1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
/*
* Copyright (C) 2008 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.LongMath.binomial;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Function;
import com.google.common.base.Joiner;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import java.util.AbstractCollection;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import javax.annotation.Nullable;
/**
* Provides static methods for working with {@code Collection} instances.
*
* @author Chris Povirk
* @author Mike Bostock
* @author Jared Levy
* @since 2.0 (imported from Google Collections Library)
*/
@GwtCompatible
public final class Collections2 {
private Collections2() {}
/**
* Returns the elements of {@code unfiltered} that satisfy a predicate. The
* returned collection is a live view of {@code unfiltered}; changes to one
* affect the other.
*
* <p>The resulting collection's iterator does not support {@code remove()},
* but all other collection methods are supported. When given an element that
* doesn't satisfy the predicate, the collection's {@code add()} and {@code
* addAll()} methods throw an {@link IllegalArgumentException}. When methods
* such as {@code removeAll()} and {@code clear()} are called on the filtered
* collection, only elements that satisfy the filter will be removed from the
* underlying collection.
*
* <p>The returned collection isn't threadsafe or serializable, even if
* {@code unfiltered} is.
*
* <p>Many of the filtered collection's methods, such as {@code size()},
* iterate across every element in the underlying collection and determine
* which elements satisfy the filter. When a live view is <i>not</i> needed,
* it may be faster to copy {@code Iterables.filter(unfiltered, predicate)}
* and use the copy.
*
* <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
* as documented at {@link Predicate#apply}. Do not provide a predicate such
* as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
* with equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*/
// TODO(kevinb): how can we omit that Iterables link when building gwt
// javadoc?
public static <E> Collection<E> filter(
Collection<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof FilteredCollection) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
}
return new FilteredCollection<E>(
checkNotNull(unfiltered), checkNotNull(predicate));
}
/**
* Delegates to {@link Collection#contains}. Returns {@code false} if the
* {@code contains} method throws a {@code ClassCastException}.
*/
static boolean safeContains(Collection<?> collection, Object object) {
try {
return collection.contains(object);
} catch (ClassCastException e) {
return false;
}
}
static class FilteredCollection<E> implements Collection<E> {
final Collection<E> unfiltered;
final Predicate<? super E> predicate;
FilteredCollection(Collection<E> unfiltered,
Predicate<? super E> predicate) {
this.unfiltered = unfiltered;
this.predicate = predicate;
}
FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
return new FilteredCollection<E>(unfiltered,
Predicates.<E>and(predicate, newPredicate));
// .<E> above needed to compile in JDK 5
}
@Override
public boolean add(E element) {
checkArgument(predicate.apply(element));
return unfiltered.add(element);
}
@Override
public boolean addAll(Collection<? extends E> collection) {
for (E element : collection) {
checkArgument(predicate.apply(element));
}
return unfiltered.addAll(collection);
}
@Override
public void clear() {
Iterables.removeIf(unfiltered, predicate);
}
@Override
public boolean contains(Object element) {
try {
// unsafe cast can result in a CCE from predicate.apply(), which we
// will catch
@SuppressWarnings("unchecked")
E e = (E) element;
/*
* We check whether e satisfies the predicate, when we really mean to
* check whether the element contained in the set does. This is ok as
* long as the predicate is consistent with equals, as required.
*/
return predicate.apply(e) && unfiltered.contains(element);
} catch (NullPointerException e) {
return false;
} catch (ClassCastException e) {
return false;
}
}
@Override
public boolean containsAll(Collection<?> collection) {
for (Object element : collection) {
if (!contains(element)) {
return false;
}
}
return true;
}
@Override
public boolean isEmpty() {
return !Iterators.any(unfiltered.iterator(), predicate);
}
@Override
public Iterator<E> iterator() {
return Iterators.filter(unfiltered.iterator(), predicate);
}
@Override
public boolean remove(Object element) {
try {
// unsafe cast can result in a CCE from predicate.apply(), which we
// will catch
@SuppressWarnings("unchecked")
E e = (E) element;
// See comment in contains() concerning predicate.apply(e)
return predicate.apply(e) && unfiltered.remove(element);
} catch (NullPointerException e) {
return false;
} catch (ClassCastException e) {
return false;
}
}
@Override
public boolean removeAll(final Collection<?> collection) {
checkNotNull(collection);
Predicate<E> combinedPredicate = new Predicate<E>() {
@Override
public boolean apply(E input) {
return predicate.apply(input) && collection.contains(input);
}
};
return Iterables.removeIf(unfiltered, combinedPredicate);
}
@Override
public boolean retainAll(final Collection<?> collection) {
checkNotNull(collection);
Predicate<E> combinedPredicate = new Predicate<E>() {
@Override
public boolean apply(E input) {
// See comment in contains() concerning predicate.apply(e)
return predicate.apply(input) && !collection.contains(input);
}
};
return Iterables.removeIf(unfiltered, combinedPredicate);
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public Object[] toArray() {
// creating an ArrayList so filtering happens once
return Lists.newArrayList(iterator()).toArray();
}
@Override
public <T> T[] toArray(T[] array) {
return Lists.newArrayList(iterator()).toArray(array);
}
@Override public String toString() {
return Iterators.toString(iterator());
}
}
/**
* Returns a collection that applies {@code function} to each element of
* {@code fromCollection}. The returned collection is a live view of {@code
* fromCollection}; changes to one affect the other.
*
* <p>The returned collection's {@code add()} and {@code addAll()} methods
* throw an {@link UnsupportedOperationException}. All other collection
* methods are supported, as long as {@code fromCollection} supports them.
*
* <p>The returned collection isn't threadsafe or serializable, even if
* {@code fromCollection} is.
*
* <p>When a live view is <i>not</i> needed, it may be faster to copy the
* transformed collection and use the copy.
*
* <p>If the input {@code Collection} is known to be a {@code List}, consider
* {@link Lists#transform}. If only an {@code Iterable} is available, use
* {@link Iterables#transform}.
*/
public static <F, T> Collection<T> transform(Collection<F> fromCollection,
Function<? super F, T> function) {
return new TransformedCollection<F, T>(fromCollection, function);
}
static class TransformedCollection<F, T> extends AbstractCollection<T> {
final Collection<F> fromCollection;
final Function<? super F, ? extends T> function;
TransformedCollection(Collection<F> fromCollection,
Function<? super F, ? extends T> function) {
this.fromCollection = checkNotNull(fromCollection);
this.function = checkNotNull(function);
}
@Override public void clear() {
fromCollection.clear();
}
@Override public boolean isEmpty() {
return fromCollection.isEmpty();
}
@Override public Iterator<T> iterator() {
return Iterators.transform(fromCollection.iterator(), function);
}
@Override public int size() {
return fromCollection.size();
}
}
/**
* Returns {@code true} if the collection {@code self} contains all of the
* elements in the collection {@code c}.
*
* <p>This method iterates over the specified collection {@code c}, checking
* each element returned by the iterator in turn to see if it is contained in
* the specified collection {@code self}. If all elements are so contained,
* {@code true} is returned, otherwise {@code false}.
*
* @param self a collection which might contain all elements in {@code c}
* @param c a collection whose elements might be contained by {@code self}
*/
static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
checkNotNull(self);
for (Object o : c) {
if (!self.contains(o)) {
return false;
}
}
return true;
}
/**
* An implementation of {@link Collection#toString()}.
*/
static String toStringImpl(final Collection<?> collection) {
StringBuilder sb
= newStringBuilderForCollection(collection.size()).append('[');
STANDARD_JOINER.appendTo(
sb, Iterables.transform(collection, new Function<Object, Object>() {
@Override public Object apply(Object input) {
return input == collection ? "(this Collection)" : input;
}
}));
return sb.append(']').toString();
}
/**
* Returns best-effort-sized StringBuilder based on the given collection size.
*/
static StringBuilder newStringBuilderForCollection(int size) {
checkArgument(size >= 0, "size must be non-negative");
return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
}
/**
* Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
*/
static <T> Collection<T> cast(Iterable<T> iterable) {
return (Collection<T>) iterable;
}
static final Joiner STANDARD_JOINER = Joiner.on(", ").useForNull("null");
/**
* Returns a {@link Collection} of all the permutations of the specified
* {@link Iterable}.
*
* <p><i>Notes:</i> This is an implementation of the algorithm for
* Lexicographical Permutations Generation, described in Knuth's "The Art of
* Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
* iteration order follows the lexicographical order. This means that
* the first permutation will be in ascending order, and the last will be in
* descending order.
*
* <p>Duplicate elements are considered equal. For example, the list [1, 1]
* will have only one permutation, instead of two. This is why the elements
* have to implement {@link Comparable}.
*
* <p>An empty iterable has only one permutation, which is an empty list.
*
* <p>This method is equivalent to
* {@code Collections2.orderedPermutations(list, Ordering.natural())}.
*
* @param elements the original iterable whose elements have to be permuted.
* @return an immutable {@link Collection} containing all the different
* permutations of the original iterable.
* @throws NullPointerException if the specified iterable is null or has any
* null elements.
* @since 12.0
*/
@Beta public static <E extends Comparable<? super E>>
Collection<List<E>> orderedPermutations(Iterable<E> elements) {
return orderedPermutations(elements, Ordering.natural());
}
/**
* Returns a {@link Collection} of all the permutations of the specified
* {@link Iterable} using the specified {@link Comparator} for establishing
* the lexicographical ordering.
*
* <p>Examples: <pre> {@code
*
* for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
* println(perm);
* }
* // -> ["a", "b", "c"]
* // -> ["a", "c", "b"]
* // -> ["b", "a", "c"]
* // -> ["b", "c", "a"]
* // -> ["c", "a", "b"]
* // -> ["c", "b", "a"]
*
* for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
* println(perm);
* }
* // -> [1, 1, 2, 2]
* // -> [1, 2, 1, 2]
* // -> [1, 2, 2, 1]
* // -> [2, 1, 1, 2]
* // -> [2, 1, 2, 1]
* // -> [2, 2, 1, 1]}</pre>
*
* <p><i>Notes:</i> This is an implementation of the algorithm for
* Lexicographical Permutations Generation, described in Knuth's "The Art of
* Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
* iteration order follows the lexicographical order. This means that
* the first permutation will be in ascending order, and the last will be in
* descending order.
*
* <p>Elements that compare equal are considered equal and no new permutations
* are created by swapping them.
*
* <p>An empty iterable has only one permutation, which is an empty list.
*
* @param elements the original iterable whose elements have to be permuted.
* @param comparator a comparator for the iterable's elements.
* @return an immutable {@link Collection} containing all the different
* permutations of the original iterable.
* @throws NullPointerException If the specified iterable is null, has any
* null elements, or if the specified comparator is null.
* @since 12.0
*/
@Beta public static <E> Collection<List<E>> orderedPermutations(
Iterable<E> elements, Comparator<? super E> comparator) {
return new OrderedPermutationCollection<E>(elements, comparator);
}
private static final class OrderedPermutationCollection<E>
extends AbstractCollection<List<E>> {
final ImmutableList<E> inputList;
final Comparator<? super E> comparator;
final int size;
OrderedPermutationCollection(Iterable<E> input,
Comparator<? super E> comparator) {
this.inputList = Ordering.from(comparator).immutableSortedCopy(input);
this.comparator = comparator;
this.size = calculateSize(inputList, comparator);
}
/**
* The number of permutations with repeated elements is calculated as
* follows:
* <ul>
* <li>For an empty list, it is 1 (base case).</li>
* <li>When r numbers are added to a list of n-r elements, the number of
* permutations is increased by a factor of (n choose r).</li>
* </ul>
*/
private static <E> int calculateSize(
List<E> sortedInputList, Comparator<? super E> comparator) {
long permutations = 1;
int n = 1;
int r = 1;
while (n < sortedInputList.size()) {
int comparison = comparator.compare(
sortedInputList.get(n - 1), sortedInputList.get(n));
if (comparison < 0) {
// We move to the next non-repeated element.
permutations *= binomial(n, r);
r = 0;
if (!isPositiveInt(permutations)) {
return Integer.MAX_VALUE;
}
}
n++;
r++;
}
permutations *= binomial(n, r);
if (!isPositiveInt(permutations)) {
return Integer.MAX_VALUE;
}
return (int) permutations;
}
@Override public int size() {
return size;
}
@Override public boolean isEmpty() {
return false;
}
@Override public Iterator<List<E>> iterator() {
return new OrderedPermutationIterator<E>(inputList, comparator);
}
@Override public boolean contains(@Nullable Object obj) {
if (obj instanceof List) {
List<?> list = (List<?>) obj;
return isPermutation(inputList, list);
}
return false;
}
@Override public String toString() {
return "orderedPermutationCollection(" + inputList + ")";
}
}
private static final class OrderedPermutationIterator<E>
extends AbstractIterator<List<E>> {
List<E> nextPermutation;
final Comparator<? super E> comparator;
OrderedPermutationIterator(List<E> list,
Comparator<? super E> comparator) {
this.nextPermutation = Lists.newArrayList(list);
this.comparator = comparator;
}
@Override protected List<E> computeNext() {
if (nextPermutation == null) {
return endOfData();
}
ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
calculateNextPermutation();
return next;
}
void calculateNextPermutation() {
int j = findNextJ();
if (j == -1) {
nextPermutation = null;
return;
}
int l = findNextL(j);
Collections.swap(nextPermutation, j, l);
int n = nextPermutation.size();
Collections.reverse(nextPermutation.subList(j + 1, n));
}
int findNextJ() {
for (int k = nextPermutation.size() - 2; k >= 0; k--) {
if (comparator.compare(nextPermutation.get(k),
nextPermutation.get(k + 1)) < 0) {
return k;
}
}
return -1;
}
int findNextL(int j) {
E ak = nextPermutation.get(j);
for (int l = nextPermutation.size() - 1; l > j; l--) {
if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
return l;
}
}
throw new AssertionError("this statement should be unreachable");
}
}
/**
* Returns a {@link Collection} of all the permutations of the specified
* {@link Collection}.
*
* <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm
* for permutations generation, described in Knuth's "The Art of Computer
* Programming", Volume 4, Chapter 7, Section 7.2.1.2.
*
* <p>If the input list contains equal elements, some of the generated
* permutations will be equal.
*
* <p>An empty collection has only one permutation, which is an empty list.
*
* @param elements the original collection whose elements have to be permuted.
* @return an immutable {@link Collection} containing all the different
* permutations of the original collection.
* @throws NullPointerException if the specified collection is null or has any
* null elements.
* @since 12.0
*/
@Beta public static <E> Collection<List<E>> permutations(
Collection<E> elements) {
return new PermutationCollection<E>(ImmutableList.copyOf(elements));
}
private static final class PermutationCollection<E>
extends AbstractCollection<List<E>> {
final ImmutableList<E> inputList;
PermutationCollection(ImmutableList<E> input) {
this.inputList = input;
}
@Override public int size() {
return IntMath.factorial(inputList.size());
}
@Override public boolean isEmpty() {
return false;
}
@Override public Iterator<List<E>> iterator() {
return new PermutationIterator<E>(inputList);
}
@Override public boolean contains(@Nullable Object obj) {
if (obj instanceof List) {
List<?> list = (List<?>) obj;
return isPermutation(inputList, list);
}
return false;
}
@Override public String toString() {
return "permutations(" + inputList + ")";
}
}
private static class PermutationIterator<E>
extends AbstractIterator<List<E>> {
final List<E> list;
final int[] c;
final int[] o;
int j;
PermutationIterator(List<E> list) {
this.list = new ArrayList<E>(list);
int n = list.size();
c = new int[n];
o = new int[n];
for (int i = 0; i < n; i++) {
c[i] = 0;
o[i] = 1;
}
j = Integer.MAX_VALUE;
}
@Override protected List<E> computeNext() {
if (j <= 0) {
return endOfData();
}
ImmutableList<E> next = ImmutableList.copyOf(list);
calculateNextPermutation();
return next;
}
void calculateNextPermutation() {
j = list.size() - 1;
int s = 0;
// Handle the special case of an empty list. Skip the calculation of the
// next permutation.
if (j == -1) {
return;
}
while (true) {
int q = c[j] + o[j];
if (q < 0) {
switchDirection();
continue;
}
if (q == j + 1) {
if (j == 0) {
break;
}
s++;
switchDirection();
continue;
}
Collections.swap(list, j - c[j] + s, j - q + s);
c[j] = q;
break;
}
}
void switchDirection() {
o[j] = -o[j];
j--;
}
}
/**
* Returns {@code true} if the second list is a permutation of the first.
*/
private static boolean isPermutation(List<?> first,
List<?> second) {
if (first.size() != second.size()) {
return false;
}
Multiset<?> firstSet = HashMultiset.create(first);
Multiset<?> secondSet = HashMultiset.create(second);
return firstSet.equals(secondSet);
}
private static boolean isPositiveInt(long n) {
return n >= 0 && n <= Integer.MAX_VALUE;
}
}
|