1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Backtracing functions for ARM.
*
* This implementation uses the exception unwinding tables provided by
* the compiler to unwind call frames. Refer to the ARM Exception Handling ABI
* documentation (EHABI) for more details about what's going on here.
*
* An ELF binary may contain an EXIDX section that provides an index to
* the exception handling table of each function, sorted by program
* counter address.
*
* This implementation also supports unwinding other processes via ptrace().
* In that case, the EXIDX section is found by reading the ELF section table
* structures using ptrace().
*
* Because the tables are used for exception handling, it can happen that
* a given function will not have an exception handling table. In particular,
* exceptions are assumed to only ever be thrown at call sites. Therefore,
* by definition leaf functions will not have exception handling tables.
* This may make unwinding impossible in some cases although we can still get
* some idea of the call stack by examining the PC and LR registers.
*
* As we are only interested in backtrace information, we do not need
* to perform all of the work of unwinding such as restoring register
* state and running cleanup functions. Unwinding is performed virtually on
* an abstract machine context consisting of just the ARM core registers.
* Furthermore, we do not run generic "personality functions" because
* we may not be in a position to execute arbitrary code, especially if
* we are running in a signal handler or using ptrace()!
*/
#define LOG_TAG "Corkscrew"
//#define LOG_NDEBUG 0
#include "../backtrace-arch.h"
#include "../backtrace-helper.h"
#include "../ptrace-arch.h"
#include <corkscrew/ptrace.h>
#include <stdlib.h>
#include <signal.h>
#include <stdbool.h>
#include <limits.h>
#include <errno.h>
#include <sys/ptrace.h>
#include <elf.h>
#include <cutils/log.h>
#include <ucontext.h>
/* Unwind state. */
typedef struct {
uint32_t gregs[16];
} unwind_state_t;
static const int R_SP = 13;
static const int R_LR = 14;
static const int R_PC = 15;
/* Special EXIDX value that indicates that a frame cannot be unwound. */
static const uint32_t EXIDX_CANTUNWIND = 1;
/* Get the EXIDX section start and size for the module that contains a
* given program counter address.
*
* When the executable is statically linked, the EXIDX section can be
* accessed by querying the values of the __exidx_start and __exidx_end
* symbols.
*
* When the executable is dynamically linked, the linker exports a function
* called dl_unwind_find_exidx that obtains the EXIDX section for a given
* absolute program counter address.
*
* Bionic exports a helpful function called __gnu_Unwind_Find_exidx that
* handles both cases, so we use that here.
*/
typedef long unsigned int* _Unwind_Ptr;
extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount);
static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) {
int count;
uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count);
*out_exidx_size = count;
return start;
}
/* Transforms a 31-bit place-relative offset to an absolute address.
* We assume the most significant bit is clear. */
static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) {
return place + (((int32_t)(prel_offset << 1)) >> 1);
}
static uintptr_t get_exception_handler(const memory_t* memory,
const map_info_t* map_info_list, uintptr_t pc) {
if (!pc) {
ALOGV("get_exception_handler: pc is zero, no handler");
return 0;
}
uintptr_t exidx_start;
size_t exidx_size;
const map_info_t* mi;
if (memory->tid < 0) {
mi = NULL;
exidx_start = find_exidx(pc, &exidx_size);
} else {
mi = find_map_info(map_info_list, pc);
if (mi && mi->data) {
const map_info_data_t* data = (const map_info_data_t*)mi->data;
exidx_start = data->exidx_start;
exidx_size = data->exidx_size;
} else {
exidx_start = 0;
exidx_size = 0;
}
}
uintptr_t handler = 0;
int32_t handler_index = -1;
if (exidx_start) {
uint32_t low = 0;
uint32_t high = exidx_size;
while (low < high) {
uint32_t index = (low + high) / 2;
uintptr_t entry = exidx_start + index * 8;
uint32_t entry_prel_pc;
ALOGV("XXX low=%u, high=%u, index=%u", low, high, index);
if (!try_get_word(memory, entry, &entry_prel_pc)) {
break;
}
uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc);
ALOGV("XXX entry_pc=0x%08x", entry_pc);
if (pc < entry_pc) {
high = index;
continue;
}
if (index + 1 < exidx_size) {
uintptr_t next_entry = entry + 8;
uint32_t next_entry_prel_pc;
if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) {
break;
}
uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc);
ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc);
if (pc >= next_entry_pc) {
low = index + 1;
continue;
}
}
uintptr_t entry_handler_ptr = entry + 4;
uint32_t entry_handler;
if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) {
break;
}
if (entry_handler & (1L << 31)) {
handler = entry_handler_ptr; // in-place handler data
} else if (entry_handler != EXIDX_CANTUNWIND) {
handler = prel_to_absolute(entry_handler_ptr, entry_handler);
}
handler_index = index;
break;
}
}
if (mi) {
ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index);
} else {
ALOGV("get_exception_handler: pc=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, exidx_start, exidx_size, handler, handler_index);
}
return handler;
}
typedef struct {
uintptr_t ptr;
uint32_t word;
} byte_stream_t;
static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) {
uint8_t result;
switch (stream->ptr & 3) {
case 0:
if (!try_get_word(memory, stream->ptr, &stream->word)) {
*out_value = 0;
return false;
}
*out_value = stream->word >> 24;
break;
case 1:
*out_value = stream->word >> 16;
break;
case 2:
*out_value = stream->word >> 8;
break;
default:
*out_value = stream->word;
break;
}
ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value);
stream->ptr += 1;
return true;
}
static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) {
ALOGV("set_reg: reg=%d, value=0x%08x", reg, value);
state->gregs[reg] = value;
}
static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) {
uint32_t sp = state->gregs[R_SP];
bool sp_updated = false;
for (int i = 0; i < 16; i++) {
if (mask & (1 << i)) {
uint32_t value;
if (!try_get_word(memory, sp, &value)) {
return false;
}
if (i == R_SP) {
sp_updated = true;
}
set_reg(state, i, value);
sp += 4;
}
}
if (!sp_updated) {
set_reg(state, R_SP, sp);
}
return true;
}
/* Executes a built-in personality routine as defined in the EHABI.
* Returns true if unwinding should continue.
*
* The data for the built-in personality routines consists of a sequence
* of unwinding instructions, followed by a sequence of scope descriptors,
* each of which has a length and offset encoded using 16-bit or 32-bit
* values.
*
* We only care about the unwinding instructions. They specify the
* operations of an abstract machine whose purpose is to transform the
* virtual register state (including the stack pointer) such that
* the call frame is unwound and the PC register points to the call site.
*/
static bool execute_personality_routine(const memory_t* memory,
unwind_state_t* state, byte_stream_t* stream, int pr_index) {
size_t size;
switch (pr_index) {
case 0: // Personality routine #0, short frame, descriptors have 16-bit scope.
size = 3;
break;
case 1: // Personality routine #1, long frame, descriptors have 16-bit scope.
case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope.
uint8_t size_byte;
if (!try_next_byte(memory, stream, &size_byte)) {
return false;
}
size = (uint32_t)size_byte * sizeof(uint32_t) + 2;
break;
}
default: // Unknown personality routine. Stop here.
return false;
}
bool pc_was_set = false;
while (size--) {
uint8_t op;
if (!try_next_byte(memory, stream, &op)) {
return false;
}
if ((op & 0xc0) == 0x00) {
// "vsp = vsp + (xxxxxx << 2) + 4"
set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4);
} else if ((op & 0xc0) == 0x40) {
// "vsp = vsp - (xxxxxx << 2) - 4"
set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4);
} else if ((op & 0xf0) == 0x80) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4);
if (mask) {
// "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}"
if (!try_pop_registers(memory, state, mask)) {
return false;
}
if (mask & (1 << R_PC)) {
pc_was_set = true;
}
} else {
// "Refuse to unwind"
return false;
}
} else if ((op & 0xf0) == 0x90) {
if (op != 0x9d && op != 0x9f) {
// "Set vsp = r[nnnn]"
set_reg(state, R_SP, state->gregs[op & 0x0f]);
} else {
// "Reserved as prefix for ARM register to register moves"
// "Reserved as prefix for Intel Wireless MMX register to register moves"
return false;
}
} else if ((op & 0xf8) == 0xa0) {
// "Pop r4-r[4+nnn]"
uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if ((op & 0xf8) == 0xa8) {
// "Pop r4-r[4+nnn], r14"
uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if (op == 0xb0) {
// "Finish"
break;
} else if (op == 0xb1) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Pop integer registers under mask {r3, r2, r1, r0}"
if (!try_pop_registers(memory, state, op2)) {
return false;
}
} else {
// "Spare"
return false;
}
} else if (op == 0xb2) {
// "vsp = vsp + 0x204 + (uleb128 << 2)"
uint32_t value = 0;
uint32_t shift = 0;
uint8_t op2;
do {
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
value |= (op2 & 0x7f) << shift;
shift += 7;
} while (op2 & 0x80);
set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204);
} else if (op == 0xb3) {
// "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12);
} else if ((op & 0xf8) == 0xb8) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12);
} else if ((op & 0xf8) == 0xc0) {
// "Intel Wireless MMX pop wR[10]-wR[10+nnn]"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else if (op == 0xc6) {
// "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc7) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}"
set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4);
} else {
// "Spare"
return false;
}
} else if (op == 0xc8) {
// "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc]
// saved (as if) by FSTMFD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc9) {
// "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if ((op == 0xf8) == 0xd0) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else {
// "Spare"
return false;
}
}
if (!pc_was_set) {
set_reg(state, R_PC, state->gregs[R_LR]);
}
return true;
}
static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) {
uint32_t word;
if (try_get_word(memory, pc & ~2, &word)) {
*out_value = pc & 2 ? word >> 16 : word & 0xffff;
return true;
}
return false;
}
uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) {
if (pc & 1) {
/* Thumb mode - need to check whether the bl(x) has long offset or not.
* Examples:
*
* arm blx in the middle of thumb:
* 187ae: 2300 movs r3, #0
* 187b0: f7fe ee1c blx 173ec
* 187b4: 2c00 cmp r4, #0
*
* arm bl in the middle of thumb:
* 187d8: 1c20 adds r0, r4, #0
* 187da: f136 fd15 bl 14f208
* 187de: 2800 cmp r0, #0
*
* pure thumb:
* 18894: 189b adds r3, r3, r2
* 18896: 4798 blx r3
* 18898: b001 add sp, #4
*/
uint16_t prev1, prev2;
if (try_get_half_word(memory, pc - 5, &prev1)
&& ((prev1 & 0xf000) == 0xf000)
&& try_get_half_word(memory, pc - 3, &prev2)
&& ((prev2 & 0xe000) == 0xe000)) {
pc -= 4; // long offset
} else {
pc -= 2;
}
} else {
/* ARM mode, all instructions are 32bit. Yay! */
pc -= 4;
}
return pc;
}
static ssize_t unwind_backtrace_common(const memory_t* memory,
const map_info_t* map_info_list,
unwind_state_t* state, backtrace_frame_t* backtrace,
size_t ignore_depth, size_t max_depth) {
size_t ignored_frames = 0;
size_t returned_frames = 0;
for (size_t index = 0; returned_frames < max_depth; index++) {
uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC])
: state->gregs[R_PC];
backtrace_frame_t* frame = add_backtrace_entry(pc,
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
if (frame) {
frame->stack_top = state->gregs[R_SP];
}
uintptr_t handler = get_exception_handler(memory, map_info_list, pc);
if (!handler) {
// If there is no handler for the PC and this is the first frame,
// then the program may have branched to an invalid address.
// Try starting from the LR instead, otherwise stop unwinding.
if (index == 0 && state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]) {
set_reg(state, R_PC, state->gregs[R_LR]);
continue;
} else {
break;
}
}
byte_stream_t stream;
stream.ptr = handler;
uint8_t pr;
if (!try_next_byte(memory, &stream, &pr)) {
break;
}
if ((pr & 0xf0) != 0x80) {
// The first word is a place-relative pointer to a generic personality
// routine function. We don't support invoking such functions, so stop here.
break;
}
// The first byte indicates the personality routine to execute.
// Following bytes provide instructions to the personality routine.
if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) {
break;
}
if (frame && state->gregs[R_SP] > frame->stack_top) {
frame->stack_size = state->gregs[R_SP] - frame->stack_top;
}
if (!state->gregs[R_PC]) {
break;
}
}
// Ran out of frames that we could unwind using handlers.
// Add a final entry for the LR if it looks sane and call it good.
if (returned_frames < max_depth
&& state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]
&& is_executable_map(map_info_list, state->gregs[R_LR])) {
// We don't know where the stack for this extra frame starts so we
// don't return any stack information for it.
add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]),
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
}
return returned_frames;
}
ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext,
const map_info_t* map_info_list,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
const ucontext_t* uc = (const ucontext_t*)sigcontext;
unwind_state_t state;
state.gregs[0] = uc->uc_mcontext.arm_r0;
state.gregs[1] = uc->uc_mcontext.arm_r1;
state.gregs[2] = uc->uc_mcontext.arm_r2;
state.gregs[3] = uc->uc_mcontext.arm_r3;
state.gregs[4] = uc->uc_mcontext.arm_r4;
state.gregs[5] = uc->uc_mcontext.arm_r5;
state.gregs[6] = uc->uc_mcontext.arm_r6;
state.gregs[7] = uc->uc_mcontext.arm_r7;
state.gregs[8] = uc->uc_mcontext.arm_r8;
state.gregs[9] = uc->uc_mcontext.arm_r9;
state.gregs[10] = uc->uc_mcontext.arm_r10;
state.gregs[11] = uc->uc_mcontext.arm_fp;
state.gregs[12] = uc->uc_mcontext.arm_ip;
state.gregs[13] = uc->uc_mcontext.arm_sp;
state.gregs[14] = uc->uc_mcontext.arm_lr;
state.gregs[15] = uc->uc_mcontext.arm_pc;
memory_t memory;
init_memory(&memory, map_info_list);
return unwind_backtrace_common(&memory, map_info_list, &state,
backtrace, ignore_depth, max_depth);
}
ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
struct pt_regs regs;
if (ptrace(PTRACE_GETREGS, tid, 0, ®s)) {
return -1;
}
unwind_state_t state;
for (int i = 0; i < 16; i++) {
state.gregs[i] = regs.uregs[i];
}
memory_t memory;
init_memory_ptrace(&memory, tid);
return unwind_backtrace_common(&memory, context->map_info_list, &state,
backtrace, ignore_depth, max_depth);
}
|