summaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/util/concurrent/Monitor.java
blob: d8c86933413da73f8d060d9f3c4d8678239a6ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/*
 * Copyright (C) 2010 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.base.Throwables;
import com.google.common.collect.Lists;

import java.util.ArrayList;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import javax.annotation.Nullable;
import javax.annotation.concurrent.GuardedBy;

/**
 * A synchronization abstraction supporting waiting on arbitrary boolean conditions.
 *
 * <p>This class is intended as a replacement for {@link ReentrantLock}. Code using {@code Monitor}
 * is less error-prone and more readable than code using {@code ReentrantLock}, without significant
 * performance loss. {@code Monitor} even has the potential for performance gain by optimizing the
 * evaluation and signaling of conditions.  Signaling is entirely
 * <a href="http://en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit_signaling">
 * implicit</a>.
 * By eliminating explicit signaling, this class can guarantee that only one thread is awakened
 * when a condition becomes true (no "signaling storms" due to use of {@link
 * java.util.concurrent.locks.Condition#signalAll Condition.signalAll}) and that no signals are lost
 * (no "hangs" due to incorrect use of {@link java.util.concurrent.locks.Condition#signal
 * Condition.signal}).
 *
 * <p>A thread is said to <i>occupy</i> a monitor if it has <i>entered</i> the monitor but not yet
 * <i>left</i>. Only one thread may occupy a given monitor at any moment. A monitor is also
 * reentrant, so a thread may enter a monitor any number of times, and then must leave the same
 * number of times. The <i>enter</i> and <i>leave</i> operations have the same synchronization
 * semantics as the built-in Java language synchronization primitives.
 *
 * <p>A call to any of the <i>enter</i> methods with <b>void</b> return type should always be
 * followed immediately by a <i>try/finally</i> block to ensure that the current thread leaves the
 * monitor cleanly: <pre>   {@code
 *
 *   monitor.enter();
 *   try {
 *     // do things while occupying the monitor
 *   } finally {
 *     monitor.leave();
 *   }}</pre>
 *
 * A call to any of the <i>enter</i> methods with <b>boolean</b> return type should always appear as
 * the condition of an <i>if</i> statement containing a <i>try/finally</i> block to ensure that the
 * current thread leaves the monitor cleanly: <pre>   {@code
 *
 *   if (monitor.tryEnter()) {
 *     try {
 *       // do things while occupying the monitor
 *     } finally {
 *       monitor.leave();
 *     }
 *   } else {
 *     // do other things since the monitor was not available
 *   }}</pre>
 *
 * <h2>Comparison with {@code synchronized} and {@code ReentrantLock}</h2>
 * 
 * <p>The following examples show a simple threadsafe holder expressed using {@code synchronized},
 * {@link ReentrantLock}, and {@code Monitor}.
 * 
 * <h3>{@code synchronized}</h3>
 * 
 * <p>This version is the fewest lines of code, largely because the synchronization mechanism used
 * is built into the language and runtime. But the programmer has to remember to avoid a couple of
 * common bugs: The {@code wait()} must be inside a {@code while} instead of an {@code if}, and
 * {@code notifyAll()} must be used instead of {@code notify()} because there are two different
 * logical conditions being awaited. <pre>   {@code
 *
 *   public class SafeBox<V> {
 *     private V value;
 *
 *     public synchronized V get() throws InterruptedException {
 *       while (value == null) {
 *         wait();
 *       }
 *       V result = value;
 *       value = null;
 *       notifyAll();
 *       return result;
 *     }
 *
 *     public synchronized void set(V newValue) throws InterruptedException {
 *       while (value != null) {
 *         wait();
 *       }
 *       value = newValue;
 *       notifyAll();
 *     }
 *   }}</pre>
 * 
 * <h3>{@code ReentrantLock}</h3>
 * 
 * <p>This version is much more verbose than the {@code synchronized} version, and still suffers
 * from the need for the programmer to remember to use {@code while} instead of {@code if}.
 * However, one advantage is that we can introduce two separate {@code Condition} objects, which
 * allows us to use {@code signal()} instead of {@code signalAll()}, which may be a performance
 * benefit. <pre>   {@code
 *
 *   public class SafeBox<V> {
 *     private final ReentrantLock lock = new ReentrantLock();
 *     private final Condition valuePresent = lock.newCondition();
 *     private final Condition valueAbsent = lock.newCondition();
 *     private V value;
 *
 *     public V get() throws InterruptedException {
 *       lock.lock();
 *       try {
 *         while (value == null) {
 *           valuePresent.await();
 *         }
 *         V result = value;
 *         value = null;
 *         valueAbsent.signal();
 *         return result;
 *       } finally {
 *         lock.unlock();
 *       }
 *     }
 *
 *     public void set(V newValue) throws InterruptedException {
 *       lock.lock();
 *       try {
 *         while (value != null) {
 *           valueAbsent.await();
 *         }
 *         value = newValue;
 *         valuePresent.signal();
 *       } finally {
 *         lock.unlock();
 *       }
 *     }
 *   }}</pre>
 * 
 * <h3>{@code Monitor}</h3>
 * 
 * <p>This version adds some verbosity around the {@code Guard} objects, but removes that same
 * verbosity, and more, from the {@code get} and {@code set} methods. {@code Monitor} implements the
 * same efficient signaling as we had to hand-code in the {@code ReentrantLock} version above.
 * Finally, the programmer no longer has to hand-code the wait loop, and therefore doesn't have to
 * remember to use {@code while} instead of {@code if}. <pre>   {@code
 *
 *   public class SafeBox<V> {
 *     private final Monitor monitor = new Monitor();
 *     private final Monitor.Guard valuePresent = new Monitor.Guard(monitor) {
 *       public boolean isSatisfied() {
 *         return value != null;
 *       }
 *     };
 *     private final Monitor.Guard valueAbsent = new Monitor.Guard(monitor) {
 *       public boolean isSatisfied() {
 *         return value == null;
 *       }
 *     };
 *     private V value;
 *
 *     public V get() throws InterruptedException {
 *       monitor.enterWhen(valuePresent);
 *       try {
 *         V result = value;
 *         value = null;
 *         return result;
 *       } finally {
 *         monitor.leave();
 *       }
 *     }
 *
 *     public void set(V newValue) throws InterruptedException {
 *       monitor.enterWhen(valueAbsent);
 *       try {
 *         value = newValue;
 *       } finally {
 *         monitor.leave();
 *       }
 *     }
 *   }}</pre>
 * 
 * @author Justin T. Sampson
 * @since 10.0
 */
@Beta
public final class Monitor {
  // TODO: Use raw LockSupport or AbstractQueuedSynchronizer instead of ReentrantLock.

  /**
   * A boolean condition for which a thread may wait. A {@code Guard} is associated with a single
   * {@code Monitor}. The monitor may check the guard at arbitrary times from any thread occupying
   * the monitor, so code should not be written to rely on how often a guard might or might not be
   * checked.
   * 
   * <p>If a {@code Guard} is passed into any method of a {@code Monitor} other than the one it is
   * associated with, an {@link IllegalMonitorStateException} is thrown.
   *
   * @since 10.0
   */
  @Beta
  public abstract static class Guard {
    
    final Monitor monitor;
    final Condition condition;

    @GuardedBy("monitor.lock")
    int waiterCount = 0;

    protected Guard(Monitor monitor) {
      this.monitor = checkNotNull(monitor, "monitor");
      this.condition = monitor.lock.newCondition();
    }

    /**
     * Evaluates this guard's boolean condition. This method is always called with the associated
     * monitor already occupied. Implementations of this method must depend only on state protected
     * by the associated monitor, and must not modify that state.
     */
    public abstract boolean isSatisfied();

    @Override
    public final boolean equals(Object other) {
      // Overridden as final to ensure identity semantics in Monitor.activeGuards.
      return this == other;
    }
    
    @Override
    public final int hashCode() {
      // Overridden as final to ensure identity semantics in Monitor.activeGuards.
      return super.hashCode();
    }

  }

  /**
   * Whether this monitor is fair.
   */
  private final boolean fair;
  
  /**
   * The lock underlying this monitor.
   */
  private final ReentrantLock lock;

  /**
   * The guards associated with this monitor that currently have waiters ({@code waiterCount > 0}).
   * This is an ArrayList rather than, say, a HashSet so that iteration and almost all adds don't
   * incur any object allocation overhead.
   */
  @GuardedBy("lock")
  private final ArrayList<Guard> activeGuards = Lists.newArrayListWithCapacity(1);

  /**
   * Creates a monitor with a non-fair (but fast) ordering policy. Equivalent to {@code
   * Monitor(false)}.
   */
  public Monitor() {
    this(false);
  }

  /**
   * Creates a monitor with the given ordering policy.
   *
   * @param fair whether this monitor should use a fair ordering policy rather than a non-fair (but
   *        fast) one
   */
  public Monitor(boolean fair) {
    this.fair = fair;
    this.lock = new ReentrantLock(fair);
  }

  /**
   * Enters this monitor. Blocks indefinitely.
   */
  public void enter() {
    lock.lock();
  }

  /**
   * Enters this monitor. Blocks indefinitely, but may be interrupted.
   */
  public void enterInterruptibly() throws InterruptedException {
    lock.lockInterruptibly();
  }

  /**
   * Enters this monitor. Blocks at most the given time.
   *
   * @return whether the monitor was entered
   */
  public boolean enter(long time, TimeUnit unit) {
    final ReentrantLock lock = this.lock;
    if (!fair && lock.tryLock()) {
      return true;
    }
    long startNanos = System.nanoTime();
    long timeoutNanos = unit.toNanos(time);
    long remainingNanos = timeoutNanos;
    boolean interruptIgnored = false;
    try {
      while (true) {
        try {
          return lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS);
        } catch (InterruptedException ignored) {
          interruptIgnored = true;
          remainingNanos = (timeoutNanos - (System.nanoTime() - startNanos));
        }
      }
    } finally {
      if (interruptIgnored) {
        Thread.currentThread().interrupt();
      }
    }
  }

  /**
   * Enters this monitor. Blocks at most the given time, and may be interrupted.
   *
   * @return whether the monitor was entered
   */
  public boolean enterInterruptibly(long time, TimeUnit unit) throws InterruptedException {
    return lock.tryLock(time, unit);
  }

  /**
   * Enters this monitor if it is possible to do so immediately. Does not block.
   *
   * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
   *
   * @return whether the monitor was entered
   */
  public boolean tryEnter() {
    return lock.tryLock();
  }

  /**
   * Enters this monitor when the guard is satisfied. Blocks indefinitely, but may be interrupted.
   */
  public void enterWhen(Guard guard) throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    boolean reentrant = lock.isHeldByCurrentThread();
    boolean success = false;
    lock.lockInterruptibly();
    try {
      waitInterruptibly(guard, reentrant);
      success = true;
    } finally {
      if (!success) {
        lock.unlock();
      }
    }
  }

  /**
   * Enters this monitor when the guard is satisfied. Blocks indefinitely.
   */
  public void enterWhenUninterruptibly(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    boolean reentrant = lock.isHeldByCurrentThread();
    boolean success = false;
    lock.lock();
    try {
      waitUninterruptibly(guard, reentrant);
      success = true;
    } finally {
      if (!success) {
        lock.unlock();
      }
    }
  }

  /**
   * Enters this monitor when the guard is satisfied. Blocks at most the given time, including both
   * the time to acquire the lock and the time to wait for the guard to be satisfied, and may be
   * interrupted.
   *
   * @return whether the monitor was entered
   */
  public boolean enterWhen(Guard guard, long time, TimeUnit unit) throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    boolean reentrant = lock.isHeldByCurrentThread();
    long remainingNanos;
    if (!fair && lock.tryLock()) {
      remainingNanos = unit.toNanos(time);
    } else {
      long startNanos = System.nanoTime();
      if (!lock.tryLock(time, unit)) {
        return false;
      }
      remainingNanos = unit.toNanos(time) - (System.nanoTime() - startNanos);
    }
    boolean satisfied = false;
    try {
      satisfied = waitInterruptibly(guard, remainingNanos, reentrant);
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Enters this monitor when the guard is satisfied. Blocks at most the given time, including
   * both the time to acquire the lock and the time to wait for the guard to be satisfied.
   *
   * @return whether the monitor was entered
   */
  public boolean enterWhenUninterruptibly(Guard guard, long time, TimeUnit unit) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    boolean reentrant = lock.isHeldByCurrentThread();
    boolean interruptIgnored = false;
    try {
      long remainingNanos;
      if (!fair && lock.tryLock()) {
        remainingNanos = unit.toNanos(time);
      } else {
        long startNanos = System.nanoTime();
        long timeoutNanos = unit.toNanos(time);
        remainingNanos = timeoutNanos;
        while (true) {
          try {
            if (lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS)) {
              break;
            } else {
              return false;
            }
          } catch (InterruptedException ignored) {
            interruptIgnored = true;
          } finally {
            remainingNanos = (timeoutNanos - (System.nanoTime() - startNanos));
          }
        }
      }
      boolean satisfied = false;
      try {
        satisfied = waitUninterruptibly(guard, remainingNanos, reentrant);
      } finally {
        if (!satisfied) {
          lock.unlock();
        }
      }
      return satisfied;
    } finally {
      if (interruptIgnored) {
        Thread.currentThread().interrupt();
      }
    }
  }

  /**
   * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but
   * does not wait for the guard to be satisfied.
   *
   * @return whether the monitor was entered
   */
  public boolean enterIf(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    lock.lock();
    boolean satisfied = false;
    try {
      satisfied = guard.isSatisfied();
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but does
   * not wait for the guard to be satisfied, and may be interrupted.
   *
   * @return whether the monitor was entered
   */
  public boolean enterIfInterruptibly(Guard guard) throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    boolean satisfied = false;
    try {
      satisfied = guard.isSatisfied();
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
   * lock, but does not wait for the guard to be satisfied.
   *
   * @return whether the monitor was entered
   */
  public boolean enterIf(Guard guard, long time, TimeUnit unit) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    if (!enter(time, unit)) {
      return false;
    }
    boolean satisfied = false;
    try {
      satisfied = guard.isSatisfied();
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
   * lock, but does not wait for the guard to be satisfied, and may be interrupted.
   *
   * @return whether the monitor was entered
   */
  public boolean enterIfInterruptibly(Guard guard, long time, TimeUnit unit)
      throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    if (!lock.tryLock(time, unit)) {
      return false;
    }
    boolean satisfied = false;
    try {
      satisfied = guard.isSatisfied();
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Enters this monitor if it is possible to do so immediately and the guard is satisfied. Does not
   * block acquiring the lock and does not wait for the guard to be satisfied.
   *
   * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
   *
   * @return whether the monitor was entered
   */
  public boolean tryEnterIf(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    final ReentrantLock lock = this.lock;
    if (!lock.tryLock()) {
      return false;
    }
    boolean satisfied = false;
    try {
      satisfied = guard.isSatisfied();
    } finally {
      if (!satisfied) {
        lock.unlock();
      }
    }
    return satisfied;
  }

  /**
   * Waits for the guard to be satisfied. Waits indefinitely, but may be interrupted. May be
   * called only by a thread currently occupying this monitor.
   */
  public void waitFor(Guard guard) throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    if (!lock.isHeldByCurrentThread()) {
      throw new IllegalMonitorStateException();
    }
    waitInterruptibly(guard, true);
  }

  /**
   * Waits for the guard to be satisfied. Waits indefinitely. May be called only by a thread
   * currently occupying this monitor.
   */
  public void waitForUninterruptibly(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    if (!lock.isHeldByCurrentThread()) {
      throw new IllegalMonitorStateException();
    }
    waitUninterruptibly(guard, true);
  }

  /**
   * Waits for the guard to be satisfied. Waits at most the given time, and may be interrupted.
   * May be called only by a thread currently occupying this monitor.
   *
   * @return whether the guard is now satisfied
   */
  public boolean waitFor(Guard guard, long time, TimeUnit unit) throws InterruptedException {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    if (!lock.isHeldByCurrentThread()) {
      throw new IllegalMonitorStateException();
    }
    return waitInterruptibly(guard, unit.toNanos(time), true);
  }

  /**
   * Waits for the guard to be satisfied. Waits at most the given time. May be called only by a
   * thread currently occupying this monitor.
   *
   * @return whether the guard is now satisfied
   */
  public boolean waitForUninterruptibly(Guard guard, long time, TimeUnit unit) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    if (!lock.isHeldByCurrentThread()) {
      throw new IllegalMonitorStateException();
    }
    return waitUninterruptibly(guard, unit.toNanos(time), true);
  }

  /**
   * Leaves this monitor. May be called only by a thread currently occupying this monitor.
   */
  public void leave() {
    final ReentrantLock lock = this.lock;
    if (!lock.isHeldByCurrentThread()) {
      throw new IllegalMonitorStateException();
    }
    try {
      signalConditionsOfSatisfiedGuards(null);
    } finally {
      lock.unlock();
    }
  }

  /**
   * Returns whether this monitor is using a fair ordering policy.
   */
  public boolean isFair() {
    return lock.isFair();
  }

  /**
   * Returns whether this monitor is occupied by any thread. This method is designed for use in
   * monitoring of the system state, not for synchronization control.
   */
  public boolean isOccupied() {
    return lock.isLocked();
  }

  /**
   * Returns whether the current thread is occupying this monitor (has entered more times than it
   * has left).
   */
  public boolean isOccupiedByCurrentThread() {
    return lock.isHeldByCurrentThread();
  }

  /**
   * Returns the number of times the current thread has entered this monitor in excess of the number
   * of times it has left. Returns 0 if the current thread is not occupying this monitor.
   */
  public int getOccupiedDepth() {
    return lock.getHoldCount();
  }

  /**
   * Returns an estimate of the number of threads waiting to enter this monitor. The value is only
   * an estimate because the number of threads may change dynamically while this method traverses
   * internal data structures. This method is designed for use in monitoring of the system state,
   * not for synchronization control.
   */
  public int getQueueLength() {
    return lock.getQueueLength();
  }

  /**
   * Returns whether any threads are waiting to enter this monitor. Note that because cancellations
   * may occur at any time, a {@code true} return does not guarantee that any other thread will ever
   * enter this monitor. This method is designed primarily for use in monitoring of the system
   * state.
   */
  public boolean hasQueuedThreads() {
    return lock.hasQueuedThreads();
  }

  /**
   * Queries whether the given thread is waiting to enter this monitor. Note that because
   * cancellations may occur at any time, a {@code true} return does not guarantee that this thread
   * will ever enter this monitor. This method is designed primarily for use in monitoring of the
   * system state.
   */
  public boolean hasQueuedThread(Thread thread) {
    return lock.hasQueuedThread(thread);
  }

  /**
   * Queries whether any threads are waiting for the given guard to become satisfied. Note that
   * because timeouts and interrupts may occur at any time, a {@code true} return does not guarantee
   * that the guard becoming satisfied in the future will awaken any threads. This method is
   * designed primarily for use in monitoring of the system state.
   */
  public boolean hasWaiters(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    lock.lock();
    try {
      return guard.waiterCount > 0;
    } finally {
      lock.unlock();
    }
  }

  /**
   * Returns an estimate of the number of threads waiting for the given guard to become satisfied.
   * Note that because timeouts and interrupts may occur at any time, the estimate serves only as an
   * upper bound on the actual number of waiters. This method is designed for use in monitoring of
   * the system state, not for synchronization control.
   */
  public int getWaitQueueLength(Guard guard) {
    if (guard.monitor != this) {
      throw new IllegalMonitorStateException();
    }
    lock.lock();
    try {
      return guard.waiterCount;
    } finally {
      lock.unlock();
    }
  }

  @GuardedBy("lock")
  private void signalConditionsOfSatisfiedGuards(@Nullable Guard interruptedGuard) {
    final ArrayList<Guard> guards = this.activeGuards;
    final int guardCount = guards.size();
    try {
      for (int i = 0; i < guardCount; i++) {
        Guard guard = guards.get(i);
        if ((guard == interruptedGuard) && (guard.waiterCount == 1)) {
          // That one waiter was just interrupted and is throwing InterruptedException rather than
          // paying attention to the guard being satisfied, so find another waiter on another guard.
          continue;
        }
        if (guard.isSatisfied()) {
          guard.condition.signal();
          return;
        }
      }
    } catch (Throwable throwable) {
      for (int i = 0; i < guardCount; i++) {
        Guard guard = guards.get(i);
        guard.condition.signalAll();
      }
      throw Throwables.propagate(throwable);
    }
  }
  
  @GuardedBy("lock")
  private void incrementWaiters(Guard guard) {
    int waiters = guard.waiterCount++;
    if (waiters == 0) {
      activeGuards.add(guard);
    }
  }

  @GuardedBy("lock")
  private void decrementWaiters(Guard guard) {
    int waiters = --guard.waiterCount;
    if (waiters == 0) {
      activeGuards.remove(guard);
    }
  }

  @GuardedBy("lock")
  private void waitInterruptibly(Guard guard, boolean signalBeforeWaiting)
      throws InterruptedException {
    if (!guard.isSatisfied()) {
      if (signalBeforeWaiting) {
        signalConditionsOfSatisfiedGuards(null);
      }
      incrementWaiters(guard);
      try {
        final Condition condition = guard.condition;
        do {
          try {
            condition.await();
          } catch (InterruptedException interrupt) {
            try {
              signalConditionsOfSatisfiedGuards(guard);
            } catch (Throwable throwable) {
              Thread.currentThread().interrupt();
              throw Throwables.propagate(throwable);
            }
            throw interrupt;
          }
        } while (!guard.isSatisfied());
      } finally {
        decrementWaiters(guard);
      }
    }
  }

  @GuardedBy("lock")
  private void waitUninterruptibly(Guard guard, boolean signalBeforeWaiting) {
    if (!guard.isSatisfied()) {
      if (signalBeforeWaiting) {
        signalConditionsOfSatisfiedGuards(null);
      }
      incrementWaiters(guard);
      try {
        final Condition condition = guard.condition;
        do {
          condition.awaitUninterruptibly();
        } while (!guard.isSatisfied());
      } finally {
        decrementWaiters(guard);
      }
    }
  }

  @GuardedBy("lock")
  private boolean waitInterruptibly(Guard guard, long remainingNanos, boolean signalBeforeWaiting)
      throws InterruptedException {
    if (!guard.isSatisfied()) {
      if (signalBeforeWaiting) {
        signalConditionsOfSatisfiedGuards(null);
      }
      incrementWaiters(guard);
      try {
        final Condition condition = guard.condition;
        do {
          if (remainingNanos <= 0) {
            return false;
          }
          try {
            remainingNanos = condition.awaitNanos(remainingNanos);
          } catch (InterruptedException interrupt) {
            try {
              signalConditionsOfSatisfiedGuards(guard);
            } catch (Throwable throwable) {
              Thread.currentThread().interrupt();
              throw Throwables.propagate(throwable);
            }
            throw interrupt;
          }
        } while (!guard.isSatisfied());
      } finally {
        decrementWaiters(guard);
      }
    }
    return true;
  }

  @GuardedBy("lock")
  private boolean waitUninterruptibly(Guard guard, long timeoutNanos,
      boolean signalBeforeWaiting) {
    if (!guard.isSatisfied()) {
      long startNanos = System.nanoTime();
      if (signalBeforeWaiting) {
        signalConditionsOfSatisfiedGuards(null);
      }
      boolean interruptIgnored = false;
      try {
        incrementWaiters(guard);
        try {
          final Condition condition = guard.condition;
          long remainingNanos = timeoutNanos;
          do {
            if (remainingNanos <= 0) {
              return false;
            }
            try {
              remainingNanos = condition.awaitNanos(remainingNanos);
            } catch (InterruptedException ignored) {
              try {
                signalConditionsOfSatisfiedGuards(guard);
              } catch (Throwable throwable) {
                Thread.currentThread().interrupt();
                throw Throwables.propagate(throwable);
              }
              interruptIgnored = true;
              remainingNanos = (timeoutNanos - (System.nanoTime() - startNanos));
            }
          } while (!guard.isSatisfied());
        } finally {
          decrementWaiters(guard);
        }
      } finally {
        if (interruptIgnored) {
          Thread.currentThread().interrupt();
        }
      }
    }
    return true;
  }

}