summaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/util/concurrent/Striped.java
blob: 3c426f0c9223f3a4700338fe49e0d89bdc151033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.util.concurrent;

import com.google.common.annotations.Beta;
import com.google.common.base.Functions;
import com.google.common.base.Preconditions;
import com.google.common.base.Supplier;
import com.google.common.collect.Iterables;
import com.google.common.collect.MapMaker;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;

import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping
 * similar to that of {@code ConcurrentHashMap} in a reusable form, and extends it for
 * semaphores and read-write locks. Conceptually, lock striping is the technique of dividing a lock
 * into many <i>stripes</i>, increasing the granularity of a single lock and allowing independent
 * operations to lock different stripes and proceed concurrently, instead of creating contention
 * for a single lock.
 *
 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore),
 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)}
 * (assuming {@link Object#hashCode()} is correctly implemented for the keys). Note
 * that if {@code key1} is <strong>not</strong> equal to {@code key2}, it is <strong>not</strong>
 * guaranteed that {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless
 * be mapped to the same lock. The lower the number of stripes, the higher the probability of this
 * happening.
 *
 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>},
 * and {@code Striped<ReadWriteLock>}. For each type, two implementations are offered:
 * {@linkplain #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak}
 * {@code Striped<Lock>}, {@linkplain #semaphore(int, int) strong} and {@linkplain
 * #lazyWeakSemaphore(int, int) weak} {@code Striped<Semaphore>}, and {@linkplain
 * #readWriteLock(int) strong} and {@linkplain #lazyWeakReadWriteLock(int) weak}
 * {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all stripes (locks/semaphores) are
 * initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable.
 * <i>Weak</i> means that locks/semaphores are created lazily, and they are allowed to be reclaimed
 * if nobody is holding on to them. This is useful, for example, if one wants to create a {@code
 * Striped<Lock>} of many locks, but worries that in most cases only a small portion of these
 * would be in use.
 *
 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K}
 * represents the task. This maximizes concurrency by having each unique key mapped to a unique
 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock
 * for all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of
 * choosing either of these extremes, {@code Striped} allows the user to trade between required
 * concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could easily
 * create a very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes,
 * instead of possibly thousands of locks which could be created in a {@code Map<K, Lock>}
 * structure.
 *
 * @author Dimitris Andreou
 * @since 13.0
 */
@Beta
public abstract class Striped<L> {
  private Striped() {}

  /**
   * Returns the stripe that corresponds to the passed key. It is always guaranteed that if
   * {@code key1.equals(key2)}, then {@code get(key1) == get(key2)}.
   *
   * @param key an arbitrary, non-null key
   * @return the stripe that the passed key corresponds to
   */
  public abstract L get(Object key);

  /**
   * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to
   * {@code size()}, exclusively.
   *
   * @param index the index of the stripe to return; must be in {@code [0...size())}
   * @return the stripe at the specified index
   */
  public abstract L getAt(int index);

  /**
   * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key).
   */
  abstract int indexFor(Object key);

  /**
   * Returns the total number of stripes in this instance.
   */
  public abstract int size();

  /**
   * Returns the stripes that correspond to the passed objects, in ascending (as per
   * {@link #getAt(int)}) order. Thus, threads that use the stripes in the order returned
   * by this method are guaranteed to not deadlock each other.
   *
   * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and
   * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number
   * of shared stripes (much like the birthday paradox, where much fewer than anticipated birthdays
   * are needed for a pair of them to match). Please consider carefully the implications of the
   * number of stripes, the intended concurrency level, and the typical number of keys used in a
   * {@code bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls
   * in Bins model</a> for mathematical formulas that can be used to estimate the probability of
   * collisions.
   *
   * @param keys arbitrary non-null keys
   * @return the stripes corresponding to the objects (one per each object, derived by delegating
   *         to {@link #get(Object)}; may contain duplicates), in an increasing index order.
   */
  public Iterable<L> bulkGet(Iterable<?> keys) {
    // Initially using the array to store the keys, then reusing it to store the respective L's
    final Object[] array = Iterables.toArray(keys, Object.class);
    int[] stripes = new int[array.length];
    for (int i = 0; i < array.length; i++) {
      stripes[i] = indexFor(array[i]);
    }
    Arrays.sort(stripes);
    for (int i = 0; i < array.length; i++) {
      array[i] = getAt(stripes[i]);
    }
    /*
     * Note that the returned Iterable holds references to the returned stripes, to avoid
     * error-prone code like:
     *
     * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)'
     * Iterable<Lock> locks = stripedLock.bulkGet(keys);
     * for (Lock lock : locks) {
     *   lock.lock();
     * }
     * operation();
     * for (Lock lock : locks) {
     *   lock.unlock();
     * }
     *
     * If we only held the int[] stripes, translating it on the fly to L's, the original locks
     * might be garbage collected after locking them, ending up in a huge mess.
     */
    @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's
    List<L> asList = (List<L>) Arrays.asList(array);
    return Collections.unmodifiableList(asList);
  }

  // Static factories

  /**
   * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks, with the
   * specified fairness. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<Lock>}
   */
  public static Striped<Lock> lock(int stripes) {
    return new CompactStriped<Lock>(stripes, new Supplier<Lock>() {
      public Lock get() {
        return new PaddedLock();
      }
    });
  }

  /**
   * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks, with the
   * specified fairness. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<Lock>}
   */
  public static Striped<Lock> lazyWeakLock(int stripes) {
    return new LazyStriped<Lock>(stripes, new Supplier<Lock>() {
      public Lock get() {
        return new ReentrantLock(false);
      }
    });
  }

  /**
   * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores,
   * with the specified number of permits and fairness.
   *
   * @param stripes the minimum number of stripes (semaphores) required
   * @param permits the number of permits in each semaphore
   * @return a new {@code Striped<Semaphore>}
   */
  public static Striped<Semaphore> semaphore(int stripes, final int permits) {
    return new CompactStriped<Semaphore>(stripes, new Supplier<Semaphore>() {
      public Semaphore get() {
        return new PaddedSemaphore(permits);
      }
    });
  }

  /**
   * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores,
   * with the specified number of permits and fairness.
   *
   * @param stripes the minimum number of stripes (semaphores) required
   * @param permits the number of permits in each semaphore
   * @return a new {@code Striped<Semaphore>}
   */
  public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) {
    return new LazyStriped<Semaphore>(stripes, new Supplier<Semaphore>() {
      public Semaphore get() {
        return new Semaphore(permits, false);
      }
    });
  }

  /**
   * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced
   * read-write locks, with the specified fairness. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<ReadWriteLock>}
   */
  public static Striped<ReadWriteLock> readWriteLock(int stripes) {
    return new CompactStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER);
  }

  /**
   * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced
   * read-write locks, with the specified fairness. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<ReadWriteLock>}
   */
  public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) {
    return new LazyStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER);
  }

  // ReentrantReadWriteLock is large enough to make padding probably unnecessary
  private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER =
      new Supplier<ReadWriteLock>() {
    public ReadWriteLock get() {
      return new ReentrantReadWriteLock();
    }
  };

  private abstract static class PowerOfTwoStriped<L> extends Striped<L> {
    /** Capacity (power of two) minus one, for fast mod evaluation */
    final int mask;

    PowerOfTwoStriped(int stripes) {
      Preconditions.checkArgument(stripes > 0, "Stripes must be positive");
      this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1;
    }

    @Override final int indexFor(Object key) {
      int hash = smear(key.hashCode());
      return hash & mask;
    }

    @Override public final L get(Object key) {
      return getAt(indexFor(key));
    }
  }

  /**
   * Implementation of Striped where 2^k stripes are represented as an array of the same length,
   * eagerly initialized.
   */
  private static class CompactStriped<L> extends PowerOfTwoStriped<L> {
    /** Size is a power of two. */
    private final Object[] array;

    private CompactStriped(int stripes, Supplier<L> supplier) {
      super(stripes);
      Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)");

      this.array = new Object[mask + 1];
      for (int i = 0; i < array.length; i++) {
        array[i] = supplier.get();
      }
    }

    @SuppressWarnings("unchecked") // we only put L's in the array
    @Override public L getAt(int index) {
      return (L) array[index];
    }

    @Override public int size() {
      return array.length;
    }
  }

  /**
   * Implementation of Striped where up to 2^k stripes can be represented, using a Cache
   * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the
   * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
   */
  private static class LazyStriped<L> extends PowerOfTwoStriped<L> {
    final ConcurrentMap<Integer, L> cache;
    final int size;

    LazyStriped(int stripes, Supplier<L> supplier) {
      super(stripes);
      this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
      this.cache = new MapMaker().weakValues().makeComputingMap(Functions.forSupplier(supplier));
    }

    @Override public L getAt(int index) {
      Preconditions.checkElementIndex(index, size());
      return cache.get(index);
    }

    @Override public int size() {
      return size;
    }
  }

  /**
   * A bit mask were all bits are set.
   */
  private static final int ALL_SET = ~0;

  private static int ceilToPowerOfTwo(int x) {
    return 1 << IntMath.log2(x, RoundingMode.CEILING);
  }

  /*
   * This method was written by Doug Lea with assistance from members of JCP
   * JSR-166 Expert Group and released to the public domain, as explained at
   * http://creativecommons.org/licenses/publicdomain
   *
   * As of 2010/06/11, this method is identical to the (package private) hash
   * method in OpenJDK 7's java.util.HashMap class.
   */
  // Copied from java/com/google/common/collect/Hashing.java
  private static int smear(int hashCode) {
    hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12);
    return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4);
  }

  private static class PaddedLock extends ReentrantLock {
    /*
     * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add
     * a fourth long here, to minimize chance of interference between consecutive locks,
     * but I couldn't observe any benefit from that.
     */
    @SuppressWarnings("unused")
    long q1, q2, q3;

    PaddedLock() {
      super(false);
    }
  }

  private static class PaddedSemaphore extends Semaphore {
    // See PaddedReentrantLock comment
    @SuppressWarnings("unused")
    long q1, q2, q3;

    PaddedSemaphore(int permits) {
      super(permits, false);
    }
  }
}