1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Alexander V. Astapchuk
*/
#include <stdio.h>
#include <assert.h>
#include <limits.h>
extern const RegName map_of_regno_2_regname[];
extern const OpndSize map_of_EncoderOpndSize_2_RealOpndSize[];
extern const Mnemonic map_of_alu_opcode_2_mnemonic[];
extern const Mnemonic map_of_shift_opcode_2_mnemonic[];
// S_ stands for 'Signed'
extern const Mnemonic S_map_of_condition_code_2_branch_mnemonic[];
// U_ stands for 'Unsigned'
extern const Mnemonic U_map_of_condition_code_2_branch_mnemonic[];
inline static RegName map_reg(Reg_No r) {
assert(r >= 0 && r <= n_reg);
return map_of_regno_2_regname[r];
}
inline static OpndSize map_size(Opnd_Size o_size) {
assert(o_size >= 0 && o_size <= n_size);
return map_of_EncoderOpndSize_2_RealOpndSize[o_size];
}
inline static Mnemonic map_alu(ALU_Opcode alu) {
assert(alu >= 0 && alu < n_alu);
return map_of_alu_opcode_2_mnemonic[alu];
}
inline static Mnemonic map_shift(Shift_Opcode shc) {
assert(shc >= 0 && shc < n_shift);
return map_of_shift_opcode_2_mnemonic[shc];
}
inline bool fit8(int64 val) {
return (CHAR_MIN <= val) && (val <= CHAR_MAX);
}
inline bool fit32(int64 val) {
return (INT_MIN <= val) && (val <= INT_MAX);
}
inline static void add_r(EncoderBase::Operands & args, const R_Opnd & r, Opnd_Size sz, OpndExt ext = OpndExt_None) {
RegName reg = map_reg(r.reg_no());
if (sz != n_size) {
OpndSize size = map_size(sz);
if (size != getRegSize(reg)) {
reg = getAliasReg(reg, size);
}
}
args.add(EncoderBase::Operand(reg, ext));
}
inline static void add_m(EncoderBase::Operands & args, const M_Opnd & m, Opnd_Size sz, OpndExt ext = OpndExt_None) {
assert(n_size != sz);
args.add(EncoderBase::Operand(map_size(sz),
map_reg(m.base().reg_no()), map_reg(m.index().reg_no()),
(unsigned)m.scale().get_value(), (int)m.disp().get_value(), ext));
}
inline static void add_rm(EncoderBase::Operands & args, const RM_Opnd & rm, Opnd_Size sz, OpndExt ext = OpndExt_None) {
rm.is_reg() ? add_r(args, (R_Opnd &)rm, sz, ext) : add_m(args, (M_Opnd &)rm, sz, ext);
}
inline static void add_xmm(EncoderBase::Operands & args, const XMM_Opnd & xmm, bool dbl) {
// Gregory -
// XMM registers indexes in Reg_No enum are shifted by xmm0_reg, their indexes
// don't start with 0, so it is necessary to subtract xmm0_reg index from
// xmm.get_idx() value
assert(xmm.get_idx() >= xmm0_reg);
return args.add((RegName)( (dbl ? RegName_XMM0D : RegName_XMM0S) + xmm.get_idx() -
xmm0_reg));
}
inline static void add_fp(EncoderBase::Operands & args, unsigned i, bool dbl) {
return args.add((RegName)( (dbl ? RegName_FP0D : RegName_FP0S) + i));
}
inline static void add_imm(EncoderBase::Operands & args, const Imm_Opnd & imm) {
assert(n_size != imm.get_size());
args.add(EncoderBase::Operand(map_size(imm.get_size()), imm.get_value(),
imm.is_signed() ? OpndExt_Signed : OpndExt_Zero));
}
ENCODER_DECLARE_EXPORT char * prefix(char * stream, InstrPrefix p) {
*stream = (char)p;
return stream + 1;
}
// stack push and pop instructions
ENCODER_DECLARE_EXPORT char * push(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_PUSH, args);
}
ENCODER_DECLARE_EXPORT char * push(char * stream, const Imm_Opnd & imm) {
EncoderBase::Operands args;
#ifdef _EM64T_
add_imm(args, imm);
#else
// we need this workaround to be compatible with the former ia32 encoder implementation
add_imm(args, Imm_Opnd(size_32, imm.get_value()));
#endif
return EncoderBase::encode(stream, Mnemonic_PUSH, args);
}
ENCODER_DECLARE_EXPORT char * pop(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_POP, args);
}
// cmpxchg or xchg
ENCODER_DECLARE_EXPORT char * cmpxchg(char * stream, const RM_Opnd & rm, const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_r(args, r, sz);
RegName implicitReg = getAliasReg(RegName_EAX, map_size(sz));
args.add(implicitReg);
return (char*)EncoderBase::encode(stream, Mnemonic_CMPXCHG, args);
}
ENCODER_DECLARE_EXPORT char * xchg(char * stream, const RM_Opnd & rm, const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_r(args, r, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_XCHG, args);
}
// inc(rement), dec(rement), not, neg(ate) instructions
ENCODER_DECLARE_EXPORT char * inc(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_INC, args);
}
ENCODER_DECLARE_EXPORT char * dec(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_DEC, args);
}
ENCODER_DECLARE_EXPORT char * _not(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_NOT, args);
}
ENCODER_DECLARE_EXPORT char * neg(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_NEG, args);
}
ENCODER_DECLARE_EXPORT char * nop(char * stream) {
EncoderBase::Operands args;
return (char*)EncoderBase::encode(stream, Mnemonic_NOP, args);
}
ENCODER_DECLARE_EXPORT char * int3(char * stream) {
EncoderBase::Operands args;
return (char*)EncoderBase::encode(stream, Mnemonic_INT3, args);
}
// alu instructions: add, or, adc, sbb, and, sub, xor, cmp
ENCODER_DECLARE_EXPORT char * alu(char * stream, ALU_Opcode opc, const RM_Opnd & rm, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, map_alu(opc), args);
};
ENCODER_DECLARE_EXPORT char * alu(char * stream, ALU_Opcode opc, const M_Opnd & m, const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, m, sz);
add_rm(args, r, sz);
return (char*)EncoderBase::encode(stream, map_alu(opc), args);
}
ENCODER_DECLARE_EXPORT char * alu(char * stream, ALU_Opcode opc, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, r, sz);
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, map_alu(opc), args);
}
// test instruction
ENCODER_DECLARE_EXPORT char * test(char * stream, const RM_Opnd & rm, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
assert(imm.get_size() <= sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_TEST, args);
}
ENCODER_DECLARE_EXPORT char * test(char * stream, const RM_Opnd & rm, const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_r(args, r, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_TEST, args);
}
// shift instructions: shl, shr, sar, shld, shrd
ENCODER_DECLARE_EXPORT char * shift(char * stream, Shift_Opcode shc, const RM_Opnd & rm, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, map_shift(shc), args);
}
ENCODER_DECLARE_EXPORT char * shift(char * stream, Shift_Opcode shc, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
args.add(RegName_CL);
return (char*)EncoderBase::encode(stream, map_shift(shc), args);
}
ENCODER_DECLARE_EXPORT char * shift(char * stream, Shift_Opcode shc, const RM_Opnd & rm,
const R_Opnd & r, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
assert(shc == shld_opc || shc == shrd_opc);
add_rm(args, rm, sz);
add_r(args, r, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, map_shift(shc), args);
}
ENCODER_DECLARE_EXPORT char * shift(char * stream, Shift_Opcode shc, const RM_Opnd & rm,
const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
assert(shc == shld_opc || shc == shrd_opc);
add_rm(args, rm, sz);
add_r(args, r, sz);
args.add(RegName_CL);
return (char*)EncoderBase::encode(stream, map_shift(shc), args);
}
// multiply instructions: mul, imul
ENCODER_DECLARE_EXPORT char * mul(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
args.add(RegName_EDX);
args.add(RegName_EAX);
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_MUL, args);
}
ENCODER_DECLARE_EXPORT char * imul(char * stream, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_IMUL, args);
}
ENCODER_DECLARE_EXPORT char * imul(char * stream, const R_Opnd & r, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_IMUL, args);
}
ENCODER_DECLARE_EXPORT char * imul(char * stream, const R_Opnd & r, const RM_Opnd & rm,
const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_rm(args, rm, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_IMUL, args);
}
// divide instructions: div, idiv
ENCODER_DECLARE_EXPORT char * idiv(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
#ifdef _EM64T_
add_r(args, rdx_opnd, sz);
add_r(args, rax_opnd, sz);
#else
add_r(args, edx_opnd, sz);
add_r(args, eax_opnd, sz);
#endif
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_IDIV, args);
}
ENCODER_DECLARE_EXPORT char * div(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
#ifdef _EM64T_
add_r(args, rdx_opnd, sz);
add_r(args, rax_opnd, sz);
#else
add_r(args, edx_opnd, sz);
add_r(args, eax_opnd, sz);
#endif
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_DIV, args);
}
// data movement: mov
ENCODER_DECLARE_EXPORT char * mov(char * stream, const M_Opnd & m, const R_Opnd & r, Opnd_Size sz) {
EncoderBase::Operands args;
add_m(args, m, sz);
add_r(args, r, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_MOV, args);
}
ENCODER_DECLARE_EXPORT char * mov(char * stream, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_MOV, args);
}
ENCODER_DECLARE_EXPORT char * mov(char * stream, const RM_Opnd & rm, const Imm_Opnd & imm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_MOV, args);
}
ENCODER_DECLARE_EXPORT char * movd(char * stream, const RM_Opnd & rm, const XMM_Opnd & xmm) {
EncoderBase::Operands args;
add_rm(args, rm, size_32);
add_xmm(args, xmm, false);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVD, args);
}
ENCODER_DECLARE_EXPORT char * movd(char * stream, const XMM_Opnd & xmm, const RM_Opnd & rm) {
EncoderBase::Operands args;
add_xmm(args, xmm, false);
add_rm(args, rm, size_32);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVD, args);
}
ENCODER_DECLARE_EXPORT char * movq(char * stream, const RM_Opnd & rm, const XMM_Opnd & xmm) {
EncoderBase::Operands args;
add_rm(args, rm, size_64);
add_xmm(args, xmm, true);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVQ, args);
}
ENCODER_DECLARE_EXPORT char * movq(char * stream, const XMM_Opnd & xmm, const RM_Opnd & rm) {
EncoderBase::Operands args;
add_xmm(args, xmm, true);
add_rm(args, rm, size_64);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVQ, args);
}
ENCODER_DECLARE_EXPORT char * movsx(char * stream, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, n_size);
add_rm(args, rm, sz, OpndExt_Signed);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVSX, args);
}
ENCODER_DECLARE_EXPORT char * movzx(char * stream, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, n_size);
// movzx r64, r/m32 is not available on em64t
// mov r32, r/m32 should zero out upper bytes
assert(sz <= size_16);
add_rm(args, rm, sz, OpndExt_Zero);
return (char*)EncoderBase::encode(stream, Mnemonic_MOVZX, args);
}
// sse mov
ENCODER_DECLARE_EXPORT char * sse_mov(char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_MOVSD : Mnemonic_MOVSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_mov(char * stream, const M_Opnd & mem, const XMM_Opnd & xmm, bool dbl) {
EncoderBase::Operands args;
add_m(args, mem, dbl ? size_64 : size_32);
add_xmm(args, xmm, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_MOVSD : Mnemonic_MOVSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_mov(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_MOVSD : Mnemonic_MOVSS, args );
}
// sse add, sub, mul, div
ENCODER_DECLARE_EXPORT char * sse_add(char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_ADDSD : Mnemonic_ADDSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_add(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_ADDSD : Mnemonic_ADDSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_sub(char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_SUBSD : Mnemonic_SUBSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_sub(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_SUBSD : Mnemonic_SUBSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_mul( char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_MULSD : Mnemonic_MULSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_mul(char * stream, const XMM_Opnd& xmm0, const XMM_Opnd& xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_MULSD : Mnemonic_MULSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_div(char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_DIVSD : Mnemonic_DIVSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_div(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_DIVSD : Mnemonic_DIVSS, args);
}
ENCODER_DECLARE_EXPORT char * sse_xor(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1) {
EncoderBase::Operands args;
add_xmm(args, xmm0, true);
add_xmm(args, xmm1, true);
return (char*)EncoderBase::encode(stream, Mnemonic_PXOR, args);
}
ENCODER_DECLARE_EXPORT char * sse_compare(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, true);
add_xmm(args, xmm1, true);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_COMISD : Mnemonic_COMISS, args);
}
ENCODER_DECLARE_EXPORT char * sse_compare(char * stream, const XMM_Opnd & xmm0, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_COMISD : Mnemonic_COMISS, args);
}
// sse conversions
ENCODER_DECLARE_EXPORT char * sse_cvt_si(char * stream, const XMM_Opnd & xmm, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm, dbl);
add_m(args, mem, size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_CVTSI2SD : Mnemonic_CVTSI2SS, args);
}
ENCODER_DECLARE_EXPORT char * sse_cvtt2si(char * stream, const R_Opnd & reg, const M_Opnd & mem, bool dbl) {
EncoderBase::Operands args;
add_rm(args, reg, size_32);
add_m(args, mem, dbl ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_CVTTSD2SI : Mnemonic_CVTTSS2SI, args);
}
ENCODER_DECLARE_EXPORT char * sse_cvtt2si(char * stream, const R_Opnd & reg, const XMM_Opnd & xmm, bool dbl) {
EncoderBase::Operands args;
add_rm(args, reg, size_32);
add_xmm(args, xmm, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_CVTTSD2SI : Mnemonic_CVTTSS2SI, args);
}
ENCODER_DECLARE_EXPORT char * sse_cvt_fp2dq(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_CVTTPD2DQ : Mnemonic_CVTTPS2DQ, args);
}
ENCODER_DECLARE_EXPORT char * sse_cvt_dq2fp(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1, bool dbl) {
EncoderBase::Operands args;
add_xmm(args, xmm0, dbl);
add_xmm(args, xmm1, dbl);
return (char*)EncoderBase::encode(stream, dbl ? Mnemonic_CVTDQ2PD : Mnemonic_CVTDQ2PS, args);
}
ENCODER_DECLARE_EXPORT char * sse_d2s(char * stream, const XMM_Opnd & xmm0, const M_Opnd & mem64) {
EncoderBase::Operands args;
add_xmm(args, xmm0, false);
add_m(args, mem64, size_64);
return (char*)EncoderBase::encode(stream, Mnemonic_CVTSD2SS, args);
}
ENCODER_DECLARE_EXPORT char * sse_d2s(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1) {
EncoderBase::Operands args;
add_xmm(args, xmm0, false);
add_xmm(args, xmm1, true);
return (char*)EncoderBase::encode(stream, Mnemonic_CVTSD2SS, args);
}
ENCODER_DECLARE_EXPORT char * sse_s2d(char * stream, const XMM_Opnd & xmm0, const M_Opnd & mem32) {
EncoderBase::Operands args;
add_xmm(args, xmm0, true);
add_m(args, mem32, size_32);
return (char*)EncoderBase::encode(stream, Mnemonic_CVTSS2SD, args);
}
ENCODER_DECLARE_EXPORT char * sse_s2d(char * stream, const XMM_Opnd & xmm0, const XMM_Opnd & xmm1) {
EncoderBase::Operands args;
add_xmm(args, xmm0, true);
add_xmm(args, xmm1, false);
return (char*)EncoderBase::encode(stream, Mnemonic_CVTSS2SD, args);
}
// condition operations
ENCODER_DECLARE_EXPORT char *cmov(char * stream, ConditionCode cc, const R_Opnd & r, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, (Mnemonic)(Mnemonic_CMOVcc + cc), args);
}
ENCODER_DECLARE_EXPORT char * setcc(char * stream, ConditionCode cc, const RM_Opnd & rm8) {
EncoderBase::Operands args;
add_rm(args, rm8, size_8);
return (char*)EncoderBase::encode(stream, (Mnemonic)(Mnemonic_SETcc + cc), args);
}
// load effective address: lea
ENCODER_DECLARE_EXPORT char * lea(char * stream, const R_Opnd & r, const M_Opnd & m, Opnd_Size sz) {
EncoderBase::Operands args;
add_r(args, r, sz);
add_m(args, m, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_LEA, args);
}
ENCODER_DECLARE_EXPORT char * cdq(char * stream) {
EncoderBase::Operands args;
args.add(RegName_EDX);
args.add(RegName_EAX);
return (char*)EncoderBase::encode(stream, Mnemonic_CDQ, args);
}
ENCODER_DECLARE_EXPORT char * wait(char * stream) {
return (char*)EncoderBase::encode(stream, Mnemonic_WAIT, EncoderBase::Operands());
}
// control-flow instructions
// loop
ENCODER_DECLARE_EXPORT char * loop(char * stream, const Imm_Opnd & imm) {
EncoderBase::Operands args;
assert(imm.get_size() == size_8);
args.add(RegName_ECX);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_LOOP, args);
}
// jump
ENCODER_DECLARE_EXPORT char * jump8(char * stream, const Imm_Opnd & imm) {
EncoderBase::Operands args;
assert(imm.get_size() == size_8);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_JMP, args);
}
ENCODER_DECLARE_EXPORT char * jump32(char * stream, const Imm_Opnd & imm) {
EncoderBase::Operands args;
assert(imm.get_size() == size_32);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_JMP, args);
}
ENCODER_DECLARE_EXPORT char * jump(char * stream, const RM_Opnd & rm, Opnd_Size sz) {
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_JMP, args);
}
/**
* @note On EM64T: if target lies beyond 2G (does not fit into 32 bit
* offset) then generates indirect jump using RAX (whose content is
* destroyed).
*/
ENCODER_DECLARE_EXPORT char * jump(char * stream, char * target) {
#ifdef _EM64T_
int64 offset = target - stream;
// sub 2 bytes for the short version
offset -= 2;
if (fit8(offset)) {
// use 8-bit signed relative form
return jump8(stream, Imm_Opnd(size_8, offset));
} else if (fit32(offset)) {
// sub 5 (3 + 2)bytes for the long version
offset -= 3;
// use 32-bit signed relative form
return jump32(stream, Imm_Opnd(size_32, offset));
}
// need to use absolute indirect jump
stream = mov(stream, rax_opnd, Imm_Opnd(size_64, (int64)target), size_64);
return jump(stream, rax_opnd, size_64);
#else
I_32 offset = target - stream;
// sub 2 bytes for the short version
offset -= 2;
if (fit8(offset)) {
// use 8-bit signed relative form
return jump8(stream, Imm_Opnd(size_8, offset));
}
// sub 5 (3 + 2) bytes for the long version
offset -= 3;
// use 32-bit signed relative form
return jump32(stream, Imm_Opnd(size_32, offset));
#endif
}
// branch
ENCODER_DECLARE_EXPORT char * branch8(char * stream, ConditionCode cond,
const Imm_Opnd & imm,
InstrPrefix pref)
{
if (pref != no_prefix) {
assert(pref == hint_branch_taken_prefix || pref == hint_branch_taken_prefix);
stream = prefix(stream, pref);
}
Mnemonic m = (Mnemonic)(Mnemonic_Jcc + cond);
EncoderBase::Operands args;
assert(imm.get_size() == size_8);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, m, args);
}
ENCODER_DECLARE_EXPORT char * branch32(char * stream, ConditionCode cond,
const Imm_Opnd & imm,
InstrPrefix pref)
{
if (pref != no_prefix) {
assert(pref == hint_branch_taken_prefix || pref == hint_branch_taken_prefix);
stream = prefix(stream, pref);
}
Mnemonic m = (Mnemonic)(Mnemonic_Jcc + cond);
EncoderBase::Operands args;
assert(imm.get_size() == size_32);
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, m, args);
}
/*
ENCODER_DECLARE_EXPORT char * branch(char * stream, ConditionCode cc, const char * target, InstrPrefix prefix) {
// sub 2 bytes for the short version
int64 offset = stream-target-2;
if( fit8(offset) ) {
return branch8(stream, cc, Imm_Opnd(size_8, (char)offset), is_signed);
}
return branch32(stream, cc, Imm_Opnd(size_32, (int)offset), is_signed);
}
*/
// call
ENCODER_DECLARE_EXPORT char * call(char * stream, const Imm_Opnd & imm)
{
EncoderBase::Operands args;
add_imm(args, imm);
return (char*)EncoderBase::encode(stream, Mnemonic_CALL, args);
}
ENCODER_DECLARE_EXPORT char * call(char * stream, const RM_Opnd & rm,
Opnd_Size sz)
{
EncoderBase::Operands args;
add_rm(args, rm, sz);
return (char*)EncoderBase::encode(stream, Mnemonic_CALL, args);
}
/**
* @note On EM64T: if target lies beyond 2G (does not fit into 32 bit
* offset) then generates indirect jump using RAX (whose content is
* destroyed).
*/
ENCODER_DECLARE_EXPORT char * call(char * stream, const char * target)
{
#ifdef _EM64T_
int64 offset = target - stream;
if (fit32(offset)) {
offset -= 5; // sub 5 bytes for this instruction
Imm_Opnd imm(size_32, offset);
return call(stream, imm);
}
// need to use absolute indirect call
stream = mov(stream, rax_opnd, Imm_Opnd(size_64, (int64)target), size_64);
return call(stream, rax_opnd, size_64);
#else
I_32 offset = target - stream;
offset -= 5; // sub 5 bytes for this instruction
Imm_Opnd imm(size_32, offset);
return call(stream, imm);
#endif
}
// return instruction
ENCODER_DECLARE_EXPORT char * ret(char * stream)
{
EncoderBase::Operands args;
return (char*)EncoderBase::encode(stream, Mnemonic_RET, args);
}
ENCODER_DECLARE_EXPORT char * ret(char * stream, const Imm_Opnd & imm)
{
EncoderBase::Operands args;
// TheManual says imm can be 16-bit only
//assert(imm.get_size() <= size_16);
args.add(EncoderBase::Operand(map_size(size_16), imm.get_value()));
return (char*)EncoderBase::encode(stream, Mnemonic_RET, args);
}
ENCODER_DECLARE_EXPORT char * ret(char * stream, unsigned short pop)
{
// TheManual says it can only be imm16
EncoderBase::Operands args(EncoderBase::Operand(OpndSize_16, pop, OpndExt_Zero));
return (char*)EncoderBase::encode(stream, Mnemonic_RET, args);
}
// floating-point instructions
ENCODER_DECLARE_EXPORT char * fld(char * stream, const M_Opnd & m,
bool is_double) {
EncoderBase::Operands args;
// a fake FP register as operand
add_fp(args, 0, is_double);
add_m(args, m, is_double ? size_64 : size_32);
return (char*)EncoderBase::encode(stream, Mnemonic_FLD, args);
}
ENCODER_DECLARE_EXPORT char * fist(char * stream, const M_Opnd & mem,
bool is_long, bool pop_stk)
{
EncoderBase::Operands args;
if (pop_stk) {
add_m(args, mem, is_long ? size_64 : size_32);
// a fake FP register as operand
add_fp(args, 0, is_long);
return (char*)EncoderBase::encode(stream, Mnemonic_FISTP, args);
}
// only 32-bit operands are supported
assert(is_long == false);
add_m(args, mem, size_32);
add_fp(args, 0, false);
return (char*)EncoderBase::encode(stream, Mnemonic_FIST, args);
}
ENCODER_DECLARE_EXPORT char * fst(char * stream, const M_Opnd & m,
bool is_double, bool pop_stk)
{
EncoderBase::Operands args;
add_m(args, m, is_double ? size_64 : size_32);
// a fake FP register as operand
add_fp(args, 0, is_double);
return (char*)EncoderBase::encode(stream,
pop_stk ? Mnemonic_FSTP : Mnemonic_FST,
args);
}
ENCODER_DECLARE_EXPORT char * fst(char * stream, unsigned i, bool pop_stk)
{
EncoderBase::Operands args;
add_fp(args, i, true);
return (char*)EncoderBase::encode(stream,
pop_stk ? Mnemonic_FSTP : Mnemonic_FST,
args);
}
ENCODER_DECLARE_EXPORT char * fldcw(char * stream, const M_Opnd & mem) {
EncoderBase::Operands args;
add_m(args, mem, size_16);
return (char*)EncoderBase::encode(stream, Mnemonic_FLDCW, args);
}
ENCODER_DECLARE_EXPORT char * fnstcw(char * stream, const M_Opnd & mem) {
EncoderBase::Operands args;
add_m(args, mem, size_16);
return (char*)EncoderBase::encode(stream, Mnemonic_FNSTCW, args);
}
ENCODER_DECLARE_EXPORT char * fnstsw(char * stream)
{
return (char*)EncoderBase::encode(stream, Mnemonic_FNSTCW,
EncoderBase::Operands());
}
// string operations
ENCODER_DECLARE_EXPORT char * set_d(char * stream, bool set) {
EncoderBase::Operands args;
return (char*)EncoderBase::encode(stream,
set ? Mnemonic_STD : Mnemonic_CLD,
args);
}
ENCODER_DECLARE_EXPORT char * scas(char * stream, unsigned char prefix)
{
EncoderBase::Operands args;
if (prefix != no_prefix) {
assert(prefix == prefix_repnz || prefix == prefix_repz);
*stream = prefix;
++stream;
}
return (char*)EncoderBase::encode(stream, Mnemonic_SCAS, args);
}
ENCODER_DECLARE_EXPORT char * stos(char * stream, unsigned char prefix)
{
if (prefix != no_prefix) {
assert(prefix == prefix_rep);
*stream = prefix;
++stream;
}
EncoderBase::Operands args;
return (char*)EncoderBase::encode(stream, Mnemonic_STOS, args);
}
// Intrinsic FP math functions
ENCODER_DECLARE_EXPORT char * fprem(char * stream) {
return (char*)EncoderBase::encode(stream, Mnemonic_FPREM,
EncoderBase::Operands());
}
ENCODER_DECLARE_EXPORT char * fprem1(char * stream) {
return (char*)EncoderBase::encode(stream, Mnemonic_FPREM1,
EncoderBase::Operands());
}
|