aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2009-01-21 18:09:24 +0000
committerChris Lattner <sabre@nondot.org>2009-01-21 18:09:24 +0000
commit455e9abf362a20bcfde9170fbec86b79ca0c40d5 (patch)
tree82e2a8e4b5b2033879cac4ba6b36ea5dea96f16b
parent764fd0cbc8a0ee512a9352cfeb123e8778542d28 (diff)
downloadexternal_llvm-455e9abf362a20bcfde9170fbec86b79ca0c40d5.zip
external_llvm-455e9abf362a20bcfde9170fbec86b79ca0c40d5.tar.gz
external_llvm-455e9abf362a20bcfde9170fbec86b79ca0c40d5.tar.bz2
Remove uses of uint32_t in favor of 'unsigned' for better
compatibility with cygwin. Patch by Jay Foad! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62695 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Support/APInt.cpp386
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp2
2 files changed, 194 insertions, 194 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index e79abb2..367c75b 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -27,7 +27,7 @@ using namespace llvm;
/// A utility function for allocating memory, checking for allocation failures,
/// and ensuring the contents are zeroed.
-inline static uint64_t* getClearedMemory(uint32_t numWords) {
+inline static uint64_t* getClearedMemory(unsigned numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
memset(result, 0, numWords * sizeof(uint64_t));
@@ -36,13 +36,13 @@ inline static uint64_t* getClearedMemory(uint32_t numWords) {
/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
-inline static uint64_t* getMemory(uint32_t numWords) {
+inline static uint64_t* getMemory(unsigned numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
return result;
}
-void APInt::initSlowCase(uint32_t numBits, uint64_t val, bool isSigned) {
+void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
if (isSigned && int64_t(val) < 0)
@@ -56,7 +56,7 @@ void APInt::initSlowCase(const APInt& that) {
}
-APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
+APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
: BitWidth(numBits), VAL(0) {
assert(BitWidth && "bitwidth too small");
assert(bigVal && "Null pointer detected!");
@@ -66,7 +66,7 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
// Get memory, cleared to 0
pVal = getClearedMemory(getNumWords());
// Calculate the number of words to copy
- uint32_t words = std::min<uint32_t>(numWords, getNumWords());
+ unsigned words = std::min<unsigned>(numWords, getNumWords());
// Copy the words from bigVal to pVal
memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
}
@@ -74,7 +74,7 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
clearUnusedBits();
}
-APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
+APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
uint8_t radix)
: BitWidth(numbits), VAL(0) {
assert(BitWidth && "bitwidth too small");
@@ -132,7 +132,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
return;
}
- uint32_t NumWords = getNumWords();
+ unsigned NumWords = getNumWords();
for (unsigned i = 0; i < NumWords; ++i)
ID.AddInteger(pVal[i]);
}
@@ -141,8 +141,8 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
-static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
- for (uint32_t i = 0; i < len; ++i) {
+static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
dest[i] = y + x[i];
if (dest[i] < y)
y = 1; // Carry one to next digit.
@@ -169,8 +169,8 @@ APInt& APInt::operator++() {
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
/// @returns the borrow out of the subtraction
-static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
- for (uint32_t i = 0; i < len; ++i) {
+static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
if (y > X)
@@ -197,9 +197,9 @@ APInt& APInt::operator--() {
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- uint32_t len) {
+ unsigned len) {
bool carry = false;
- for (uint32_t i = 0; i< len; ++i) {
+ for (unsigned i = 0; i< len; ++i) {
uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
dest[i] = x[i] + y[i] + carry;
carry = dest[i] < limit || (carry && dest[i] == limit);
@@ -224,9 +224,9 @@ APInt& APInt::operator+=(const APInt& RHS) {
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- uint32_t len) {
+ unsigned len) {
bool borrow = false;
- for (uint32_t i = 0; i < len; ++i) {
+ for (unsigned i = 0; i < len; ++i) {
uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
borrow = y[i] > x_tmp || (borrow && x[i] == 0);
dest[i] = x_tmp - y[i];
@@ -250,13 +250,13 @@ APInt& APInt::operator-=(const APInt& RHS) {
/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
-static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
+static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
// Split y into high 32-bit part (hy) and low 32-bit part (ly)
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0;
// For each digit of x.
- for (uint32_t i = 0; i < len; ++i) {
+ for (unsigned i = 0; i < len; ++i) {
// Split x into high and low words
uint64_t lx = x[i] & 0xffffffffULL;
uint64_t hx = x[i] >> 32;
@@ -284,13 +284,13 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
-static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
- uint32_t ylen) {
+static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
+ unsigned ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
- for (uint32_t i = 1; i < ylen; ++i) {
+ for (unsigned i = 1; i < ylen; ++i) {
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
uint64_t carry = 0, lx = 0, hx = 0;
- for (uint32_t j = 0; j < xlen; ++j) {
+ for (unsigned j = 0; j < xlen; ++j) {
lx = x[j] & 0xffffffffULL;
hx = x[j] >> 32;
// hasCarry - A flag to indicate if has carry.
@@ -323,15 +323,15 @@ APInt& APInt::operator*=(const APInt& RHS) {
}
// Get some bit facts about LHS and check for zero
- uint32_t lhsBits = getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
if (!lhsWords)
// 0 * X ===> 0
return *this;
// Get some bit facts about RHS and check for zero
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
if (!rhsWords) {
// X * 0 ===> 0
clear();
@@ -339,7 +339,7 @@ APInt& APInt::operator*=(const APInt& RHS) {
}
// Allocate space for the result
- uint32_t destWords = rhsWords + lhsWords;
+ unsigned destWords = rhsWords + lhsWords;
uint64_t *dest = getMemory(destWords);
// Perform the long multiply
@@ -347,7 +347,7 @@ APInt& APInt::operator*=(const APInt& RHS) {
// Copy result back into *this
clear();
- uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
+ unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
// delete dest array and return
@@ -361,8 +361,8 @@ APInt& APInt::operator&=(const APInt& RHS) {
VAL &= RHS.VAL;
return *this;
}
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
pVal[i] &= RHS.pVal[i];
return *this;
}
@@ -373,8 +373,8 @@ APInt& APInt::operator|=(const APInt& RHS) {
VAL |= RHS.VAL;
return *this;
}
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
pVal[i] |= RHS.pVal[i];
return *this;
}
@@ -386,32 +386,32 @@ APInt& APInt::operator^=(const APInt& RHS) {
this->clearUnusedBits();
return *this;
}
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
return clearUnusedBits();
}
APInt APInt::AndSlowCase(const APInt& RHS) const {
- uint32_t numWords = getNumWords();
+ unsigned numWords = getNumWords();
uint64_t* val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
+ for (unsigned i = 0; i < numWords; ++i)
val[i] = pVal[i] & RHS.pVal[i];
return APInt(val, getBitWidth());
}
APInt APInt::OrSlowCase(const APInt& RHS) const {
- uint32_t numWords = getNumWords();
+ unsigned numWords = getNumWords();
uint64_t *val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
+ for (unsigned i = 0; i < numWords; ++i)
val[i] = pVal[i] | RHS.pVal[i];
return APInt(val, getBitWidth());
}
APInt APInt::XorSlowCase(const APInt& RHS) const {
- uint32_t numWords = getNumWords();
+ unsigned numWords = getNumWords();
uint64_t *val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
+ for (unsigned i = 0; i < numWords; ++i)
val[i] = pVal[i] ^ RHS.pVal[i];
// 0^0==1 so clear the high bits in case they got set.
@@ -422,7 +422,7 @@ bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
- for (uint32_t i = 0; i < getNumWords(); ++i)
+ for (unsigned i = 0; i < getNumWords(); ++i)
if (pVal[i])
return false;
return true;
@@ -455,15 +455,15 @@ APInt APInt::operator-(const APInt& RHS) const {
return Result.clearUnusedBits();
}
-bool APInt::operator[](uint32_t bitPosition) const {
+bool APInt::operator[](unsigned bitPosition) const {
return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
bool APInt::EqualSlowCase(const APInt& RHS) const {
// Get some facts about the number of bits used in the two operands.
- uint32_t n1 = getActiveBits();
- uint32_t n2 = RHS.getActiveBits();
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
if (n1 != n2)
@@ -481,7 +481,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
}
bool APInt::EqualSlowCase(uint64_t Val) const {
- uint32_t n = getActiveBits();
+ unsigned n = getActiveBits();
if (n <= APINT_BITS_PER_WORD)
return pVal[0] == Val;
else
@@ -494,8 +494,8 @@ bool APInt::ult(const APInt& RHS) const {
return VAL < RHS.VAL;
// Get active bit length of both operands
- uint32_t n1 = getActiveBits();
- uint32_t n2 = RHS.getActiveBits();
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
// If magnitude of LHS is less than RHS, return true.
if (n1 < n2)
@@ -510,7 +510,7 @@ bool APInt::ult(const APInt& RHS) const {
return pVal[0] < RHS.pVal[0];
// Otherwise, compare all words
- uint32_t topWord = whichWord(std::max(n1,n2)-1);
+ unsigned topWord = whichWord(std::max(n1,n2)-1);
for (int i = topWord; i >= 0; --i) {
if (pVal[i] > RHS.pVal[i])
return false;
@@ -556,7 +556,7 @@ bool APInt::slt(const APInt& RHS) const {
return lhs.ult(rhs);
}
-APInt& APInt::set(uint32_t bitPosition) {
+APInt& APInt::set(unsigned bitPosition) {
if (isSingleWord())
VAL |= maskBit(bitPosition);
else
@@ -566,7 +566,7 @@ APInt& APInt::set(uint32_t bitPosition) {
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
-APInt& APInt::clear(uint32_t bitPosition) {
+APInt& APInt::clear(unsigned bitPosition) {
if (isSingleWord())
VAL &= ~maskBit(bitPosition);
else
@@ -579,19 +579,19 @@ APInt& APInt::clear(uint32_t bitPosition) {
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
-APInt& APInt::flip(uint32_t bitPosition) {
+APInt& APInt::flip(unsigned bitPosition) {
assert(bitPosition < BitWidth && "Out of the bit-width range!");
if ((*this)[bitPosition]) clear(bitPosition);
else set(bitPosition);
return *this;
}
-uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
+unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
assert(str != 0 && "Invalid value string");
assert(slen > 0 && "Invalid string length");
// Each computation below needs to know if its negative
- uint32_t isNegative = str[0] == '-';
+ unsigned isNegative = str[0] == '-';
if (isNegative) {
slen--;
str++;
@@ -614,7 +614,7 @@ uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
// Compute a sufficient number of bits that is always large enough but might
// be too large. This avoids the assertion in the constructor.
- uint32_t sufficient = slen*64/18;
+ unsigned sufficient = slen*64/18;
// Convert to the actual binary value.
APInt tmp(sufficient, str, slen, radix);
@@ -631,18 +631,18 @@ uint64_t APInt::getHashValue() const {
if (isSingleWord())
hash += VAL << 6; // clear separation of up to 64 bits
else
- for (uint32_t i = 0; i < getNumWords(); ++i)
+ for (unsigned i = 0; i < getNumWords(); ++i)
hash += pVal[i] << 6; // clear sepration of up to 64 bits
return hash;
}
/// HiBits - This function returns the high "numBits" bits of this APInt.
-APInt APInt::getHiBits(uint32_t numBits) const {
+APInt APInt::getHiBits(unsigned numBits) const {
return APIntOps::lshr(*this, BitWidth - numBits);
}
/// LoBits - This function returns the low "numBits" bits of this APInt.
-APInt APInt::getLoBits(uint32_t numBits) const {
+APInt APInt::getLoBits(unsigned numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
@@ -651,9 +651,9 @@ bool APInt::isPowerOf2() const {
return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
}
-uint32_t APInt::countLeadingZerosSlowCase() const {
- uint32_t Count = 0;
- for (uint32_t i = getNumWords(); i > 0u; --i) {
+unsigned APInt::countLeadingZerosSlowCase() const {
+ unsigned Count = 0;
+ for (unsigned i = getNumWords(); i > 0u; --i) {
if (pVal[i-1] == 0)
Count += APINT_BITS_PER_WORD;
else {
@@ -661,14 +661,14 @@ uint32_t APInt::countLeadingZerosSlowCase() const {
break;
}
}
- uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
+ unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
if (remainder)
Count -= APINT_BITS_PER_WORD - remainder;
return std::min(Count, BitWidth);
}
-static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
- uint32_t Count = 0;
+static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
+ unsigned Count = 0;
if (skip)
V <<= skip;
while (V && (V & (1ULL << 63))) {
@@ -678,14 +678,14 @@ static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
return Count;
}
-uint32_t APInt::countLeadingOnes() const {
+unsigned APInt::countLeadingOnes() const {
if (isSingleWord())
return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
- uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
- uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
+ unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
+ unsigned shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
int i = getNumWords() - 1;
- uint32_t Count = countLeadingOnes_64(pVal[i], shift);
+ unsigned Count = countLeadingOnes_64(pVal[i], shift);
if (Count == highWordBits) {
for (i--; i >= 0; --i) {
if (pVal[i] == -1ULL)
@@ -699,11 +699,11 @@ uint32_t APInt::countLeadingOnes() const {
return Count;
}
-uint32_t APInt::countTrailingZeros() const {
+unsigned APInt::countTrailingZeros() const {
if (isSingleWord())
- return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
- uint32_t Count = 0;
- uint32_t i = 0;
+ return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
+ unsigned Count = 0;
+ unsigned i = 0;
for (; i < getNumWords() && pVal[i] == 0; ++i)
Count += APINT_BITS_PER_WORD;
if (i < getNumWords())
@@ -711,9 +711,9 @@ uint32_t APInt::countTrailingZeros() const {
return std::min(Count, BitWidth);
}
-uint32_t APInt::countTrailingOnesSlowCase() const {
- uint32_t Count = 0;
- uint32_t i = 0;
+unsigned APInt::countTrailingOnesSlowCase() const {
+ unsigned Count = 0;
+ unsigned i = 0;
for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Count += APINT_BITS_PER_WORD;
if (i < getNumWords())
@@ -721,9 +721,9 @@ uint32_t APInt::countTrailingOnesSlowCase() const {
return std::min(Count, BitWidth);
}
-uint32_t APInt::countPopulationSlowCase() const {
- uint32_t Count = 0;
- for (uint32_t i = 0; i < getNumWords(); ++i)
+unsigned APInt::countPopulationSlowCase() const {
+ unsigned Count = 0;
+ for (unsigned i = 0; i < getNumWords(); ++i)
Count += CountPopulation_64(pVal[i]);
return Count;
}
@@ -733,9 +733,9 @@ APInt APInt::byteSwap() const {
if (BitWidth == 16)
return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
else if (BitWidth == 32)
- return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
+ return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
else if (BitWidth == 48) {
- uint32_t Tmp1 = uint32_t(VAL >> 16);
+ unsigned Tmp1 = unsigned(VAL >> 16);
Tmp1 = ByteSwap_32(Tmp1);
uint16_t Tmp2 = uint16_t(VAL);
Tmp2 = ByteSwap_16(Tmp2);
@@ -745,7 +745,7 @@ APInt APInt::byteSwap() const {
else {
APInt Result(BitWidth, 0);
char *pByte = (char*)Result.pVal;
- for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
+ for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
char Tmp = pByte[i];
pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
@@ -765,7 +765,7 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
return A;
}
-APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
+APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
union {
double D;
uint64_t I;
@@ -797,7 +797,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
// Otherwise, we have to shift the mantissa bits up to the right location
APInt Tmp(width, mantissa);
- Tmp = Tmp.shl((uint32_t)exp - 52);
+ Tmp = Tmp.shl((unsigned)exp - 52);
return isNeg ? -Tmp : Tmp;
}
@@ -826,7 +826,7 @@ double APInt::roundToDouble(bool isSigned) const {
APInt Tmp(isNeg ? -(*this) : (*this));
// Figure out how many bits we're using.
- uint32_t n = Tmp.getActiveBits();
+ unsigned n = Tmp.getActiveBits();
// The exponent (without bias normalization) is just the number of bits
// we are using. Note that the sign bit is gone since we constructed the
@@ -868,12 +868,12 @@ double APInt::roundToDouble(bool isSigned) const {
}
// Truncate to new width.
-APInt &APInt::trunc(uint32_t width) {
+APInt &APInt::trunc(unsigned width) {
assert(width < BitWidth && "Invalid APInt Truncate request");
assert(width && "Can't truncate to 0 bits");
- uint32_t wordsBefore = getNumWords();
+ unsigned wordsBefore = getNumWords();
BitWidth = width;
- uint32_t wordsAfter = getNumWords();
+ unsigned wordsAfter = getNumWords();
if (wordsBefore != wordsAfter) {
if (wordsAfter == 1) {
uint64_t *tmp = pVal;
@@ -881,7 +881,7 @@ APInt &APInt::trunc(uint32_t width) {
delete [] tmp;
} else {
uint64_t *newVal = getClearedMemory(wordsAfter);
- for (uint32_t i = 0; i < wordsAfter; ++i)
+ for (unsigned i = 0; i < wordsAfter; ++i)
newVal[i] = pVal[i];
delete [] pVal;
pVal = newVal;
@@ -891,7 +891,7 @@ APInt &APInt::trunc(uint32_t width) {
}
// Sign extend to a new width.
-APInt &APInt::sext(uint32_t width) {
+APInt &APInt::sext(unsigned width) {
assert(width > BitWidth && "Invalid APInt SignExtend request");
// If the sign bit isn't set, this is the same as zext.
if (!isNegative()) {
@@ -900,14 +900,14 @@ APInt &APInt::sext(uint32_t width) {
}
// The sign bit is set. First, get some facts
- uint32_t wordsBefore = getNumWords();
- uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
+ unsigned wordsBefore = getNumWords();
+ unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
BitWidth = width;
- uint32_t wordsAfter = getNumWords();
+ unsigned wordsAfter = getNumWords();
// Mask the high order word appropriately
if (wordsBefore == wordsAfter) {
- uint32_t newWordBits = width % APINT_BITS_PER_WORD;
+ unsigned newWordBits = width % APINT_BITS_PER_WORD;
// The extension is contained to the wordsBefore-1th word.
uint64_t mask = ~0ULL;
if (newWordBits)
@@ -925,11 +925,11 @@ APInt &APInt::sext(uint32_t width) {
if (wordsBefore == 1)
newVal[0] = VAL | mask;
else {
- for (uint32_t i = 0; i < wordsBefore; ++i)
+ for (unsigned i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
newVal[wordsBefore-1] |= mask;
}
- for (uint32_t i = wordsBefore; i < wordsAfter; i++)
+ for (unsigned i = wordsBefore; i < wordsAfter; i++)
newVal[i] = -1ULL;
if (wordsBefore != 1)
delete [] pVal;
@@ -938,17 +938,17 @@ APInt &APInt::sext(uint32_t width) {
}
// Zero extend to a new width.
-APInt &APInt::zext(uint32_t width) {
+APInt &APInt::zext(unsigned width) {
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
- uint32_t wordsBefore = getNumWords();
+ unsigned wordsBefore = getNumWords();
BitWidth = width;
- uint32_t wordsAfter = getNumWords();
+ unsigned wordsAfter = getNumWords();
if (wordsBefore != wordsAfter) {
uint64_t *newVal = getClearedMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL;
else
- for (uint32_t i = 0; i < wordsBefore; ++i)
+ for (unsigned i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
if (wordsBefore != 1)
delete [] pVal;
@@ -957,7 +957,7 @@ APInt &APInt::zext(uint32_t width) {
return *this;
}
-APInt &APInt::zextOrTrunc(uint32_t width) {
+APInt &APInt::zextOrTrunc(unsigned width) {
if (BitWidth < width)
return zext(width);
if (BitWidth > width)
@@ -965,7 +965,7 @@ APInt &APInt::zextOrTrunc(uint32_t width) {
return *this;
}
-APInt &APInt::sextOrTrunc(uint32_t width) {
+APInt &APInt::sextOrTrunc(unsigned width) {
if (BitWidth < width)
return sext(width);
if (BitWidth > width)
@@ -976,12 +976,12 @@ APInt &APInt::sextOrTrunc(uint32_t width) {
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(const APInt &shiftAmt) const {
- return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+ return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
-APInt APInt::ashr(uint32_t shiftAmt) const {
+APInt APInt::ashr(unsigned shiftAmt) const {
assert(shiftAmt <= BitWidth && "Invalid shift amount");
// Handle a degenerate case
if (shiftAmt == 0)
@@ -992,7 +992,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0); // undefined
else {
- uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
+ unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
return APInt(BitWidth,
(((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
}
@@ -1012,17 +1012,17 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
uint64_t * val = new uint64_t[getNumWords()];
// Compute some values needed by the following shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
- uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
- uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
+ unsigned breakWord = getNumWords() - 1 - offset; // last word affected
+ unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
if (bitsInWord == 0)
bitsInWord = APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
// Move the words containing significant bits
- for (uint32_t i = 0; i <= breakWord; ++i)
+ for (unsigned i = 0; i <= breakWord; ++i)
val[i] = pVal[i+offset]; // move whole word
// Adjust the top significant word for sign bit fill, if negative
@@ -1031,7 +1031,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
val[breakWord] |= ~0ULL << bitsInWord; // set high bits
} else {
// Shift the low order words
- for (uint32_t i = 0; i < breakWord; ++i) {
+ for (unsigned i = 0; i < breakWord; ++i) {
// This combines the shifted corresponding word with the low bits from
// the next word (shifted into this word's high bits).
val[i] = (pVal[i+offset] >> wordShift) |
@@ -1057,7 +1057,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
// Remaining words are 0 or -1, just assign them.
uint64_t fillValue = (isNegative() ? -1ULL : 0);
- for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
val[i] = fillValue;
return APInt(val, BitWidth).clearUnusedBits();
}
@@ -1065,12 +1065,12 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(const APInt &shiftAmt) const {
- return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+ return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
}
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
-APInt APInt::lshr(uint32_t shiftAmt) const {
+APInt APInt::lshr(unsigned shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
@@ -1104,28 +1104,28 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
}
// Compute some values needed by the remaining shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
- for (uint32_t i = 0; i < getNumWords() - offset; ++i)
+ for (unsigned i = 0; i < getNumWords() - offset; ++i)
val[i] = pVal[i+offset];
- for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
+ for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
val[i] = 0;
return APInt(val,BitWidth).clearUnusedBits();
}
// Shift the low order words
- uint32_t breakWord = getNumWords() - offset -1;
- for (uint32_t i = 0; i < breakWord; ++i)
+ unsigned breakWord = getNumWords() - offset -1;
+ for (unsigned i = 0; i < breakWord; ++i)
val[i] = (pVal[i+offset] >> wordShift) |
(pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
// Shift the break word.
val[breakWord] = pVal[breakWord+offset] >> wordShift;
// Remaining words are 0
- for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
val[i] = 0;
return APInt(val, BitWidth).clearUnusedBits();
}
@@ -1134,10 +1134,10 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
/// @brief Left-shift function.
APInt APInt::shl(const APInt &shiftAmt) const {
// It's undefined behavior in C to shift by BitWidth or greater.
- return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+ return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
}
-APInt APInt::shlSlowCase(uint32_t shiftAmt) const {
+APInt APInt::shlSlowCase(unsigned shiftAmt) const {
// If all the bits were shifted out, the result is 0. This avoids issues
// with shifting by the size of the integer type, which produces undefined
// results. We define these "undefined results" to always be 0.
@@ -1156,7 +1156,7 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const {
// If we are shifting less than a word, do it the easy way
if (shiftAmt < APINT_BITS_PER_WORD) {
uint64_t carry = 0;
- for (uint32_t i = 0; i < getNumWords(); i++) {
+ for (unsigned i = 0; i < getNumWords(); i++) {
val[i] = pVal[i] << shiftAmt | carry;
carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
}
@@ -1164,20 +1164,20 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const {
}
// Compute some values needed by the remaining shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
- for (uint32_t i = 0; i < offset; i++)
+ for (unsigned i = 0; i < offset; i++)
val[i] = 0;
- for (uint32_t i = offset; i < getNumWords(); i++)
+ for (unsigned i = offset; i < getNumWords(); i++)
val[i] = pVal[i-offset];
return APInt(val,BitWidth).clearUnusedBits();
}
// Copy whole words from this to Result.
- uint32_t i = getNumWords() - 1;
+ unsigned i = getNumWords() - 1;
for (; i > offset; --i)
val[i] = pVal[i-offset] << wordShift |
pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
@@ -1188,10 +1188,10 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const {
}
APInt APInt::rotl(const APInt &rotateAmt) const {
- return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
+ return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
}
-APInt APInt::rotl(uint32_t rotateAmt) const {
+APInt APInt::rotl(unsigned rotateAmt) const {
if (rotateAmt == 0)
return *this;
// Don't get too fancy, just use existing shift/or facilities
@@ -1203,10 +1203,10 @@ APInt APInt::rotl(uint32_t rotateAmt) const {
}
APInt APInt::rotr(const APInt &rotateAmt) const {
- return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
+ return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
}
-APInt APInt::rotr(uint32_t rotateAmt) const {
+APInt APInt::rotr(unsigned rotateAmt) const {
if (rotateAmt == 0)
return *this;
// Don't get too fancy, just use existing shift/or facilities
@@ -1227,7 +1227,7 @@ APInt APInt::rotr(uint32_t rotateAmt) const {
APInt APInt::sqrt() const {
// Determine the magnitude of the value.
- uint32_t magnitude = getActiveBits();
+ unsigned magnitude = getActiveBits();
// Use a fast table for some small values. This also gets rid of some
// rounding errors in libc sqrt for small values.
@@ -1264,7 +1264,7 @@ APInt APInt::sqrt() const {
// was adapted to APINt from a wikipedia article on such computations.
// See http://www.wikipedia.org/ and go to the page named
// Calculate_an_integer_square_root.
- uint32_t nbits = BitWidth, i = 4;
+ unsigned nbits = BitWidth, i = 4;
APInt testy(BitWidth, 16);
APInt x_old(BitWidth, 1);
APInt x_new(BitWidth, 0);
@@ -1355,8 +1355,8 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
/// the algorithm and any deviation from it.
-static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
- uint32_t m, uint32_t n) {
+static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
+ unsigned m, unsigned n) {
assert(u && "Must provide dividend");
assert(v && "Must provide divisor");
assert(q && "Must provide quotient");
@@ -1383,17 +1383,17 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
// be of length m+n+1.
- uint32_t shift = CountLeadingZeros_32(v[n-1]);
- uint32_t v_carry = 0;
- uint32_t u_carry = 0;
+ unsigned shift = CountLeadingZeros_32(v[n-1]);
+ unsigned v_carry = 0;
+ unsigned u_carry = 0;
if (shift) {
- for (uint32_t i = 0; i < m+n; ++i) {
- uint32_t u_tmp = u[i] >> (32 - shift);
+ for (unsigned i = 0; i < m+n; ++i) {
+ unsigned u_tmp = u[i] >> (32 - shift);
u[i] = (u[i] << shift) | u_carry;
u_carry = u_tmp;
}
- for (uint32_t i = 0; i < n; ++i) {
- uint32_t v_tmp = v[i] >> (32 - shift);
+ for (unsigned i = 0; i < n; ++i) {
+ unsigned v_tmp = v[i] >> (32 - shift);
v[i] = (v[i] << shift) | v_carry;
v_carry = v_tmp;
}
@@ -1436,7 +1436,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// consists of a simple multiplication by a one-place number, combined with
// a subtraction.
bool isNeg = false;
- for (uint32_t i = 0; i < n; ++i) {
+ for (unsigned i = 0; i < n; ++i) {
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
@@ -1445,9 +1445,9 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
<< ", borrow = " << borrow << '\n');
uint64_t result = u_tmp - subtrahend;
- uint32_t k = j + i;
- u[k++] = (uint32_t)(result & (b-1)); // subtract low word
- u[k++] = (uint32_t)(result >> 32); // subtract high word
+ unsigned k = j + i;
+ u[k++] = (unsigned)(result & (b-1)); // subtract low word
+ u[k++] = (unsigned)(result >> 32); // subtract high word
while (borrow && k <= m+n) { // deal with borrow to the left
borrow = u[k] == 0;
u[k]--;
@@ -1467,7 +1467,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
//
if (isNeg) {
bool carry = true; // true because b's complement is "complement + 1"
- for (uint32_t i = 0; i <= m+n; ++i) {
+ for (unsigned i = 0; i <= m+n; ++i) {
u[i] = ~u[i] + carry; // b's complement
carry = carry && u[i] == 0;
}
@@ -1478,7 +1478,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
- q[j] = (uint32_t)qp;
+ q[j] = (unsigned)qp;
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
@@ -1488,8 +1488,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
- for (uint32_t i = 0; i < n; i++) {
- uint32_t limit = std::min(u[j+i],v[i]);
+ for (unsigned i = 0; i < n; i++) {
+ unsigned limit = std::min(u[j+i],v[i]);
u[j+i] += v[i] + carry;
carry = u[j+i] < limit || (carry && u[j+i] == limit);
}
@@ -1514,7 +1514,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// multiplication by d by using a shift left. So, all we have to do is
// shift right here. In order to mak
if (shift) {
- uint32_t carry = 0;
+ unsigned carry = 0;
DEBUG(cerr << "KnuthDiv: remainder:");
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
@@ -1534,8 +1534,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
#endif
}
-void APInt::divide(const APInt LHS, uint32_t lhsWords,
- const APInt &RHS, uint32_t rhsWords,
+void APInt::divide(const APInt LHS, unsigned lhsWords,
+ const APInt &RHS, unsigned rhsWords,
APInt *Quotient, APInt *Remainder)
{
assert(lhsWords >= rhsWords && "Fractional result");
@@ -1547,17 +1547,17 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
// can't use 64-bit operands here because we don't have native results of
// 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
- uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
- uint32_t n = rhsWords * 2;
- uint32_t m = (lhsWords * 2) - n;
+ uint64_t mask = ~0ull >> (sizeof(unsigned)*8);
+ unsigned n = rhsWords * 2;
+ unsigned m = (lhsWords * 2) - n;
// Allocate space for the temporary values we need either on the stack, if
// it will fit, or on the heap if it won't.
- uint32_t SPACE[128];
- uint32_t *U = 0;
- uint32_t *V = 0;
- uint32_t *Q = 0;
- uint32_t *R = 0;
+ unsigned SPACE[128];
+ unsigned *U = 0;
+ unsigned *V = 0;
+ unsigned *Q = 0;
+ unsigned *R = 0;
if ((Remainder?4:3)*n+2*m+1 <= 128) {
U = &SPACE[0];
V = &SPACE[m+n+1];
@@ -1565,34 +1565,34 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
if (Remainder)
R = &SPACE[(m+n+1) + n + (m+n)];
} else {
- U = new uint32_t[m + n + 1];
- V = new uint32_t[n];
- Q = new uint32_t[m+n];
+ U = new unsigned[m + n + 1];
+ V = new unsigned[n];
+ Q = new unsigned[m+n];
if (Remainder)
- R = new uint32_t[n];
+ R = new unsigned[n];
}
// Initialize the dividend
- memset(U, 0, (m+n+1)*sizeof(uint32_t));
+ memset(U, 0, (m+n+1)*sizeof(unsigned));
for (unsigned i = 0; i < lhsWords; ++i) {
uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
- U[i * 2] = (uint32_t)(tmp & mask);
- U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
+ U[i * 2] = (unsigned)(tmp & mask);
+ U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
}
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
// Initialize the divisor
- memset(V, 0, (n)*sizeof(uint32_t));
+ memset(V, 0, (n)*sizeof(unsigned));
for (unsigned i = 0; i < rhsWords; ++i) {
uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
- V[i * 2] = (uint32_t)(tmp & mask);
- V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
+ V[i * 2] = (unsigned)(tmp & mask);
+ V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
}
// initialize the quotient and remainder
- memset(Q, 0, (m+n) * sizeof(uint32_t));
+ memset(Q, 0, (m+n) * sizeof(unsigned));
if (Remainder)
- memset(R, 0, n * sizeof(uint32_t));
+ memset(R, 0, n * sizeof(unsigned));
// Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
@@ -1613,8 +1613,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
// are using base 2^32 instead of base 10.
assert(n != 0 && "Divide by zero?");
if (n == 1) {
- uint32_t divisor = V[0];
- uint32_t remainder = 0;
+ unsigned divisor = V[0];
+ unsigned remainder = 0;
for (int i = m+n-1; i >= 0; i--) {
uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
if (partial_dividend == 0) {
@@ -1622,13 +1622,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
remainder = 0;
} else if (partial_dividend < divisor) {
Q[i] = 0;
- remainder = (uint32_t)partial_dividend;
+ remainder = (unsigned)partial_dividend;
} else if (partial_dividend == divisor) {
Q[i] = 1;
remainder = 0;
} else {
- Q[i] = (uint32_t)(partial_dividend / divisor);
- remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
+ Q[i] = (unsigned)(partial_dividend / divisor);
+ remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
}
}
if (R)
@@ -1720,11 +1720,11 @@ APInt APInt::udiv(const APInt& RHS) const {
}
// Get some facts about the LHS and RHS number of bits and words
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Divided by zero???");
- uint32_t lhsBits = this->getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+ unsigned lhsBits = this->getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
if (!lhsWords)
@@ -1755,12 +1755,12 @@ APInt APInt::urem(const APInt& RHS) const {
}
// Get some facts about the LHS
- uint32_t lhsBits = getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
// Get some facts about the RHS
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Performing remainder operation by zero ???");
// Check the degenerate cases
@@ -1787,10 +1787,10 @@ APInt APInt::urem(const APInt& RHS) const {
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder) {
// Get some size facts about the dividend and divisor
- uint32_t lhsBits = LHS.getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ unsigned lhsBits = LHS.getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
// Check the degenerate cases
if (lhsWords == 0) {
@@ -1824,7 +1824,7 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
}
-void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
+void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
uint8_t radix) {
// Check our assumptions here
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
@@ -1843,7 +1843,7 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
pVal = getClearedMemory(getNumWords());
// Figure out if we can shift instead of multiply
- uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
+ unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
// Set up an APInt for the digit to add outside the loop so we don't
// constantly construct/destruct it.
@@ -1853,7 +1853,7 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
// Enter digit traversal loop
for (unsigned i = 0; i < slen; i++) {
// Get a digit
- uint32_t digit = 0;
+ unsigned digit = 0;
char cdigit = str[i];
if (radix == 16) {
if (!isxdigit(cdigit))
@@ -1967,7 +1967,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
APInt tmp2(Tmp.getBitWidth(), 0);
divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
- uint32_t Digit = (uint32_t)APdigit.getZExtValue();
+ unsigned Digit = (unsigned)APdigit.getZExtValue();
assert(Digit < Radix && "divide failed");
Str.push_back(Digits[Digit]);
Tmp = tmp2;
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index f038cd0..8b20453 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -1284,7 +1284,7 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
KnownZero2, KnownOne2, Depth+1))
return true;
- uint32_t Leaders = KnownZero2.countLeadingOnes();
+ unsigned Leaders = KnownZero2.countLeadingOnes();
if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
KnownZero2, KnownOne2, Depth+1))
return true;