
+ felem_diff(tmp2, x, delta);
+ felem_mul(alpha, tmp, tmp2);
+ felem_scalar_3(alpha);
+
+ felem_sum(tmp, y, z);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, gamma);
+ felem_diff(z_out, tmp, delta);
+
+ felem_scalar_4(beta);
+ felem_square(x_out, alpha);
+ felem_diff(x_out, x_out, beta);
+ felem_diff(x_out, x_out, beta);
+
+ felem_diff(tmp, beta, x_out);
+ felem_mul(tmp, alpha, tmp);
+ felem_square(tmp2, gamma);
+ felem_scalar_8(tmp2);
+ felem_diff(y_out, tmp, tmp2);
+}
+
+/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
+ * (i.e. the second point is affine.)
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * Note that this function does not handle P+P, infinity+P nor P+infinity
+ * correctly. */
+static void point_add_mixed(felem x_out, felem y_out, felem z_out,
+ const felem x1, const felem y1, const felem z1,
+ const felem x2, const felem y2) {
+ felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
+
+ felem_square(z1z1, z1);
+ felem_sum(tmp, z1, z1);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, x1);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, y1);
+ felem_sum(r, r, r);
+ felem_mul(v, x1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, y1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * Note that this function does not handle P+P, infinity+P nor P+infinity
+ * correctly. */
+static void point_add(felem x_out, felem y_out, felem z_out, const felem x1,
+ const felem y1, const felem z1, const felem x2,
+ const felem y2, const felem z2) {
+ felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
+
+ felem_square(z1z1, z1);
+ felem_square(z2z2, z2);
+ felem_mul(u1, x1, z2z2);
+
+ felem_sum(tmp, z1, z2);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, z1z1);
+ felem_diff(tmp, tmp, z2z2);
+
+ felem_mul(z2z2z2, z2, z2z2);
+ felem_mul(s1, y1, z2z2z2);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, u1);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, s1);
+ felem_sum(r, r, r);
+ felem_mul(v, u1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, s1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
+ * {x2,y2,z2}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * This function handles the case where {x1,y1,z1}={x2,y2,z2}. */
+static void point_add_or_double_vartime(
+ felem x_out, felem y_out, felem z_out, const felem x1, const felem y1,
+ const felem z1, const felem x2, const felem y2, const felem z2) {
+ felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
+ char x_equal, y_equal;
+
+ felem_square(z1z1, z1);
+ felem_square(z2z2, z2);
+ felem_mul(u1, x1, z2z2);
+
+ felem_sum(tmp, z1, z2);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, z1z1);
+ felem_diff(tmp, tmp, z2z2);
+
+ felem_mul(z2z2z2, z2, z2z2);
+ felem_mul(s1, y1, z2z2z2);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, u1);
+ x_equal = felem_is_zero_vartime(h);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, s1);
+ y_equal = felem_is_zero_vartime(r);
+ if (x_equal && y_equal) {
+ point_double(x_out, y_out, z_out, x1, y1, z1);
+ return;
+ }
+ felem_sum(r, r, r);
+ felem_mul(v, u1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, s1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
+ *
+ * On entry: mask is either 0 or 0xffffffff. */
+static void copy_conditional(felem out, const felem in, limb mask) {
+ int i;
+
+ for (i = 0; i < NLIMBS; i++) {
+ const limb tmp = mask & (in[i] ^ out[i]);
+ out[i] ^= tmp;
+ }
+}
+
+/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
+ * On entry: index < 16, table[0] must be zero. */
+static void select_affine_point(felem out_x, felem out_y, const limb* table,
+ limb index) {
+ limb i, j;
+
+ memset(out_x, 0, sizeof(felem));
+ memset(out_y, 0, sizeof(felem));
+
+ for (i = 1; i < 16; i++) {
+ limb mask = i ^ index;
+ mask |= mask >> 2;
+ mask |= mask >> 1;
+ mask &= 1;
+ mask--;
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_x[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_y[j] |= *table & mask;
+ }
+ }
+}
+
+/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
+ * table. On entry: index < 16, table[0] must be zero. */
+static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
+ const limb* table, limb index) {
+ limb i, j;
+
+ memset(out_x, 0, sizeof(felem));
+ memset(out_y, 0, sizeof(felem));
+ memset(out_z, 0, sizeof(felem));
+
+ /* The implicit value at index 0 is all zero. We don't need to perform that
+ * iteration of the loop because we already set out_* to zero. */
+ table += 3 * NLIMBS;
+
+ // Hit all entries to obscure cache profiling.
+ for (i = 1; i < 16; i++) {
+ limb mask = i ^ index;
+ mask |= mask >> 2;
+ mask |= mask >> 1;
+ mask &= 1;
+ mask--;
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_x[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_y[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_z[j] |= *table & mask;
+ }
+ }
+}
+
+/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
+ * number. Note that the value of scalar must be less than the order of the
+ * group. */
+static void scalar_base_mult(felem nx, felem ny, felem nz,
+ const p256_int* scalar) {
+ int i, j;
+ limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
+ u32 table_offset;
+
+ felem px, py;
+ felem tx, ty, tz;
+
+ memset(nx, 0, sizeof(felem));
+ memset(ny, 0, sizeof(felem));
+ memset(nz, 0, sizeof(felem));
+
+ /* The loop adds bits at positions 0, 64, 128 and 192, followed by
+ * positions 32,96,160 and 224 and does this 32 times. */
+ for (i = 0; i < 32; i++) {
+ if (i) {
+ point_double(nx, ny, nz, nx, ny, nz);
+ }
+ table_offset = 0;
+ for (j = 0; j <= 32; j += 32) {
+ char bit0 = p256_get_bit(scalar, 31 - i + j);
+ char bit1 = p256_get_bit(scalar, 95 - i + j);
+ char bit2 = p256_get_bit(scalar, 159 - i + j);
+ char bit3 = p256_get_bit(scalar, 223 - i + j);
+ limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
+
+ select_affine_point(px, py, kPrecomputed + table_offset, index);
+ table_offset += 30 * NLIMBS;
+
+ /* Since scalar is less than the order of the group, we know that
+ * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
+ * below. */
+ point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
+ /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
+ * (a.k.a. the point at infinity). We handle that situation by
+ * copying the point from the table. */
+ copy_conditional(nx, px, n_is_infinity_mask);
+ copy_conditional(ny, py, n_is_infinity_mask);
+ copy_conditional(nz, kOne, n_is_infinity_mask);
+
+ /* Equally, the result is also wrong if the point from the table is
+ * zero, which happens when the index is zero. We handle that by
+ * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */
+ p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
+ mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
+ copy_conditional(nx, tx, mask);
+ copy_conditional(ny, ty, mask);
+ copy_conditional(nz, tz, mask);
+ /* If p was not zero, then n is now non-zero. */
+ n_is_infinity_mask &= ~p_is_noninfinite_mask;
+ }
+ }
+}
+
+/* point_to_affine converts a Jacobian point to an affine point. If the input
+ * is the point at infinity then it returns (0, 0) in constant time. */
+static void point_to_affine(felem x_out, felem y_out, const felem nx,
+ const felem ny, const felem nz) {
+ felem z_inv, z_inv_sq;
+ felem_inv(z_inv, nz);
+ felem_square(z_inv_sq, z_inv);
+ felem_mul(x_out, nx, z_inv_sq);
+ felem_mul(z_inv, z_inv, z_inv_sq);
+ felem_mul(y_out, ny, z_inv);
+}
+
+/* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */
+static void scalar_mult(felem nx, felem ny, felem nz, const felem x,
+ const felem y, const p256_int* scalar) {
+ int i;
+ felem px, py, pz, tx, ty, tz;
+ felem precomp[16][3];
+ limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
+
+ /* We precompute 0,1,2,... times {x,y}. */
+ memset(precomp, 0, sizeof(felem) * 3);
+ memcpy(&precomp[1][0], x, sizeof(felem));
+ memcpy(&precomp[1][1], y, sizeof(felem));
+ memcpy(&precomp[1][2], kOne, sizeof(felem));
+
+ for (i = 2; i < 16; i += 2) {
+ point_double(precomp[i][0], precomp[i][1], precomp[i][2],
+ precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
+
+ point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
+ precomp[i][0], precomp[i][1], precomp[i][2], x, y);
+ }
+
+ memset(nx, 0, sizeof(felem));
+ memset(ny, 0, sizeof(felem));
+ memset(nz, 0, sizeof(felem));
+ n_is_infinity_mask = -1;
+
+ /* We add in a window of four bits each iteration and do this 64 times. */
+ for (i = 0; i < 256; i += 4) {
+ if (i) {
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ }
+
+ index = (p256_get_bit(scalar, 255 - i - 0) << 3) |
+ (p256_get_bit(scalar, 255 - i - 1) << 2) |
+ (p256_get_bit(scalar, 255 - i - 2) << 1) |
+ p256_get_bit(scalar, 255 - i - 3);
+
+ /* See the comments in scalar_base_mult about handling infinities. */
+ select_jacobian_point(px, py, pz, precomp[0][0], index);
+ point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
+ copy_conditional(nx, px, n_is_infinity_mask);
+ copy_conditional(ny, py, n_is_infinity_mask);
+ copy_conditional(nz, pz, n_is_infinity_mask);
+
+ p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
+ mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
+
+ copy_conditional(nx, tx, mask);
+ copy_conditional(ny, ty, mask);
+ copy_conditional(nz, tz, mask);
+ n_is_infinity_mask &= ~p_is_noninfinite_mask;
+ }
+}
+
+#define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p
+
+#define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff} // 1 / 2^257 mod p256.p
+
+static const p256_int kR = { kRDigits };
+static const p256_int kRInv = { kRInvDigits };
+
+/* to_montgomery sets out = R*in. */
+static void to_montgomery(felem out, const p256_int* in) {
+ p256_int in_shifted;
+ int i;
+
+ p256_init(&in_shifted);
+ p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted);
+
+ for (i = 0; i < NLIMBS; i++) {
+ if ((i & 1) == 0) {
+ out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits;
+ p256_shr(&in_shifted, 29, &in_shifted);
+ } else {
+ out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits;
+ p256_shr(&in_shifted, 28, &in_shifted);
+ }
+ }
+
+ p256_clear(&in_shifted);
+}
+
+/* from_montgomery sets out=in/R. */
+static void from_montgomery(p256_int* out, const felem in) {
+ p256_int result, tmp;
+ int i, top;
+
+ p256_init(&result);
+ p256_init(&tmp);
+
+ p256_add_d(&tmp, in[NLIMBS - 1], &result);
+ for (i = NLIMBS - 2; i >= 0; i--) {
+ if ((i & 1) == 0) {
+ top = p256_shl(&result, 29, &tmp);
+ } else {
+ top = p256_shl(&result, 28, &tmp);
+ }
+ top |= p256_add_d(&tmp, in[i], &result);
+ }
+
+ p256_modmul(&SECP256r1_p, &kRInv, top, &result, out);
+
+ p256_clear(&result);
+ p256_clear(&tmp);
+}
+
+/* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the
+ * order of the group. */
+void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) {
+ felem x, y, z;
+
+ scalar_base_mult(x, y, z, n);
+
+ {
+ felem x_affine, y_affine;
+
+ point_to_affine(x_affine, y_affine, x, y, z);
+ from_montgomery(out_x, x_affine);
+ from_montgomery(out_y, y_affine);
+ }
+}
+
+/* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where
+ * n1 and n2 are < the order of the group.
+ *
+ * As indicated by the name, this function operates in variable time. This
+ * is safe because it's used for signature validation which doesn't deal
+ * with secrets. */
+void p256_points_mul_vartime(
+ const p256_int* n1, const p256_int* n2, const p256_int* in_x,
+ const p256_int* in_y, p256_int* out_x, p256_int* out_y) {
+ felem x1, y1, z1, x2, y2, z2, px, py;
+
+ /* If both scalars are zero, then the result is the point at infinity. */
+ if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) {
+ p256_clear(out_x);
+ p256_clear(out_y);
+ return;
+ }
+
+ to_montgomery(px, in_x);
+ to_montgomery(py, in_y);
+ scalar_base_mult(x1, y1, z1, n1);
+ scalar_mult(x2, y2, z2, px, py, n2);
+
+ if (p256_is_zero(n2) != 0) {
+ /* If n2 == 0, then {x2,y2,z2} is zero and the result is just
+ * {x1,y1,z1}. */
+ } else if (p256_is_zero(n1) != 0) {
+ /* If n1 == 0, then {x1,y1,z1} is zero and the result is just
+ * {x2,y2,z2}. */
+ memcpy(x1, x2, sizeof(x2));
+ memcpy(y1, y2, sizeof(y2));
+ memcpy(z1, z2, sizeof(z2));
+ } else {
+ /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
+ point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
+ }
+
+ point_to_affine(px, py, x1, y1, z1);
+ from_montgomery(out_x, px);
+ from_montgomery(out_y, py);
+}
diff --git a/libmincrypt/p256_ecdsa.c b/libmincrypt/p256_ecdsa.c
new file mode 100644
index 0000000..f2264b0
--- /dev/null
+++ b/libmincrypt/p256_ecdsa.c
@@ -0,0 +1,56 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <string.h>
+
+#include "mincrypt/p256_ecdsa.h"
+#include "mincrypt/p256.h"
+
+int p256_ecdsa_verify(const p256_int* key_x, const p256_int* key_y,
+ const p256_int* message,
+ const p256_int* r, const p256_int* s) {
+ p256_int u, v;
+
+ // Check public key.
+ if (!p256_is_valid_point(key_x, key_y)) return 0;
+
+ // Check r and s are != 0 % n.
+ p256_mod(&SECP256r1_n, r, &u);
+ p256_mod(&SECP256r1_n, s, &v);
+ if (p256_is_zero(&u) || p256_is_zero(&v)) return 0;
+
+ p256_modinv_vartime(&SECP256r1_n, s, &v);
+ p256_modmul(&SECP256r1_n, message, 0, &v, &u); // message / s % n
+ p256_modmul(&SECP256r1_n, r, 0, &v, &v); // r / s % n
+
+ p256_points_mul_vartime(&u, &v,
+ key_x, key_y,
+ &u, &v);
+
+ p256_mod(&SECP256r1_n, &u, &u); // (x coord % p) % n
+ return p256_cmp(r, &u) == 0;
+}
+
diff --git a/libmincrypt/test/Android.mk b/libmincrypt/test/Android.mk
index a28ccd8..73ff7d0 100644
--- a/libmincrypt/test/Android.mk
+++ b/libmincrypt/test/Android.mk
@@ -1,10 +1,15 @@
# Copyright 2013 The Android Open Source Project
LOCAL_PATH := $(call my-dir)
-include $(CLEAR_VARS)
+include $(CLEAR_VARS)
LOCAL_MODULE := rsa_test
LOCAL_SRC_FILES := rsa_test.c
LOCAL_STATIC_LIBRARIES := libmincrypt
-include $(BUILD_HOST_EXECUTABLE)
+include $(BUILD_HOST_NATIVE_TEST)
+include $(CLEAR_VARS)
+LOCAL_MODULE := ecdsa_test
+LOCAL_SRC_FILES := ecdsa_test.c
+LOCAL_STATIC_LIBRARIES := libmincrypt
+include $(BUILD_HOST_NATIVE_TEST)
diff --git a/libmincrypt/test/ecdsa_test.c b/libmincrypt/test/ecdsa_test.c
new file mode 100644
index 0000000..b5a7b3a
--- /dev/null
+++ b/libmincrypt/test/ecdsa_test.c
@@ -0,0 +1,278 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <ctype.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "mincrypt/p256.h"
+#include "mincrypt/p256_ecdsa.h"
+#include "mincrypt/sha256.h"
+
+/**
+ * Messages signed using:
+ *
+-----BEGIN EC PRIVATE KEY-----
+MHcCAQEEIDw6UiziVMbjlfSpOAIpA2tcL+v1OlznZLnpadO8BGi1oAoGCCqGSM49
+AwEHoUQDQgAEZw7VAOjAXYRFuhZWYBgjahdOvkwcAnjGkxQWytZW+iS1hI3ZGE24
+6XmNka9IGxAgj2n/ip+MuZJMFoJ9DRea3g==
+-----END EC PRIVATE KEY-----
+ */
+
+p256_int key_x = {
+ .a = {0xd656fa24u, 0x931416cau, 0x1c0278c6u, 0x174ebe4cu,
+ 0x6018236au, 0x45ba1656u, 0xe8c05d84u, 0x670ed500u}
+};
+p256_int key_y = {
+ .a = {0x0d179adeu, 0x4c16827du, 0x9f8cb992u, 0x8f69ff8au,
+ 0x481b1020u, 0x798d91afu, 0x184db8e9u, 0xb5848dd9u}
+};
+
+char* message_1 =
+ "f4 5d 55 f3 55 51 e9 75 d6 a8 dc 7e a9 f4 88 59"
+ "39 40 cc 75 69 4a 27 8f 27 e5 78 a1 63 d8 39 b3"
+ "40 40 84 18 08 cf 9c 58 c9 b8 72 8b f5 f9 ce 8e"
+ "e8 11 ea 91 71 4f 47 ba b9 2d 0f 6d 5a 26 fc fe"
+ "ea 6c d9 3b 91 0c 0a 2c 96 3e 64 eb 18 23 f1 02"
+ "75 3d 41 f0 33 59 10 ad 3a 97 71 04 f1 aa f6 c3"
+ "74 27 16 a9 75 5d 11 b8 ee d6 90 47 7f 44 5c 5d"
+ "27 20 8b 2e 28 43 30 fa 3d 30 14 23 fa 7f 2d 08"
+ "6e 0a d0 b8 92 b9 db 54 4e 45 6d 3f 0d ab 85 d9"
+ "53 c1 2d 34 0a a8 73 ed a7 27 c8 a6 49 db 7f a6"
+ "37 40 e2 5e 9a f1 53 3b 30 7e 61 32 99 93 11 0e"
+ "95 19 4e 03 93 99 c3 82 4d 24 c5 1f 22 b2 6b de"
+ "10 24 cd 39 59 58 a2 df eb 48 16 a6 e8 ad ed b5"
+ "0b 1f 6b 56 d0 b3 06 0f f0 f1 c4 cb 0d 0e 00 1d"
+ "d5 9d 73 be 12";
+
+char* signature_1 =
+ "30 44 02 20 43 18 fc eb 3b a8 3a a8 a3 cf 41 b7"
+ "81 4a f9 01 e1 8b 6e 95 c1 3a 83 25 9e a5 2e 66"
+ "7c 98 25 d9 02 20 54 f3 7f 5a e9 36 9c a2 f0 51"
+ "e0 6e 78 48 60 a3 f9 8a d5 2c 37 5a 0a 29 c9 f7"
+ "ea 57 7e 88 46 12";
+
+// Same as signature 1, but with leading zeroes.
+char* message_2 =
+ "f4 5d 55 f3 55 51 e9 75 d6 a8 dc 7e a9 f4 88 59"
+ "39 40 cc 75 69 4a 27 8f 27 e5 78 a1 63 d8 39 b3"
+ "40 40 84 18 08 cf 9c 58 c9 b8 72 8b f5 f9 ce 8e"
+ "e8 11 ea 91 71 4f 47 ba b9 2d 0f 6d 5a 26 fc fe"
+ "ea 6c d9 3b 91 0c 0a 2c 96 3e 64 eb 18 23 f1 02"
+ "75 3d 41 f0 33 59 10 ad 3a 97 71 04 f1 aa f6 c3"
+ "74 27 16 a9 75 5d 11 b8 ee d6 90 47 7f 44 5c 5d"
+ "27 20 8b 2e 28 43 30 fa 3d 30 14 23 fa 7f 2d 08"
+ "6e 0a d0 b8 92 b9 db 54 4e 45 6d 3f 0d ab 85 d9"
+ "53 c1 2d 34 0a a8 73 ed a7 27 c8 a6 49 db 7f a6"
+ "37 40 e2 5e 9a f1 53 3b 30 7e 61 32 99 93 11 0e"
+ "95 19 4e 03 93 99 c3 82 4d 24 c5 1f 22 b2 6b de"
+ "10 24 cd 39 59 58 a2 df eb 48 16 a6 e8 ad ed b5"
+ "0b 1f 6b 56 d0 b3 06 0f f0 f1 c4 cb 0d 0e 00 1d"
+ "d5 9d 73 be 12";
+
+char* signature_2 =
+ "30 46 02 21 00 43 18 fc eb 3b a8 3a a8 a3 cf 41 b7"
+ "81 4a f9 01 e1 8b 6e 95 c1 3a 83 25 9e a5 2e 66"
+ "7c 98 25 d9 02 21 00 54 f3 7f 5a e9 36 9c a2 f0 51"
+ "e0 6e 78 48 60 a3 f9 8a d5 2c 37 5a 0a 29 c9 f7"
+ "ea 57 7e 88 46 12";
+
+// Excessive zeroes on the signature
+char* message_3 =
+ "f4 5d 55 f3 55 51 e9 75 d6 a8 dc 7e a9 f4 88 59"
+ "39 40 cc 75 69 4a 27 8f 27 e5 78 a1 63 d8 39 b3"
+ "40 40 84 18 08 cf 9c 58 c9 b8 72 8b f5 f9 ce 8e"
+ "e8 11 ea 91 71 4f 47 ba b9 2d 0f 6d 5a 26 fc fe"
+ "ea 6c d9 3b 91 0c 0a 2c 96 3e 64 eb 18 23 f1 02"
+ "75 3d 41 f0 33 59 10 ad 3a 97 71 04 f1 aa f6 c3"
+ "74 27 16 a9 75 5d 11 b8 ee d6 90 47 7f 44 5c 5d"
+ "27 20 8b 2e 28 43 30 fa 3d 30 14 23 fa 7f 2d 08"
+ "6e 0a d0 b8 92 b9 db 54 4e 45 6d 3f 0d ab 85 d9"
+ "53 c1 2d 34 0a a8 73 ed a7 27 c8 a6 49 db 7f a6"
+ "37 40 e2 5e 9a f1 53 3b 30 7e 61 32 99 93 11 0e"
+ "95 19 4e 03 93 99 c3 82 4d 24 c5 1f 22 b2 6b de"
+ "10 24 cd 39 59 58 a2 df eb 48 16 a6 e8 ad ed b5"
+ "0b 1f 6b 56 d0 b3 06 0f f0 f1 c4 cb 0d 0e 00 1d"
+ "d5 9d 73 be 12";
+
+char* signature_3 =
+ "30 4c 02 24 00 00 00 00 43 18 fc eb 3b a8 3a a8 a3 cf 41 b7"
+ "81 4a f9 01 e1 8b 6e 95 c1 3a 83 25 9e a5 2e 66"
+ "7c 98 25 d9 02 24 00 00 00 00 54 f3 7f 5a e9 36 9c a2 f0 51"
+ "e0 6e 78 48 60 a3 f9 8a d5 2c 37 5a 0a 29 c9 f7"
+ "ea 57 7e 88 46 12";
+
+
+char* good_dsa_signature_1 =
+ "30 0D 02 01 01 02 08 00 A5 55 5A 01 FF A5 01";
+p256_int good_dsa_signature_1_r = {
+ .a = {0x00000001U, 0x00000000U, 0x00000000U, 0x00000000U,
+ 0x00000000U, 0x00000000U, 0x00000000U, 0x00000000U}
+};
+p256_int good_dsa_signature_1_s = {
+ .a = {0x01FFA501U, 0x00A5555AU, 0x00000000U, 0x00000000U,
+ 0x00000000U, 0x00000000U, 0x00000000U, 0x00000000U}
+};
+
+
+char* bad_dsa_signature_1 =
+ "a0 06 02 01 01 02 01 01";
+
+char* bad_dsa_signature_2 =
+ "30 07 02 01 01 02 01 01";
+
+char* bad_dsa_signature_3 =
+ "30 06 82 01 01 02 01 01";
+
+char* bad_dsa_signature_4 =
+ "30 06 02 00 01 02 01 01";
+
+char* bad_dsa_signature_5 =
+ "30 06 02 01 01 82 01 01";
+
+char* bad_dsa_signature_6 =
+ "30 05 02 01 01 02 00";
+
+char* bad_dsa_signature_7 =
+ "30 06 02 01 01 02 00 01";
+
+unsigned char* parsehex(char* str, int* len) {
+ // result can't be longer than input
+ unsigned char* result = malloc(strlen(str));
+
+ unsigned char* p = result;
+ *len = 0;
+
+ while (*str) {
+ int b;
+
+ while (isspace(*str)) str++;
+
+ switch (*str) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ b = (*str - '0') << 4; break;
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
+ b = (*str - 'a' + 10) << 4; break;
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
+ b = (*str - 'A' + 10) << 4; break;
+ case '\0':
+ return result;
+ default:
+ return NULL;
+ }
+ str++;
+
+ while (isspace(*str)) str++;
+
+ switch (*str) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ b |= *str - '0'; break;
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
+ b |= *str - 'a' + 10; break;
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
+ b |= *str - 'A' + 10; break;
+ default:
+ return NULL;
+ }
+ str++;
+
+ *p++ = b;
+ ++*len;
+ }
+
+ return result;
+}
+
+int main(int arg, char** argv) {
+
+ unsigned char hash_buf[SHA256_DIGEST_SIZE];
+
+ unsigned char* message;
+ int mlen;
+ unsigned char* signature;
+ int slen;
+
+ p256_int hash;
+ p256_int r;
+ p256_int s;
+
+ int success = 1;
+
+#define CHECK_DSA_SIG(sig, good) do {\
+ message = parsehex(sig, &mlen); \
+ int result = dsa_sig_unpack(message, mlen, &r, &s); \
+ printf(#sig ": %s\n", result ? "good" : "bad"); \
+ success = success && !(good ^ result); \
+ free(message); \
+ } while(0)
+#define CHECK_GOOD_DSA_SIG(n) do {\
+ CHECK_DSA_SIG(good_dsa_signature_##n, 1); \
+ int result = !memcmp(P256_DIGITS(&good_dsa_signature_##n##_r), P256_DIGITS(&r), \
+ P256_NBYTES); \
+ success = success && result; \
+ printf(" R value %s\n", result ? "good" : "bad"); \
+ result = !memcmp(P256_DIGITS(&good_dsa_signature_##n##_s), P256_DIGITS(&s), \
+ P256_NBYTES); \
+ success = success && result; \
+ printf(" S value %s\n", result ? "good" : "bad"); \
+ } while (0)
+#define CHECK_BAD_DSA_SIG(n) \
+ CHECK_DSA_SIG(bad_dsa_signature_##n, 0)
+
+ CHECK_GOOD_DSA_SIG(1);
+
+ CHECK_BAD_DSA_SIG(1);
+ CHECK_BAD_DSA_SIG(2);
+ CHECK_BAD_DSA_SIG(3);
+ CHECK_BAD_DSA_SIG(4);
+ CHECK_BAD_DSA_SIG(5);
+ CHECK_BAD_DSA_SIG(6);
+ CHECK_BAD_DSA_SIG(7);
+
+
+#define TEST_MESSAGE(n) do {\
+ message = parsehex(message_##n, &mlen); \
+ SHA256_hash(message, mlen, hash_buf); \
+ p256_from_bin(hash_buf, &hash); \
+ signature = parsehex(signature_##n, &slen); \
+ int result = dsa_sig_unpack(signature, slen, &r, &s); \
+ if (result) { result = p256_ecdsa_verify(&key_x, &key_y, &hash, &r, &s); } \
+ printf("message %d: %s\n", n, result ? "verified" : "not verified"); \
+ success = success && result; \
+ free(signature); \
+ } while(0)
+
+ TEST_MESSAGE(1);
+ TEST_MESSAGE(2);
+ TEST_MESSAGE(3);
+
+ printf("\n%s\n\n", success ? "PASS" : "FAIL");
+
+ return !success;
+}
diff --git a/libmincrypt/tools/Android.mk b/libmincrypt/tools/Android.mk
index b61234a..3154914 100644
--- a/libmincrypt/tools/Android.mk
+++ b/libmincrypt/tools/Android.mk
@@ -13,9 +13,10 @@
# limitations under the License.
LOCAL_PATH := $(call my-dir)
-include $(CLEAR_VARS)
+include $(CLEAR_VARS)
LOCAL_MODULE := dumpkey
LOCAL_SRC_FILES := DumpPublicKey.java
LOCAL_JAR_MANIFEST := DumpPublicKey.mf
+LOCAL_STATIC_JAVA_LIBRARIES := bouncycastle-host
include $(BUILD_HOST_JAVA_LIBRARY)
diff --git a/libmincrypt/tools/DumpPublicKey.java b/libmincrypt/tools/DumpPublicKey.java
index 7189116..3eb1398 100644
--- a/libmincrypt/tools/DumpPublicKey.java
+++ b/libmincrypt/tools/DumpPublicKey.java
@@ -16,6 +16,8 @@
package com.android.dumpkey;
+import org.bouncycastle.jce.provider.BouncyCastleProvider;
+
import java.io.FileInputStream;
import java.math.BigInteger;
import java.security.cert.CertificateFactory;
@@ -23,7 +25,10 @@ import java.security.cert.X509Certificate;
import java.security.KeyStore;
import java.security.Key;
import java.security.PublicKey;
+import java.security.Security;
+import java.security.interfaces.ECPublicKey;
import java.security.interfaces.RSAPublicKey;
+import java.security.spec.ECPoint;
/**
* Command line tool to extract RSA public keys from X.509 certificates
@@ -39,9 +44,8 @@ class DumpPublicKey {
* 3: 2048-bit RSA key with e=3 and SHA-256 hash
* 4: 2048-bit RSA key with e=65537 and SHA-256 hash
* @throws Exception if the key has the wrong size or public exponent
-
*/
- static int check(RSAPublicKey key, boolean useSHA256) throws Exception {
+ static int checkRSA(RSAPublicKey key, boolean useSHA256) throws Exception {
BigInteger pubexp = key.getPublicExponent();
BigInteger modulus = key.getModulus();
int version;
@@ -64,12 +68,42 @@ class DumpPublicKey {
}
/**
+ * @param key to perform sanity checks on
+ * @return version number of key. Supported versions are:
+ * 5: 256-bit EC key with curve NIST P-256
+ * @throws Exception if the key has the wrong size or public exponent
+ */
+ static int checkEC(ECPublicKey key) throws Exception {
+ if (key.getParams().getCurve().getField().getFieldSize() != 256) {
+ throw new Exception("Curve must be NIST P-256");
+ }
+
+ return 5;
+ }
+
+ /**
+ * Perform sanity check on public key.
+ */
+ static int check(PublicKey key, boolean useSHA256) throws Exception {
+ if (key instanceof RSAPublicKey) {
+ return checkRSA((RSAPublicKey) key, useSHA256);
+ } else if (key instanceof ECPublicKey) {
+ if (!useSHA256) {
+ throw new Exception("Must use SHA-256 with EC keys!");
+ }
+ return checkEC((ECPublicKey) key);
+ } else {
+ throw new Exception("Unsupported key class: " + key.getClass().getName());
+ }
+ }
+
+ /**
* @param key to output
* @return a String representing this public key. If the key is a
* version 1 key, the string will be a C initializer; this is
* not true for newer key versions.
*/
- static String print(RSAPublicKey key, boolean useSHA256) throws Exception {
+ static String printRSA(RSAPublicKey key, boolean useSHA256) throws Exception {
int version = check(key, useSHA256);
BigInteger N = key.getModulus();
@@ -128,11 +162,78 @@ class DumpPublicKey {
return result.toString();
}
+ /**
+ * @param key to output
+ * @return a String representing this public key. If the key is a
+ * version 1 key, the string will be a C initializer; this is
+ * not true for newer key versions.
+ */
+ static String printEC(ECPublicKey key) throws Exception {
+ int version = checkEC(key);
+
+ StringBuilder result = new StringBuilder();
+
+ result.append("v");
+ result.append(Integer.toString(version));
+ result.append(" ");
+
+ BigInteger X = key.getW().getAffineX();
+ BigInteger Y = key.getW().getAffineY();
+ int nbytes = key.getParams().getCurve().getField().getFieldSize() / 8; // # of 32 bit integers in X coordinate
+
+ result.append("{");
+ result.append(nbytes);
+
+ BigInteger B = BigInteger.valueOf(0x100L); // 2^8
+
+ // Write out Y coordinate as array of characters.
+ result.append(",{");
+ for (int i = 0; i < nbytes; ++i) {
+ long n = X.mod(B).longValue();
+ result.append(n);
+
+ if (i != nbytes - 1) {
+ result.append(",");
+ }
+
+ X = X.divide(B);
+ }
+ result.append("}");
+
+ // Write out Y coordinate as array of characters.
+ result.append(",{");
+ for (int i = 0; i < nbytes; ++i) {
+ long n = Y.mod(B).longValue();
+ result.append(n);
+
+ if (i != nbytes - 1) {
+ result.append(",");
+ }
+
+ Y = Y.divide(B);
+ }
+ result.append("}");
+
+ result.append("}");
+ return result.toString();
+ }
+
+ static String print(PublicKey key, boolean useSHA256) throws Exception {
+ if (key instanceof RSAPublicKey) {
+ return printRSA((RSAPublicKey) key, useSHA256);
+ } else if (key instanceof ECPublicKey) {
+ return printEC((ECPublicKey) key);
+ } else {
+ throw new Exception("Unsupported key class: " + key.getClass().getName());
+ }
+ }
+
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: DumpPublicKey certfile ... > source.c");
System.exit(1);
}
+ Security.addProvider(new BouncyCastleProvider());
try {
for (int i = 0; i < args.length; i++) {
FileInputStream input = new FileInputStream(args[i]);
@@ -147,7 +248,7 @@ class DumpPublicKey {
// anyway. Continue to do so for backwards
// compatibility.
useSHA256 = false;
- } else if ("SHA256withRSA".equals(sigAlg)) {
+ } else if ("SHA256withRSA".equals(sigAlg) || "SHA256withECDSA".equals(sigAlg)) {
useSHA256 = true;
} else {
System.err.println(args[i] + ": unsupported signature algorithm \"" +
@@ -155,7 +256,7 @@ class DumpPublicKey {
System.exit(1);
}
- RSAPublicKey key = (RSAPublicKey) (cert.getPublicKey());
+ PublicKey key = cert.getPublicKey();
check(key, useSHA256);
System.out.print(print(key, useSHA256));
System.out.println(i < args.length - 1 ? "," : "");