summaryrefslogtreecommitdiffstats
path: root/libmincrypt/p256.c
blob: 555a07a80c6177a1fd4371eda9c2fea31f564bb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * Copyright 2013 The Android Open Source Project
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Google Inc. nor the names of its contributors may
 *       be used to endorse or promote products derived from this software
 *       without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// This is an implementation of the P256 elliptic curve group. It's written to
// be portable 32-bit, although it's still constant-time.
//
// WARNING: Implementing these functions in a constant-time manner is far from
//          obvious. Be careful when touching this code.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.

#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>

#include "mincrypt/p256.h"

const p256_int SECP256r1_n =  // curve order
  {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}};

const p256_int SECP256r1_p =  // curve field size
  {{-1, -1, -1, 0, 0, 0, 1, -1 }};

const p256_int SECP256r1_b =  // curve b
  {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0,
    0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}};

void p256_init(p256_int* a) {
  memset(a, 0, sizeof(*a));
}

void p256_clear(p256_int* a) { p256_init(a); }

int p256_get_bit(const p256_int* scalar, int bit) {
  return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
              >> (bit & (P256_BITSPERDIGIT - 1))) & 1;
}

int p256_is_zero(const p256_int* a) {
  int i, result = 0;
  for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
  return !result;
}

// top, c[] += a[] * b
// Returns new top
static p256_digit mulAdd(const p256_int* a,
                         p256_digit b,
                         p256_digit top,
                         p256_digit* c) {
  int i;
  p256_ddigit carry = 0;

  for (i = 0; i < P256_NDIGITS; ++i) {
    carry += *c;
    carry += (p256_ddigit)P256_DIGIT(a, i) * b;
    *c++ = (p256_digit)carry;
    carry >>= P256_BITSPERDIGIT;
  }
  return top + (p256_digit)carry;
}

// top, c[] -= top_a, a[]
static p256_digit subTop(p256_digit top_a,
                         const p256_digit* a,
                         p256_digit top_c,
                         p256_digit* c) {
  int i;
  p256_sddigit borrow = 0;

  for (i = 0; i < P256_NDIGITS; ++i) {
    borrow += *c;
    borrow -= *a++;
    *c++ = (p256_digit)borrow;
    borrow >>= P256_BITSPERDIGIT;
  }
  borrow += top_c;
  borrow -= top_a;
  top_c = (p256_digit)borrow;
  assert((borrow >> P256_BITSPERDIGIT) == 0);
  return top_c;
}

// top, c[] -= MOD[] & mask (0 or -1)
// returns new top.
static p256_digit subM(const p256_int* MOD,
                       p256_digit top,
                       p256_digit* c,
                       p256_digit mask) {
  int i;
  p256_sddigit borrow = 0;
  for (i = 0; i < P256_NDIGITS; ++i) {
    borrow += *c;
    borrow -= P256_DIGIT(MOD, i) & mask;
    *c++ = (p256_digit)borrow;
    borrow >>= P256_BITSPERDIGIT;
  }
  return top + (p256_digit)borrow;
}

// top, c[] += MOD[] & mask (0 or -1)
// returns new top.
static p256_digit addM(const p256_int* MOD,
                       p256_digit top,
                       p256_digit* c,
                       p256_digit mask) {
  int i;
  p256_ddigit carry = 0;
  for (i = 0; i < P256_NDIGITS; ++i) {
    carry += *c;
    carry += P256_DIGIT(MOD, i) & mask;
    *c++ = (p256_digit)carry;
    carry >>= P256_BITSPERDIGIT;
  }
  return top + (p256_digit)carry;
}

// c = a * b mod MOD. c can be a and/or b.
void p256_modmul(const p256_int* MOD,
                 const p256_int* a,
                 const p256_digit top_b,
                 const p256_int* b,
                 p256_int* c) {
  p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
  p256_digit top = 0;
  int i;

  // Multiply/add into tmp.
  for (i = 0; i < P256_NDIGITS; ++i) {
    if (i) tmp[i + P256_NDIGITS - 1] = top;
    top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
  }

  // Multiply/add top digit
  tmp[i + P256_NDIGITS - 1] = top;
  top = mulAdd(a, top_b, 0, tmp + i);

  // Reduce tmp, digit by digit.
  for (; i >= 0; --i) {
    p256_digit reducer[P256_NDIGITS] = { 0 };
    p256_digit top_reducer;

    // top can be any value at this point.
    // Guestimate reducer as top * MOD, since msw of MOD is -1.
    top_reducer = mulAdd(MOD, top, 0, reducer);

    // Subtract reducer from top | tmp.
    top = subTop(top_reducer, reducer, top, tmp + i);

    // top is now either 0 or 1. Make it 0, fixed-timing.
    assert(top <= 1);

    top = subM(MOD, top, tmp + i, ~(top - 1));

    assert(top == 0);

    // We have now reduced the top digit off tmp. Fetch new top digit.
    top = tmp[i + P256_NDIGITS - 1];
  }

  // tmp might still be larger than MOD, yet same bit length.
  // Make sure it is less, fixed-timing.
  addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));

  memcpy(c, tmp, P256_NBYTES);
}
int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; }
int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }

p256_digit p256_shl(const p256_int* a, int n, p256_int* b) {
  int i;
  p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);

  n %= P256_BITSPERDIGIT;
  for (i = P256_NDIGITS - 1; i > 0; --i) {
    p256_digit accu = (P256_DIGIT(a, i) << n);
    accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
    P256_DIGIT(b, i) = accu;
  }
  P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);

  top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT);

  return top;
}

void p256_shr(const p256_int* a, int n, p256_int* b) {
  int i;

  n %= P256_BITSPERDIGIT;
  for (i = 0; i < P256_NDIGITS - 1; ++i) {
    p256_digit accu = (P256_DIGIT(a, i) >> n);
    accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
    P256_DIGIT(b, i) = accu;
  }
  P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
}

static void p256_shr1(const p256_int* a, int highbit, p256_int* b) {
  int i;

  for (i = 0; i < P256_NDIGITS - 1; ++i) {
    p256_digit accu = (P256_DIGIT(a, i) >> 1);
    accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
    P256_DIGIT(b, i) = accu;
  }
  P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
      (highbit << (P256_BITSPERDIGIT - 1));
}

// Return -1, 0, 1 for a < b, a == b or a > b respectively.
int p256_cmp(const p256_int* a, const p256_int* b) {
  int i;
  p256_sddigit borrow = 0;
  p256_digit notzero = 0;

  for (i = 0; i < P256_NDIGITS; ++i) {
    borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
    // Track whether any result digit is ever not zero.
    // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
    notzero |= !!((p256_digit)borrow);
    borrow >>= P256_BITSPERDIGIT;
  }
  return (int)borrow | notzero;
}

// c = a - b. Returns borrow: 0 or -1.
int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) {
  int i;
  p256_sddigit borrow = 0;

  for (i = 0; i < P256_NDIGITS; ++i) {
    borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
    if (c) P256_DIGIT(c, i) = (p256_digit)borrow;
    borrow >>= P256_BITSPERDIGIT;
  }
  return (int)borrow;
}

// c = a + b. Returns carry: 0 or 1.
int p256_add(const p256_int* a, const p256_int* b, p256_int* c) {
  int i;
  p256_ddigit carry = 0;

  for (i = 0; i < P256_NDIGITS; ++i) {
    carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
    if (c) P256_DIGIT(c, i) = (p256_digit)carry;
    carry >>= P256_BITSPERDIGIT;
  }
  return (int)carry;
}

// b = a + d. Returns carry, 0 or 1.
int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) {
  int i;
  p256_ddigit carry = d;

  for (i = 0; i < P256_NDIGITS; ++i) {
    carry += (p256_ddigit)P256_DIGIT(a, i);
    if (b) P256_DIGIT(b, i) = (p256_digit)carry;
    carry >>= P256_BITSPERDIGIT;
  }
  return (int)carry;
}

// b = 1/a mod MOD, binary euclid.
void p256_modinv_vartime(const p256_int* MOD,
                         const p256_int* a,
                         p256_int* b) {
  p256_int R = P256_ZERO;
  p256_int S = P256_ONE;
  p256_int U = *MOD;
  p256_int V = *a;

  for (;;) {
    if (p256_is_even(&U)) {
      p256_shr1(&U, 0, &U);
      if (p256_is_even(&R)) {
        p256_shr1(&R, 0, &R);
      } else {
        // R = (R+MOD)/2
        p256_shr1(&R, p256_add(&R, MOD, &R), &R);
      }
    } else if (p256_is_even(&V)) {
      p256_shr1(&V, 0, &V);
      if (p256_is_even(&S)) {
        p256_shr1(&S, 0, &S);
      } else {
        // S = (S+MOD)/2
        p256_shr1(&S, p256_add(&S, MOD, &S) , &S);
      }
    } else {  // U,V both odd.
      if (!p256_sub(&V, &U, NULL)) {
        p256_sub(&V, &U, &V);
        if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S);
        if (p256_is_zero(&V)) break;  // done.
      } else {
        p256_sub(&U, &V, &U);
        if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R);
      }
    }
  }

  p256_mod(MOD, &R, b);
}

void p256_mod(const p256_int* MOD,
              const p256_int* in,
              p256_int* out) {
  if (out != in) *out = *in;
  addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
}

// Verify y^2 == x^3 - 3x + b mod p
// and 0 < x < p and 0 < y < p
int p256_is_valid_point(const p256_int* x, const p256_int* y) {
  p256_int y2, x3;

  if (p256_cmp(&SECP256r1_p, x) <= 0 ||
      p256_cmp(&SECP256r1_p, y) <= 0 ||
      p256_is_zero(x) ||
      p256_is_zero(y)) return 0;

  p256_modmul(&SECP256r1_p, y, 0, y, &y2);  // y^2

  p256_modmul(&SECP256r1_p, x, 0, x, &x3);  // x^2
  p256_modmul(&SECP256r1_p, x, 0, &x3, &x3);  // x^3
  if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - x
  if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 2x
  if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 3x
  if (p256_add(&x3, &SECP256r1_b, &x3))  // x^3 - 3x + b
    p256_sub(&x3, &SECP256r1_p, &x3);

  return p256_cmp(&y2, &x3) == 0;
}

void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) {
  int i;
  const uint8_t* p = &src[0];

  for (i = P256_NDIGITS - 1; i >= 0; --i) {
    P256_DIGIT(dst, i) =
        (p[0] << 24) |
        (p[1] << 16) |
        (p[2] << 8) |
        p[3];
    p += 4;
  }
}