summaryrefslogtreecommitdiffstats
path: root/libbacktrace/backtrace_test.cpp
blob: a086547ddf37d3d1c966aa1838752fb6becd3358 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define _GNU_SOURCE 1
#include <dirent.h>
#include <errno.h>
#include <inttypes.h>
#include <pthread.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

#include <algorithm>
#include <memory>
#include <string>
#include <vector>

#include <backtrace/Backtrace.h>
#include <backtrace/BacktraceMap.h>

#include <cutils/atomic.h>
#include <cutils/threads.h>

#include <gtest/gtest.h>

// For the THREAD_SIGNAL definition.
#include "BacktraceCurrent.h"
#include "thread_utils.h"

// Number of microseconds per milliseconds.
#define US_PER_MSEC             1000

// Number of nanoseconds in a second.
#define NS_PER_SEC              1000000000ULL

// Number of simultaneous dumping operations to perform.
#define NUM_THREADS  40

// Number of simultaneous threads running in our forked process.
#define NUM_PTRACE_THREADS 5

struct thread_t {
  pid_t tid;
  int32_t state;
  pthread_t threadId;
  void* data;
};

struct dump_thread_t {
  thread_t thread;
  Backtrace* backtrace;
  int32_t* now;
  int32_t done;
};

extern "C" {
// Prototypes for functions in the test library.
int test_level_one(int, int, int, int, void (*)(void*), void*);

int test_recursive_call(int, void (*)(void*), void*);
}

uint64_t NanoTime() {
  struct timespec t = { 0, 0 };
  clock_gettime(CLOCK_MONOTONIC, &t);
  return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec);
}

std::string DumpFrames(Backtrace* backtrace) {
  if (backtrace->NumFrames() == 0) {
    return "   No frames to dump.\n";
  }

  std::string frame;
  for (size_t i = 0; i < backtrace->NumFrames(); i++) {
    frame += "   " + backtrace->FormatFrameData(i) + '\n';
  }
  return frame;
}

void WaitForStop(pid_t pid) {
  uint64_t start = NanoTime();

  siginfo_t si;
  while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) {
    if ((NanoTime() - start) > NS_PER_SEC) {
      printf("The process did not get to a stopping point in 1 second.\n");
      break;
    }
    usleep(US_PER_MSEC);
  }
}

bool ReadyLevelBacktrace(Backtrace* backtrace) {
  // See if test_level_four is in the backtrace.
  bool found = false;
  for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) {
    if (it->func_name == "test_level_four") {
      found = true;
      break;
    }
  }

  return found;
}

void VerifyLevelDump(Backtrace* backtrace) {
  ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0))
    << DumpFrames(backtrace);
  ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES))
    << DumpFrames(backtrace);

  // Look through the frames starting at the highest to find the
  // frame we want.
  size_t frame_num = 0;
  for (size_t i = backtrace->NumFrames()-1; i > 2; i--) {
    if (backtrace->GetFrame(i)->func_name == "test_level_one") {
      frame_num = i;
      break;
    }
  }
  ASSERT_LT(static_cast<size_t>(0), frame_num) << DumpFrames(backtrace);
  ASSERT_LE(static_cast<size_t>(3), frame_num) << DumpFrames(backtrace);

  ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one")
    << DumpFrames(backtrace);
  ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two")
    << DumpFrames(backtrace);
  ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three")
    << DumpFrames(backtrace);
  ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four")
    << DumpFrames(backtrace);
}

void VerifyLevelBacktrace(void*) {
  std::unique_ptr<Backtrace> backtrace(
      Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyLevelDump(backtrace.get());
}

bool ReadyMaxBacktrace(Backtrace* backtrace) {
  return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES);
}

void VerifyMaxDump(Backtrace* backtrace) {
  ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES))
    << DumpFrames(backtrace);
  // Verify that the last frame is our recursive call.
  ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name, "test_recursive_call")
    << DumpFrames(backtrace);
}

void VerifyMaxBacktrace(void*) {
  std::unique_ptr<Backtrace> backtrace(
      Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyMaxDump(backtrace.get());
}

void ThreadSetState(void* data) {
  thread_t* thread = reinterpret_cast<thread_t*>(data);
  android_atomic_acquire_store(1, &thread->state);
  volatile int i = 0;
  while (thread->state) {
    i++;
  }
}

void VerifyThreadTest(pid_t tid, void (*VerifyFunc)(Backtrace*)) {
  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), tid));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyFunc(backtrace.get());
}

bool WaitForNonZero(int32_t* value, uint64_t seconds) {
  uint64_t start = NanoTime();
  do {
    if (android_atomic_acquire_load(value)) {
      return true;
    }
  } while ((NanoTime() - start) < seconds * NS_PER_SEC);
  return false;
}

TEST(libbacktrace, local_no_unwind_frames) {
  // Verify that a local unwind does not include any frames within
  // libunwind or libbacktrace.
  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), getpid()));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  ASSERT_TRUE(backtrace->NumFrames() != 0);
  for (const auto& frame : *backtrace ) {
    if (BacktraceMap::IsValid(frame.map)) {
      const std::string name = basename(frame.map.name.c_str());
      ASSERT_TRUE(name != "libunwind.so" && name != "libbacktrace.so")
        << DumpFrames(backtrace.get());
    }
    break;
  }
}

TEST(libbacktrace, local_trace) {
  ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, nullptr), 0);
}

void VerifyIgnoreFrames(
    Backtrace* bt_all, Backtrace* bt_ign1,
    Backtrace* bt_ign2, const char* cur_proc) {
  EXPECT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1)
    << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 1 backtrace:\n" << DumpFrames(bt_ign1);
  EXPECT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2)
    << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 2 backtrace:\n" << DumpFrames(bt_ign2);

  // Check all of the frames are the same > the current frame.
  bool check = (cur_proc == nullptr);
  for (size_t i = 0; i < bt_ign2->NumFrames(); i++) {
    if (check) {
      EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc);
      EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp);
      EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size);

      EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc);
      EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp);
      EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size);
    }
    if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) {
      check = true;
    }
  }
}

void VerifyLevelIgnoreFrames(void*) {
  std::unique_ptr<Backtrace> all(
      Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(all.get() != nullptr);
  ASSERT_TRUE(all->Unwind(0));

  std::unique_ptr<Backtrace> ign1(
      Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(ign1.get() != nullptr);
  ASSERT_TRUE(ign1->Unwind(1));

  std::unique_ptr<Backtrace> ign2(
      Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(ign2.get() != nullptr);
  ASSERT_TRUE(ign2->Unwind(2));

  VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames");
}

TEST(libbacktrace, local_trace_ignore_frames) {
  ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, nullptr), 0);
}

TEST(libbacktrace, local_max_trace) {
  ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, nullptr), 0);
}

void VerifyProcTest(pid_t pid, pid_t tid, bool share_map,
                    bool (*ReadyFunc)(Backtrace*),
                    void (*VerifyFunc)(Backtrace*)) {
  pid_t ptrace_tid;
  if (tid < 0) {
    ptrace_tid = pid;
  } else {
    ptrace_tid = tid;
  }
  uint64_t start = NanoTime();
  bool verified = false;
  std::string last_dump;
  do {
    usleep(US_PER_MSEC);
    if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) {
      // Wait for the process to get to a stopping point.
      WaitForStop(ptrace_tid);

      std::unique_ptr<BacktraceMap> map;
      if (share_map) {
        map.reset(BacktraceMap::Create(pid));
      }
      std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, tid, map.get()));
      ASSERT_TRUE(backtrace.get() != nullptr);
      ASSERT_TRUE(backtrace->Unwind(0));
      if (ReadyFunc(backtrace.get())) {
        VerifyFunc(backtrace.get());
        verified = true;
      } else {
        last_dump = DumpFrames(backtrace.get());
      }

      ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0);
    }
    // If 5 seconds have passed, then we are done.
  } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC);
  ASSERT_TRUE(verified) << "Last backtrace:\n" << last_dump;
}

TEST(libbacktrace, ptrace_trace) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
    _exit(1);
  }
  VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyLevelDump);

  kill(pid, SIGKILL);
  int status;
  ASSERT_EQ(waitpid(pid, &status, 0), pid);
}

TEST(libbacktrace, ptrace_trace_shared_map) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
    _exit(1);
  }

  VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, true, ReadyLevelBacktrace, VerifyLevelDump);

  kill(pid, SIGKILL);
  int status;
  ASSERT_EQ(waitpid(pid, &status, 0), pid);
}

TEST(libbacktrace, ptrace_max_trace) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, nullptr, nullptr), 0);
    _exit(1);
  }
  VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyMaxBacktrace, VerifyMaxDump);

  kill(pid, SIGKILL);
  int status;
  ASSERT_EQ(waitpid(pid, &status, 0), pid);
}

void VerifyProcessIgnoreFrames(Backtrace* bt_all) {
  std::unique_ptr<Backtrace> ign1(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(ign1.get() != nullptr);
  ASSERT_TRUE(ign1->Unwind(1));

  std::unique_ptr<Backtrace> ign2(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(ign2.get() != nullptr);
  ASSERT_TRUE(ign2->Unwind(2));

  VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), nullptr);
}

TEST(libbacktrace, ptrace_ignore_frames) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
    _exit(1);
  }
  VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyProcessIgnoreFrames);

  kill(pid, SIGKILL);
  int status;
  ASSERT_EQ(waitpid(pid, &status, 0), pid);
}

// Create a process with multiple threads and dump all of the threads.
void* PtraceThreadLevelRun(void*) {
  EXPECT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
  return nullptr;
}

void GetThreads(pid_t pid, std::vector<pid_t>* threads) {
  // Get the list of tasks.
  char task_path[128];
  snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid);

  DIR* tasks_dir = opendir(task_path);
  ASSERT_TRUE(tasks_dir != nullptr);
  struct dirent* entry;
  while ((entry = readdir(tasks_dir)) != nullptr) {
    char* end;
    pid_t tid = strtoul(entry->d_name, &end, 10);
    if (*end == '\0') {
      threads->push_back(tid);
    }
  }
  closedir(tasks_dir);
}

TEST(libbacktrace, ptrace_threads) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) {
      pthread_attr_t attr;
      pthread_attr_init(&attr);
      pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

      pthread_t thread;
      ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, nullptr) == 0);
    }
    ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
    _exit(1);
  }

  // Check to see that all of the threads are running before unwinding.
  std::vector<pid_t> threads;
  uint64_t start = NanoTime();
  do {
    usleep(US_PER_MSEC);
    threads.clear();
    GetThreads(pid, &threads);
  } while ((threads.size() != NUM_PTRACE_THREADS + 1) &&
      ((NanoTime() - start) <= 5 * NS_PER_SEC));
  ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1));

  ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);
  WaitForStop(pid);
  for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) {
    // Skip the current forked process, we only care about the threads.
    if (pid == *it) {
      continue;
    }
    VerifyProcTest(pid, *it, false, ReadyLevelBacktrace, VerifyLevelDump);
  }
  ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);

  kill(pid, SIGKILL);
  int status;
  ASSERT_EQ(waitpid(pid, &status, 0), pid);
}

void VerifyLevelThread(void*) {
  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid()));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyLevelDump(backtrace.get());
}

TEST(libbacktrace, thread_current_level) {
  ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, nullptr), 0);
}

void VerifyMaxThread(void*) {
  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid()));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyMaxDump(backtrace.get());
}

TEST(libbacktrace, thread_current_max) {
  ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, nullptr), 0);
}

void* ThreadLevelRun(void* data) {
  thread_t* thread = reinterpret_cast<thread_t*>(data);

  thread->tid = gettid();
  EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0);
  return nullptr;
}

TEST(libbacktrace, thread_level_trace) {
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

  thread_t thread_data = { 0, 0, 0, nullptr };
  pthread_t thread;
  ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);

  // Wait up to 2 seconds for the tid to be set.
  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));

  // Make sure that the thread signal used is not visible when compiled for
  // the target.
#if !defined(__GLIBC__)
  ASSERT_LT(THREAD_SIGNAL, SIGRTMIN);
#endif

  // Save the current signal action and make sure it is restored afterwards.
  struct sigaction cur_action;
  ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &cur_action) == 0);

  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyLevelDump(backtrace.get());

  // Tell the thread to exit its infinite loop.
  android_atomic_acquire_store(0, &thread_data.state);

  // Verify that the old action was restored.
  struct sigaction new_action;
  ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &new_action) == 0);
  EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction);
  // The SA_RESTORER flag gets set behind our back, so a direct comparison
  // doesn't work unless we mask the value off. Mips doesn't have this
  // flag, so skip this on that platform.
#if defined(SA_RESTORER)
  cur_action.sa_flags &= ~SA_RESTORER;
  new_action.sa_flags &= ~SA_RESTORER;
#elif defined(__GLIBC__)
  // Our host compiler doesn't appear to define this flag for some reason.
  cur_action.sa_flags &= ~0x04000000;
  new_action.sa_flags &= ~0x04000000;
#endif
  EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags);
}

TEST(libbacktrace, thread_ignore_frames) {
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

  thread_t thread_data = { 0, 0, 0, nullptr };
  pthread_t thread;
  ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);

  // Wait up to 2 seconds for the tid to be set.
  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));

  std::unique_ptr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(all.get() != nullptr);
  ASSERT_TRUE(all->Unwind(0));

  std::unique_ptr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(ign1.get() != nullptr);
  ASSERT_TRUE(ign1->Unwind(1));

  std::unique_ptr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(ign2.get() != nullptr);
  ASSERT_TRUE(ign2->Unwind(2));

  VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), nullptr);

  // Tell the thread to exit its infinite loop.
  android_atomic_acquire_store(0, &thread_data.state);
}

void* ThreadMaxRun(void* data) {
  thread_t* thread = reinterpret_cast<thread_t*>(data);

  thread->tid = gettid();
  EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0);
  return nullptr;
}

TEST(libbacktrace, thread_max_trace) {
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

  thread_t thread_data = { 0, 0, 0, nullptr };
  pthread_t thread;
  ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0);

  // Wait for the tid to be set.
  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));

  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(backtrace.get() != nullptr);
  ASSERT_TRUE(backtrace->Unwind(0));

  VerifyMaxDump(backtrace.get());

  // Tell the thread to exit its infinite loop.
  android_atomic_acquire_store(0, &thread_data.state);
}

void* ThreadDump(void* data) {
  dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data);
  while (true) {
    if (android_atomic_acquire_load(dump->now)) {
      break;
    }
  }

  // The status of the actual unwind will be checked elsewhere.
  dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid);
  dump->backtrace->Unwind(0);

  android_atomic_acquire_store(1, &dump->done);

  return nullptr;
}

TEST(libbacktrace, thread_multiple_dump) {
  // Dump NUM_THREADS simultaneously.
  std::vector<thread_t> runners(NUM_THREADS);
  std::vector<dump_thread_t> dumpers(NUM_THREADS);

  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  for (size_t i = 0; i < NUM_THREADS; i++) {
    // Launch the runners, they will spin in hard loops doing nothing.
    runners[i].tid = 0;
    runners[i].state = 0;
    ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0);
  }

  // Wait for tids to be set.
  for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) {
    ASSERT_TRUE(WaitForNonZero(&it->state, 30));
  }

  // Start all of the dumpers at once, they will spin until they are signalled
  // to begin their dump run.
  int32_t dump_now = 0;
  for (size_t i = 0; i < NUM_THREADS; i++) {
    dumpers[i].thread.tid = runners[i].tid;
    dumpers[i].thread.state = 0;
    dumpers[i].done = 0;
    dumpers[i].now = &dump_now;

    ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0);
  }

  // Start all of the dumpers going at once.
  android_atomic_acquire_store(1, &dump_now);

  for (size_t i = 0; i < NUM_THREADS; i++) {
    ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30));

    // Tell the runner thread to exit its infinite loop.
    android_atomic_acquire_store(0, &runners[i].state);

    ASSERT_TRUE(dumpers[i].backtrace != nullptr);
    VerifyMaxDump(dumpers[i].backtrace);

    delete dumpers[i].backtrace;
    dumpers[i].backtrace = nullptr;
  }
}

TEST(libbacktrace, thread_multiple_dump_same_thread) {
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  thread_t runner;
  runner.tid = 0;
  runner.state = 0;
  ASSERT_TRUE(pthread_create(&runner.threadId, &attr, ThreadMaxRun, &runner) == 0);

  // Wait for tids to be set.
  ASSERT_TRUE(WaitForNonZero(&runner.state, 30));

  // Start all of the dumpers at once, they will spin until they are signalled
  // to begin their dump run.
  int32_t dump_now = 0;
  // Dump the same thread NUM_THREADS simultaneously.
  std::vector<dump_thread_t> dumpers(NUM_THREADS);
  for (size_t i = 0; i < NUM_THREADS; i++) {
    dumpers[i].thread.tid = runner.tid;
    dumpers[i].thread.state = 0;
    dumpers[i].done = 0;
    dumpers[i].now = &dump_now;

    ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0);
  }

  // Start all of the dumpers going at once.
  android_atomic_acquire_store(1, &dump_now);

  for (size_t i = 0; i < NUM_THREADS; i++) {
    ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30));

    ASSERT_TRUE(dumpers[i].backtrace != nullptr);
    VerifyMaxDump(dumpers[i].backtrace);

    delete dumpers[i].backtrace;
    dumpers[i].backtrace = nullptr;
  }

  // Tell the runner thread to exit its infinite loop.
  android_atomic_acquire_store(0, &runner.state);
}

// This test is for UnwindMaps that should share the same map cursor when
// multiple maps are created for the current process at the same time.
TEST(libbacktrace, simultaneous_maps) {
  BacktraceMap* map1 = BacktraceMap::Create(getpid());
  BacktraceMap* map2 = BacktraceMap::Create(getpid());
  BacktraceMap* map3 = BacktraceMap::Create(getpid());

  Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1);
  ASSERT_TRUE(back1 != nullptr);
  EXPECT_TRUE(back1->Unwind(0));
  delete back1;
  delete map1;

  Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2);
  ASSERT_TRUE(back2 != nullptr);
  EXPECT_TRUE(back2->Unwind(0));
  delete back2;
  delete map2;

  Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3);
  ASSERT_TRUE(back3 != nullptr);
  EXPECT_TRUE(back3->Unwind(0));
  delete back3;
  delete map3;
}

TEST(libbacktrace, fillin_erases) {
  BacktraceMap* back_map = BacktraceMap::Create(getpid());

  backtrace_map_t map;

  map.start = 1;
  map.end = 3;
  map.flags = 1;
  map.name = "Initialized";
  back_map->FillIn(0, &map);
  delete back_map;

  ASSERT_FALSE(BacktraceMap::IsValid(map));
  ASSERT_EQ(static_cast<uintptr_t>(0), map.start);
  ASSERT_EQ(static_cast<uintptr_t>(0), map.end);
  ASSERT_EQ(0, map.flags);
  ASSERT_EQ("", map.name);
}

TEST(libbacktrace, format_test) {
  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD));
  ASSERT_TRUE(backtrace.get() != nullptr);

  backtrace_frame_data_t frame;
  frame.num = 1;
  frame.pc = 2;
  frame.sp = 0;
  frame.stack_size = 0;
  frame.func_offset = 0;

  // Check no map set.
  frame.num = 1;
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 0000000000000002  <unknown>",
#else
  EXPECT_EQ("#01 pc 00000002  <unknown>",
#endif
            backtrace->FormatFrameData(&frame));

  // Check map name empty, but exists.
  frame.map.start = 1;
  frame.map.end = 1;
  frame.map.load_base = 0;
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 0000000000000001  <unknown>",
#else
  EXPECT_EQ("#01 pc 00000001  <unknown>",
#endif
            backtrace->FormatFrameData(&frame));


  // Check relative pc is set and map name is set.
  frame.pc = 0x12345679;
  frame.map.name = "MapFake";
  frame.map.start =  1;
  frame.map.end =  1;
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 0000000012345678  MapFake",
#else
  EXPECT_EQ("#01 pc 12345678  MapFake",
#endif
            backtrace->FormatFrameData(&frame));

  // Check func_name is set, but no func offset.
  frame.func_name = "ProcFake";
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 0000000012345678  MapFake (ProcFake)",
#else
  EXPECT_EQ("#01 pc 12345678  MapFake (ProcFake)",
#endif
            backtrace->FormatFrameData(&frame));

  // Check func_name is set, and func offset is non-zero.
  frame.func_offset = 645;
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 0000000012345678  MapFake (ProcFake+645)",
#else
  EXPECT_EQ("#01 pc 12345678  MapFake (ProcFake+645)",
#endif
            backtrace->FormatFrameData(&frame));

  // Check func_name is set, func offset is non-zero, and load_base is non-zero.
  frame.func_offset = 645;
  frame.map.load_base = 100;
#if defined(__LP64__)
  EXPECT_EQ("#01 pc 00000000123456dc  MapFake (ProcFake+645)",
#else
  EXPECT_EQ("#01 pc 123456dc  MapFake (ProcFake+645)",
#endif
            backtrace->FormatFrameData(&frame));
}

struct map_test_t {
  uintptr_t start;
  uintptr_t end;
};

bool map_sort(map_test_t i, map_test_t j) {
  return i.start < j.start;
}

void VerifyMap(pid_t pid) {
  char buffer[4096];
  snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid);

  FILE* map_file = fopen(buffer, "r");
  ASSERT_TRUE(map_file != nullptr);
  std::vector<map_test_t> test_maps;
  while (fgets(buffer, sizeof(buffer), map_file)) {
    map_test_t map;
    ASSERT_EQ(2, sscanf(buffer, "%" SCNxPTR "-%" SCNxPTR " ", &map.start, &map.end));
    test_maps.push_back(map);
  }
  fclose(map_file);
  std::sort(test_maps.begin(), test_maps.end(), map_sort);

  std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid));

  // Basic test that verifies that the map is in the expected order.
  std::vector<map_test_t>::const_iterator test_it = test_maps.begin();
  for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) {
    ASSERT_TRUE(test_it != test_maps.end());
    ASSERT_EQ(test_it->start, it->start);
    ASSERT_EQ(test_it->end, it->end);
    ++test_it;
  }
  ASSERT_TRUE(test_it == test_maps.end());
}

TEST(libbacktrace, verify_map_remote) {
  pid_t pid;

  if ((pid = fork()) == 0) {
    while (true) {
    }
    _exit(0);
  }
  ASSERT_LT(0, pid);

  ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);

  // Wait for the process to get to a stopping point.
  WaitForStop(pid);

  // The maps should match exactly since the forked process has been paused.
  VerifyMap(pid);

  ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);

  kill(pid, SIGKILL);
  ASSERT_EQ(waitpid(pid, nullptr, 0), pid);
}

void InitMemory(uint8_t* memory, size_t bytes) {
  for (size_t i = 0; i < bytes; i++) {
    memory[i] = i;
    if (memory[i] == '\0') {
      // Don't use '\0' in our data so we can verify that an overread doesn't
      // occur by using a '\0' as the character after the read data.
      memory[i] = 23;
    }
  }
}

void* ThreadReadTest(void* data) {
  thread_t* thread_data = reinterpret_cast<thread_t*>(data);

  thread_data->tid = gettid();

  // Create two map pages.
  // Mark the second page as not-readable.
  size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));
  uint8_t* memory;
  if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) {
    return reinterpret_cast<void*>(-1);
  }

  if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
    return reinterpret_cast<void*>(-1);
  }

  // Set up a simple pattern in memory.
  InitMemory(memory, pagesize);

  thread_data->data = memory;

  // Tell the caller it's okay to start reading memory.
  android_atomic_acquire_store(1, &thread_data->state);

  // Loop waiting for the caller to finish reading the memory.
  while (thread_data->state) {
  }

  // Re-enable read-write on the page so that we don't crash if we try
  // and access data on this page when freeing the memory.
  if (mprotect(&memory[pagesize], pagesize, PROT_READ | PROT_WRITE) != 0) {
    return reinterpret_cast<void*>(-1);
  }
  free(memory);

  android_atomic_acquire_store(1, &thread_data->state);

  return nullptr;
}

void RunReadTest(Backtrace* backtrace, uintptr_t read_addr) {
  size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));

  // Create a page of data to use to do quick compares.
  uint8_t* expected = new uint8_t[pagesize];
  InitMemory(expected, pagesize);

  uint8_t* data = new uint8_t[2*pagesize];
  // Verify that we can only read one page worth of data.
  size_t bytes_read = backtrace->Read(read_addr, data, 2 * pagesize);
  ASSERT_EQ(pagesize, bytes_read);
  ASSERT_TRUE(memcmp(data, expected, pagesize) == 0);

  // Verify unaligned reads.
  for (size_t i = 1; i < sizeof(word_t); i++) {
    bytes_read = backtrace->Read(read_addr + i, data, 2 * sizeof(word_t));
    ASSERT_EQ(2 * sizeof(word_t), bytes_read);
    ASSERT_TRUE(memcmp(data, &expected[i], 2 * sizeof(word_t)) == 0)
        << "Offset at " << i << " failed";
  }

  // Verify small unaligned reads.
  for (size_t i = 1; i < sizeof(word_t); i++) {
    for (size_t j = 1; j < sizeof(word_t); j++) {
      // Set one byte past what we expect to read, to guarantee we don't overread.
      data[j] = '\0';
      bytes_read = backtrace->Read(read_addr + i, data, j);
      ASSERT_EQ(j, bytes_read);
      ASSERT_TRUE(memcmp(data, &expected[i], j) == 0)
          << "Offset at " << i << " length " << j << " miscompared";
      ASSERT_EQ('\0', data[j])
          << "Offset at " << i << " length " << j << " wrote too much data";
    }
  }
  delete data;
  delete expected;
}

TEST(libbacktrace, thread_read) {
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  pthread_t thread;
  thread_t thread_data = { 0, 0, 0, nullptr };
  ASSERT_TRUE(pthread_create(&thread, &attr, ThreadReadTest, &thread_data) == 0);

  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10));

  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
  ASSERT_TRUE(backtrace.get() != nullptr);

  RunReadTest(backtrace.get(), reinterpret_cast<uintptr_t>(thread_data.data));

  android_atomic_acquire_store(0, &thread_data.state);

  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10));
}

volatile uintptr_t g_ready = 0;
volatile uintptr_t g_addr = 0;

void ForkedReadTest() {
  // Create two map pages.
  size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));
  uint8_t* memory;
  if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) {
    perror("Failed to allocate memory\n");
    exit(1);
  }

  // Mark the second page as not-readable.
  if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
    perror("Failed to mprotect memory\n");
    exit(1);
  }

  // Set up a simple pattern in memory.
  InitMemory(memory, pagesize);

  g_addr = reinterpret_cast<uintptr_t>(memory);
  g_ready = 1;

  while (1) {
    usleep(US_PER_MSEC);
  }
}

TEST(libbacktrace, process_read) {
  pid_t pid;
  if ((pid = fork()) == 0) {
    ForkedReadTest();
    exit(0);
  }
  ASSERT_NE(-1, pid);

  bool test_executed = false;
  uint64_t start = NanoTime();
  while (1) {
    if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) {
      WaitForStop(pid);

      std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid));
      ASSERT_TRUE(backtrace.get() != nullptr);

      uintptr_t read_addr;
      size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready),
                                          reinterpret_cast<uint8_t*>(&read_addr),
                                          sizeof(uintptr_t));
      ASSERT_EQ(sizeof(uintptr_t), bytes_read);
      if (read_addr) {
        // The forked process is ready to be read.
        bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr),
                                     reinterpret_cast<uint8_t*>(&read_addr),
                                     sizeof(uintptr_t));
        ASSERT_EQ(sizeof(uintptr_t), bytes_read);

        RunReadTest(backtrace.get(), read_addr);

        test_executed = true;
        break;
      }
      ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
    }
    if ((NanoTime() - start) > 5 * NS_PER_SEC) {
      break;
    }
    usleep(US_PER_MSEC);
  }
  kill(pid, SIGKILL);
  ASSERT_EQ(waitpid(pid, nullptr, 0), pid);

  ASSERT_TRUE(test_executed);
}

#if defined(ENABLE_PSS_TESTS)
#include "GetPss.h"

#define MAX_LEAK_BYTES 32*1024UL

void CheckForLeak(pid_t pid, pid_t tid) {
  // Do a few runs to get the PSS stable.
  for (size_t i = 0; i < 100; i++) {
    Backtrace* backtrace = Backtrace::Create(pid, tid);
    ASSERT_TRUE(backtrace != nullptr);
    ASSERT_TRUE(backtrace->Unwind(0));
    delete backtrace;
  }
  size_t stable_pss = GetPssBytes();
  ASSERT_TRUE(stable_pss != 0);

  // Loop enough that even a small leak should be detectable.
  for (size_t i = 0; i < 4096; i++) {
    Backtrace* backtrace = Backtrace::Create(pid, tid);
    ASSERT_TRUE(backtrace != nullptr);
    ASSERT_TRUE(backtrace->Unwind(0));
    delete backtrace;
  }
  size_t new_pss = GetPssBytes();
  ASSERT_TRUE(new_pss != 0);
  size_t abs_diff = (new_pss > stable_pss) ? new_pss - stable_pss : stable_pss - new_pss;
  // As long as the new pss is within a certain amount, consider everything okay.
  ASSERT_LE(abs_diff, MAX_LEAK_BYTES);
}

TEST(libbacktrace, check_for_leak_local) {
  CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD);
}

TEST(libbacktrace, check_for_leak_local_thread) {
  thread_t thread_data = { 0, 0, 0, nullptr };
  pthread_t thread;
  ASSERT_TRUE(pthread_create(&thread, nullptr, ThreadLevelRun, &thread_data) == 0);

  // Wait up to 2 seconds for the tid to be set.
  ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));

  CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid);

  // Tell the thread to exit its infinite loop.
  android_atomic_acquire_store(0, &thread_data.state);

  ASSERT_TRUE(pthread_join(thread, nullptr) == 0);
}

TEST(libbacktrace, check_for_leak_remote) {
  pid_t pid;

  if ((pid = fork()) == 0) {
    while (true) {
    }
    _exit(0);
  }
  ASSERT_LT(0, pid);

  ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);

  // Wait for the process to get to a stopping point.
  WaitForStop(pid);

  CheckForLeak(pid, BACKTRACE_CURRENT_THREAD);

  ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);

  kill(pid, SIGKILL);
  ASSERT_EQ(waitpid(pid, nullptr, 0), pid);
}
#endif