diff options
-rw-r--r-- | lib/Support/APInt.cpp | 386 | ||||
-rw-r--r-- | lib/Transforms/Scalar/InstructionCombining.cpp | 2 |
2 files changed, 194 insertions, 194 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index e79abb2..367c75b 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -27,7 +27,7 @@ using namespace llvm; /// A utility function for allocating memory, checking for allocation failures, /// and ensuring the contents are zeroed. -inline static uint64_t* getClearedMemory(uint32_t numWords) { +inline static uint64_t* getClearedMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); memset(result, 0, numWords * sizeof(uint64_t)); @@ -36,13 +36,13 @@ inline static uint64_t* getClearedMemory(uint32_t numWords) { /// A utility function for allocating memory and checking for allocation /// failure. The content is not zeroed. -inline static uint64_t* getMemory(uint32_t numWords) { +inline static uint64_t* getMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); return result; } -void APInt::initSlowCase(uint32_t numBits, uint64_t val, bool isSigned) { +void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { pVal = getClearedMemory(getNumWords()); pVal[0] = val; if (isSigned && int64_t(val) < 0) @@ -56,7 +56,7 @@ void APInt::initSlowCase(const APInt& that) { } -APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) +APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) : BitWidth(numBits), VAL(0) { assert(BitWidth && "bitwidth too small"); assert(bigVal && "Null pointer detected!"); @@ -66,7 +66,7 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) // Get memory, cleared to 0 pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy - uint32_t words = std::min<uint32_t>(numWords, getNumWords()); + unsigned words = std::min<unsigned>(numWords, getNumWords()); // Copy the words from bigVal to pVal memcpy(pVal, bigVal, words * APINT_WORD_SIZE); } @@ -74,7 +74,7 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) clearUnusedBits(); } -APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, +APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen, uint8_t radix) : BitWidth(numbits), VAL(0) { assert(BitWidth && "bitwidth too small"); @@ -132,7 +132,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const { return; } - uint32_t NumWords = getNumWords(); + unsigned NumWords = getNumWords(); for (unsigned i = 0; i < NumWords; ++i) ID.AddInteger(pVal[i]); } @@ -141,8 +141,8 @@ void APInt::Profile(FoldingSetNodeID& ID) const { /// "digit" integer array, x[]. x[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. -static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { dest[i] = y + x[i]; if (dest[i] < y) y = 1; // Carry one to next digit. @@ -169,8 +169,8 @@ APInt& APInt::operator++() { /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. /// In other words, if y > x then this function returns 1, otherwise 0. /// @returns the borrow out of the subtraction -static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= y; if (y > X) @@ -197,9 +197,9 @@ APInt& APInt::operator--() { /// @returns the carry out from the addition /// @brief General addition of 64-bit integer arrays static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { + unsigned len) { bool carry = false; - for (uint32_t i = 0; i< len; ++i) { + for (unsigned i = 0; i< len; ++i) { uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x dest[i] = x[i] + y[i] + carry; carry = dest[i] < limit || (carry && dest[i] == limit); @@ -224,9 +224,9 @@ APInt& APInt::operator+=(const APInt& RHS) { /// @returns returns the borrow out. /// @brief Generalized subtraction of 64-bit integer arrays. static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { + unsigned len) { bool borrow = false; - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; borrow = y[i] > x_tmp || (borrow && x[i] == 0); dest[i] = x_tmp - y[i]; @@ -250,13 +250,13 @@ APInt& APInt::operator-=(const APInt& RHS) { /// into dest. /// @returns the carry out of the multiplication. /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. -static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { +static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { // Split y into high 32-bit part (hy) and low 32-bit part (ly) uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0; // For each digit of x. - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { // Split x into high and low words uint64_t lx = x[i] & 0xffffffffULL; uint64_t hx = x[i] >> 32; @@ -284,13 +284,13 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { /// Multiplies integer array x by integer array y and stores the result into /// the integer array dest. Note that dest's size must be >= xlen + ylen. /// @brief Generalized multiplicate of integer arrays. -static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], - uint32_t ylen) { +static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], + unsigned ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); - for (uint32_t i = 1; i < ylen; ++i) { + for (unsigned i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx = 0, hx = 0; - for (uint32_t j = 0; j < xlen; ++j) { + for (unsigned j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. @@ -323,15 +323,15 @@ APInt& APInt::operator*=(const APInt& RHS) { } // Get some bit facts about LHS and check for zero - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; if (!lhsWords) // 0 * X ===> 0 return *this; // Get some bit facts about RHS and check for zero - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; if (!rhsWords) { // X * 0 ===> 0 clear(); @@ -339,7 +339,7 @@ APInt& APInt::operator*=(const APInt& RHS) { } // Allocate space for the result - uint32_t destWords = rhsWords + lhsWords; + unsigned destWords = rhsWords + lhsWords; uint64_t *dest = getMemory(destWords); // Perform the long multiply @@ -347,7 +347,7 @@ APInt& APInt::operator*=(const APInt& RHS) { // Copy result back into *this clear(); - uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; + unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); // delete dest array and return @@ -361,8 +361,8 @@ APInt& APInt::operator&=(const APInt& RHS) { VAL &= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] &= RHS.pVal[i]; return *this; } @@ -373,8 +373,8 @@ APInt& APInt::operator|=(const APInt& RHS) { VAL |= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] |= RHS.pVal[i]; return *this; } @@ -386,32 +386,32 @@ APInt& APInt::operator^=(const APInt& RHS) { this->clearUnusedBits(); return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] ^= RHS.pVal[i]; return clearUnusedBits(); } APInt APInt::AndSlowCase(const APInt& RHS) const { - uint32_t numWords = getNumWords(); + unsigned numWords = getNumWords(); uint64_t* val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] & RHS.pVal[i]; return APInt(val, getBitWidth()); } APInt APInt::OrSlowCase(const APInt& RHS) const { - uint32_t numWords = getNumWords(); + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] | RHS.pVal[i]; return APInt(val, getBitWidth()); } APInt APInt::XorSlowCase(const APInt& RHS) const { - uint32_t numWords = getNumWords(); + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] ^ RHS.pVal[i]; // 0^0==1 so clear the high bits in case they got set. @@ -422,7 +422,7 @@ bool APInt::operator !() const { if (isSingleWord()) return !VAL; - for (uint32_t i = 0; i < getNumWords(); ++i) + for (unsigned i = 0; i < getNumWords(); ++i) if (pVal[i]) return false; return true; @@ -455,15 +455,15 @@ APInt APInt::operator-(const APInt& RHS) const { return Result.clearUnusedBits(); } -bool APInt::operator[](uint32_t bitPosition) const { +bool APInt::operator[](unsigned bitPosition) const { return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } bool APInt::EqualSlowCase(const APInt& RHS) const { // Get some facts about the number of bits used in the two operands. - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If the number of bits isn't the same, they aren't equal if (n1 != n2) @@ -481,7 +481,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const { } bool APInt::EqualSlowCase(uint64_t Val) const { - uint32_t n = getActiveBits(); + unsigned n = getActiveBits(); if (n <= APINT_BITS_PER_WORD) return pVal[0] == Val; else @@ -494,8 +494,8 @@ bool APInt::ult(const APInt& RHS) const { return VAL < RHS.VAL; // Get active bit length of both operands - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If magnitude of LHS is less than RHS, return true. if (n1 < n2) @@ -510,7 +510,7 @@ bool APInt::ult(const APInt& RHS) const { return pVal[0] < RHS.pVal[0]; // Otherwise, compare all words - uint32_t topWord = whichWord(std::max(n1,n2)-1); + unsigned topWord = whichWord(std::max(n1,n2)-1); for (int i = topWord; i >= 0; --i) { if (pVal[i] > RHS.pVal[i]) return false; @@ -556,7 +556,7 @@ bool APInt::slt(const APInt& RHS) const { return lhs.ult(rhs); } -APInt& APInt::set(uint32_t bitPosition) { +APInt& APInt::set(unsigned bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else @@ -566,7 +566,7 @@ APInt& APInt::set(uint32_t bitPosition) { /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. -APInt& APInt::clear(uint32_t bitPosition) { +APInt& APInt::clear(unsigned bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else @@ -579,19 +579,19 @@ APInt& APInt::clear(uint32_t bitPosition) { /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. -APInt& APInt::flip(uint32_t bitPosition) { +APInt& APInt::flip(unsigned bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); if ((*this)[bitPosition]) clear(bitPosition); else set(bitPosition); return *this; } -uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { +unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) { assert(str != 0 && "Invalid value string"); assert(slen > 0 && "Invalid string length"); // Each computation below needs to know if its negative - uint32_t isNegative = str[0] == '-'; + unsigned isNegative = str[0] == '-'; if (isNegative) { slen--; str++; @@ -614,7 +614,7 @@ uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { // Compute a sufficient number of bits that is always large enough but might // be too large. This avoids the assertion in the constructor. - uint32_t sufficient = slen*64/18; + unsigned sufficient = slen*64/18; // Convert to the actual binary value. APInt tmp(sufficient, str, slen, radix); @@ -631,18 +631,18 @@ uint64_t APInt::getHashValue() const { if (isSingleWord()) hash += VAL << 6; // clear separation of up to 64 bits else - for (uint32_t i = 0; i < getNumWords(); ++i) + for (unsigned i = 0; i < getNumWords(); ++i) hash += pVal[i] << 6; // clear sepration of up to 64 bits return hash; } /// HiBits - This function returns the high "numBits" bits of this APInt. -APInt APInt::getHiBits(uint32_t numBits) const { +APInt APInt::getHiBits(unsigned numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. -APInt APInt::getLoBits(uint32_t numBits) const { +APInt APInt::getLoBits(unsigned numBits) const { return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), BitWidth - numBits); } @@ -651,9 +651,9 @@ bool APInt::isPowerOf2() const { return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); } -uint32_t APInt::countLeadingZerosSlowCase() const { - uint32_t Count = 0; - for (uint32_t i = getNumWords(); i > 0u; --i) { +unsigned APInt::countLeadingZerosSlowCase() const { + unsigned Count = 0; + for (unsigned i = getNumWords(); i > 0u; --i) { if (pVal[i-1] == 0) Count += APINT_BITS_PER_WORD; else { @@ -661,14 +661,14 @@ uint32_t APInt::countLeadingZerosSlowCase() const { break; } } - uint32_t remainder = BitWidth % APINT_BITS_PER_WORD; + unsigned remainder = BitWidth % APINT_BITS_PER_WORD; if (remainder) Count -= APINT_BITS_PER_WORD - remainder; return std::min(Count, BitWidth); } -static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { - uint32_t Count = 0; +static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { + unsigned Count = 0; if (skip) V <<= skip; while (V && (V & (1ULL << 63))) { @@ -678,14 +678,14 @@ static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { return Count; } -uint32_t APInt::countLeadingOnes() const { +unsigned APInt::countLeadingOnes() const { if (isSingleWord()) return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); - uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD; - uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits); + unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; + unsigned shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits); int i = getNumWords() - 1; - uint32_t Count = countLeadingOnes_64(pVal[i], shift); + unsigned Count = countLeadingOnes_64(pVal[i], shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (pVal[i] == -1ULL) @@ -699,11 +699,11 @@ uint32_t APInt::countLeadingOnes() const { return Count; } -uint32_t APInt::countTrailingZeros() const { +unsigned APInt::countTrailingZeros() const { if (isSingleWord()) - return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth); - uint32_t Count = 0; - uint32_t i = 0; + return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -711,9 +711,9 @@ uint32_t APInt::countTrailingZeros() const { return std::min(Count, BitWidth); } -uint32_t APInt::countTrailingOnesSlowCase() const { - uint32_t Count = 0; - uint32_t i = 0; +unsigned APInt::countTrailingOnesSlowCase() const { + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == -1ULL; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -721,9 +721,9 @@ uint32_t APInt::countTrailingOnesSlowCase() const { return std::min(Count, BitWidth); } -uint32_t APInt::countPopulationSlowCase() const { - uint32_t Count = 0; - for (uint32_t i = 0; i < getNumWords(); ++i) +unsigned APInt::countPopulationSlowCase() const { + unsigned Count = 0; + for (unsigned i = 0; i < getNumWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } @@ -733,9 +733,9 @@ APInt APInt::byteSwap() const { if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); else if (BitWidth == 32) - return APInt(BitWidth, ByteSwap_32(uint32_t(VAL))); + return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); else if (BitWidth == 48) { - uint32_t Tmp1 = uint32_t(VAL >> 16); + unsigned Tmp1 = unsigned(VAL >> 16); Tmp1 = ByteSwap_32(Tmp1); uint16_t Tmp2 = uint16_t(VAL); Tmp2 = ByteSwap_16(Tmp2); @@ -745,7 +745,7 @@ APInt APInt::byteSwap() const { else { APInt Result(BitWidth, 0); char *pByte = (char*)Result.pVal; - for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { + for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { char Tmp = pByte[i]; pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; @@ -765,7 +765,7 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, return A; } -APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { +APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { union { double D; uint64_t I; @@ -797,7 +797,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { // Otherwise, we have to shift the mantissa bits up to the right location APInt Tmp(width, mantissa); - Tmp = Tmp.shl((uint32_t)exp - 52); + Tmp = Tmp.shl((unsigned)exp - 52); return isNeg ? -Tmp : Tmp; } @@ -826,7 +826,7 @@ double APInt::roundToDouble(bool isSigned) const { APInt Tmp(isNeg ? -(*this) : (*this)); // Figure out how many bits we're using. - uint32_t n = Tmp.getActiveBits(); + unsigned n = Tmp.getActiveBits(); // The exponent (without bias normalization) is just the number of bits // we are using. Note that the sign bit is gone since we constructed the @@ -868,12 +868,12 @@ double APInt::roundToDouble(bool isSigned) const { } // Truncate to new width. -APInt &APInt::trunc(uint32_t width) { +APInt &APInt::trunc(unsigned width) { assert(width < BitWidth && "Invalid APInt Truncate request"); assert(width && "Can't truncate to 0 bits"); - uint32_t wordsBefore = getNumWords(); + unsigned wordsBefore = getNumWords(); BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { if (wordsAfter == 1) { uint64_t *tmp = pVal; @@ -881,7 +881,7 @@ APInt &APInt::trunc(uint32_t width) { delete [] tmp; } else { uint64_t *newVal = getClearedMemory(wordsAfter); - for (uint32_t i = 0; i < wordsAfter; ++i) + for (unsigned i = 0; i < wordsAfter; ++i) newVal[i] = pVal[i]; delete [] pVal; pVal = newVal; @@ -891,7 +891,7 @@ APInt &APInt::trunc(uint32_t width) { } // Sign extend to a new width. -APInt &APInt::sext(uint32_t width) { +APInt &APInt::sext(unsigned width) { assert(width > BitWidth && "Invalid APInt SignExtend request"); // If the sign bit isn't set, this is the same as zext. if (!isNegative()) { @@ -900,14 +900,14 @@ APInt &APInt::sext(uint32_t width) { } // The sign bit is set. First, get some facts - uint32_t wordsBefore = getNumWords(); - uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; + unsigned wordsBefore = getNumWords(); + unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); // Mask the high order word appropriately if (wordsBefore == wordsAfter) { - uint32_t newWordBits = width % APINT_BITS_PER_WORD; + unsigned newWordBits = width % APINT_BITS_PER_WORD; // The extension is contained to the wordsBefore-1th word. uint64_t mask = ~0ULL; if (newWordBits) @@ -925,11 +925,11 @@ APInt &APInt::sext(uint32_t width) { if (wordsBefore == 1) newVal[0] = VAL | mask; else { - for (uint32_t i = 0; i < wordsBefore; ++i) + for (unsigned i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; newVal[wordsBefore-1] |= mask; } - for (uint32_t i = wordsBefore; i < wordsAfter; i++) + for (unsigned i = wordsBefore; i < wordsAfter; i++) newVal[i] = -1ULL; if (wordsBefore != 1) delete [] pVal; @@ -938,17 +938,17 @@ APInt &APInt::sext(uint32_t width) { } // Zero extend to a new width. -APInt &APInt::zext(uint32_t width) { +APInt &APInt::zext(unsigned width) { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); - uint32_t wordsBefore = getNumWords(); + unsigned wordsBefore = getNumWords(); BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { uint64_t *newVal = getClearedMemory(wordsAfter); if (wordsBefore == 1) newVal[0] = VAL; else - for (uint32_t i = 0; i < wordsBefore; ++i) + for (unsigned i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; if (wordsBefore != 1) delete [] pVal; @@ -957,7 +957,7 @@ APInt &APInt::zext(uint32_t width) { return *this; } -APInt &APInt::zextOrTrunc(uint32_t width) { +APInt &APInt::zextOrTrunc(unsigned width) { if (BitWidth < width) return zext(width); if (BitWidth > width) @@ -965,7 +965,7 @@ APInt &APInt::zextOrTrunc(uint32_t width) { return *this; } -APInt &APInt::sextOrTrunc(uint32_t width) { +APInt &APInt::sextOrTrunc(unsigned width) { if (BitWidth < width) return sext(width); if (BitWidth > width) @@ -976,12 +976,12 @@ APInt &APInt::sextOrTrunc(uint32_t width) { /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(const APInt &shiftAmt) const { - return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. -APInt APInt::ashr(uint32_t shiftAmt) const { +APInt APInt::ashr(unsigned shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); // Handle a degenerate case if (shiftAmt == 0) @@ -992,7 +992,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // undefined else { - uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth; + unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; return APInt(BitWidth, (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); } @@ -1012,17 +1012,17 @@ APInt APInt::ashr(uint32_t shiftAmt) const { uint64_t * val = new uint64_t[getNumWords()]; // Compute some values needed by the following shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift - uint32_t breakWord = getNumWords() - 1 - offset; // last word affected - uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word? + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift + unsigned breakWord = getNumWords() - 1 - offset; // last word affected + unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? if (bitsInWord == 0) bitsInWord = APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { // Move the words containing significant bits - for (uint32_t i = 0; i <= breakWord; ++i) + for (unsigned i = 0; i <= breakWord; ++i) val[i] = pVal[i+offset]; // move whole word // Adjust the top significant word for sign bit fill, if negative @@ -1031,7 +1031,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { val[breakWord] |= ~0ULL << bitsInWord; // set high bits } else { // Shift the low order words - for (uint32_t i = 0; i < breakWord; ++i) { + for (unsigned i = 0; i < breakWord; ++i) { // This combines the shifted corresponding word with the low bits from // the next word (shifted into this word's high bits). val[i] = (pVal[i+offset] >> wordShift) | @@ -1057,7 +1057,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { // Remaining words are 0 or -1, just assign them. uint64_t fillValue = (isNegative() ? -1ULL : 0); - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = fillValue; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1065,12 +1065,12 @@ APInt APInt::ashr(uint32_t shiftAmt) const { /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt APInt::lshr(const APInt &shiftAmt) const { - return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. -APInt APInt::lshr(uint32_t shiftAmt) const { +APInt APInt::lshr(unsigned shiftAmt) const { if (isSingleWord()) { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); @@ -1104,28 +1104,28 @@ APInt APInt::lshr(uint32_t shiftAmt) const { } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < getNumWords() - offset; ++i) + for (unsigned i = 0; i < getNumWords() - offset; ++i) val[i] = pVal[i+offset]; - for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++) + for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) val[i] = 0; return APInt(val,BitWidth).clearUnusedBits(); } // Shift the low order words - uint32_t breakWord = getNumWords() - offset -1; - for (uint32_t i = 0; i < breakWord; ++i) + unsigned breakWord = getNumWords() - offset -1; + for (unsigned i = 0; i < breakWord; ++i) val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); // Shift the break word. val[breakWord] = pVal[breakWord+offset] >> wordShift; // Remaining words are 0 - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = 0; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1134,10 +1134,10 @@ APInt APInt::lshr(uint32_t shiftAmt) const { /// @brief Left-shift function. APInt APInt::shl(const APInt &shiftAmt) const { // It's undefined behavior in C to shift by BitWidth or greater. - return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); } -APInt APInt::shlSlowCase(uint32_t shiftAmt) const { +APInt APInt::shlSlowCase(unsigned shiftAmt) const { // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. @@ -1156,7 +1156,7 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const { // If we are shifting less than a word, do it the easy way if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; - for (uint32_t i = 0; i < getNumWords(); i++) { + for (unsigned i = 0; i < getNumWords(); i++) { val[i] = pVal[i] << shiftAmt | carry; carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); } @@ -1164,20 +1164,20 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const { } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < offset; i++) + for (unsigned i = 0; i < offset; i++) val[i] = 0; - for (uint32_t i = offset; i < getNumWords(); i++) + for (unsigned i = offset; i < getNumWords(); i++) val[i] = pVal[i-offset]; return APInt(val,BitWidth).clearUnusedBits(); } // Copy whole words from this to Result. - uint32_t i = getNumWords() - 1; + unsigned i = getNumWords() - 1; for (; i > offset; --i) val[i] = pVal[i-offset] << wordShift | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); @@ -1188,10 +1188,10 @@ APInt APInt::shlSlowCase(uint32_t shiftAmt) const { } APInt APInt::rotl(const APInt &rotateAmt) const { - return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotl(uint32_t rotateAmt) const { +APInt APInt::rotl(unsigned rotateAmt) const { if (rotateAmt == 0) return *this; // Don't get too fancy, just use existing shift/or facilities @@ -1203,10 +1203,10 @@ APInt APInt::rotl(uint32_t rotateAmt) const { } APInt APInt::rotr(const APInt &rotateAmt) const { - return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotr(uint32_t rotateAmt) const { +APInt APInt::rotr(unsigned rotateAmt) const { if (rotateAmt == 0) return *this; // Don't get too fancy, just use existing shift/or facilities @@ -1227,7 +1227,7 @@ APInt APInt::rotr(uint32_t rotateAmt) const { APInt APInt::sqrt() const { // Determine the magnitude of the value. - uint32_t magnitude = getActiveBits(); + unsigned magnitude = getActiveBits(); // Use a fast table for some small values. This also gets rid of some // rounding errors in libc sqrt for small values. @@ -1264,7 +1264,7 @@ APInt APInt::sqrt() const { // was adapted to APINt from a wikipedia article on such computations. // See http://www.wikipedia.org/ and go to the page named // Calculate_an_integer_square_root. - uint32_t nbits = BitWidth, i = 4; + unsigned nbits = BitWidth, i = 4; APInt testy(BitWidth, 16); APInt x_old(BitWidth, 1); APInt x_new(BitWidth, 0); @@ -1355,8 +1355,8 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const { /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. -static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, - uint32_t m, uint32_t n) { +static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, + unsigned m, unsigned n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); @@ -1383,17 +1383,17 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. - uint32_t shift = CountLeadingZeros_32(v[n-1]); - uint32_t v_carry = 0; - uint32_t u_carry = 0; + unsigned shift = CountLeadingZeros_32(v[n-1]); + unsigned v_carry = 0; + unsigned u_carry = 0; if (shift) { - for (uint32_t i = 0; i < m+n; ++i) { - uint32_t u_tmp = u[i] >> (32 - shift); + for (unsigned i = 0; i < m+n; ++i) { + unsigned u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } - for (uint32_t i = 0; i < n; ++i) { - uint32_t v_tmp = v[i] >> (32 - shift); + for (unsigned i = 0; i < n; ++i) { + unsigned v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } @@ -1436,7 +1436,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // consists of a simple multiplication by a one-place number, combined with // a subtraction. bool isNeg = false; - for (uint32_t i = 0; i < n; ++i) { + for (unsigned i = 0; i < n; ++i) { uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; @@ -1445,9 +1445,9 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; - uint32_t k = j + i; - u[k++] = (uint32_t)(result & (b-1)); // subtract low word - u[k++] = (uint32_t)(result >> 32); // subtract high word + unsigned k = j + i; + u[k++] = (unsigned)(result & (b-1)); // subtract low word + u[k++] = (unsigned)(result >> 32); // subtract high word while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; @@ -1467,7 +1467,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // if (isNeg) { bool carry = true; // true because b's complement is "complement + 1" - for (uint32_t i = 0; i <= m+n; ++i) { + for (unsigned i = 0; i <= m+n; ++i) { u[i] = ~u[i] + carry; // b's complement carry = carry && u[i] == 0; } @@ -1478,7 +1478,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. - q[j] = (uint32_t)qp; + q[j] = (unsigned)qp; if (isNeg) { // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for @@ -1488,8 +1488,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // A carry will occur to the left of u[j+n], and it should be ignored // since it cancels with the borrow that occurred in D4. bool carry = false; - for (uint32_t i = 0; i < n; i++) { - uint32_t limit = std::min(u[j+i],v[i]); + for (unsigned i = 0; i < n; i++) { + unsigned limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } @@ -1514,7 +1514,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // multiplication by d by using a shift left. So, all we have to do is // shift right here. In order to mak if (shift) { - uint32_t carry = 0; + unsigned carry = 0; DEBUG(cerr << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; @@ -1534,8 +1534,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, #endif } -void APInt::divide(const APInt LHS, uint32_t lhsWords, - const APInt &RHS, uint32_t rhsWords, +void APInt::divide(const APInt LHS, unsigned lhsWords, + const APInt &RHS, unsigned rhsWords, APInt *Quotient, APInt *Remainder) { assert(lhsWords >= rhsWords && "Fractional result"); @@ -1547,17 +1547,17 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, // can't use 64-bit operands here because we don't have native results of // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. - uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); - uint32_t n = rhsWords * 2; - uint32_t m = (lhsWords * 2) - n; + uint64_t mask = ~0ull >> (sizeof(unsigned)*8); + unsigned n = rhsWords * 2; + unsigned m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. - uint32_t SPACE[128]; - uint32_t *U = 0; - uint32_t *V = 0; - uint32_t *Q = 0; - uint32_t *R = 0; + unsigned SPACE[128]; + unsigned *U = 0; + unsigned *V = 0; + unsigned *Q = 0; + unsigned *R = 0; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; @@ -1565,34 +1565,34 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { - U = new uint32_t[m + n + 1]; - V = new uint32_t[n]; - Q = new uint32_t[m+n]; + U = new unsigned[m + n + 1]; + V = new unsigned[n]; + Q = new unsigned[m+n]; if (Remainder) - R = new uint32_t[n]; + R = new unsigned[n]; } // Initialize the dividend - memset(U, 0, (m+n+1)*sizeof(uint32_t)); + memset(U, 0, (m+n+1)*sizeof(unsigned)); for (unsigned i = 0; i < lhsWords; ++i) { uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); - U[i * 2] = (uint32_t)(tmp & mask); - U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + U[i * 2] = (unsigned)(tmp & mask); + U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8)); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor - memset(V, 0, (n)*sizeof(uint32_t)); + memset(V, 0, (n)*sizeof(unsigned)); for (unsigned i = 0; i < rhsWords; ++i) { uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); - V[i * 2] = (uint32_t)(tmp & mask); - V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + V[i * 2] = (unsigned)(tmp & mask); + V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8)); } // initialize the quotient and remainder - memset(Q, 0, (m+n) * sizeof(uint32_t)); + memset(Q, 0, (m+n) * sizeof(unsigned)); if (Remainder) - memset(R, 0, n * sizeof(uint32_t)); + memset(R, 0, n * sizeof(unsigned)); // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the @@ -1613,8 +1613,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { - uint32_t divisor = V[0]; - uint32_t remainder = 0; + unsigned divisor = V[0]; + unsigned remainder = 0; for (int i = m+n-1; i >= 0; i--) { uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; if (partial_dividend == 0) { @@ -1622,13 +1622,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; - remainder = (uint32_t)partial_dividend; + remainder = (unsigned)partial_dividend; } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { - Q[i] = (uint32_t)(partial_dividend / divisor); - remainder = (uint32_t)(partial_dividend - (Q[i] * divisor)); + Q[i] = (unsigned)(partial_dividend / divisor); + remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); } } if (R) @@ -1720,11 +1720,11 @@ APInt APInt::udiv(const APInt& RHS) const { } // Get some facts about the LHS and RHS number of bits and words - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); - uint32_t lhsBits = this->getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned lhsBits = this->getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases if (!lhsWords) @@ -1755,12 +1755,12 @@ APInt APInt::urem(const APInt& RHS) const { } // Get some facts about the LHS - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); // Get some facts about the RHS - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases @@ -1787,10 +1787,10 @@ APInt APInt::urem(const APInt& RHS) const { void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { // Get some size facts about the dividend and divisor - uint32_t lhsBits = LHS.getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned lhsBits = LHS.getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); // Check the degenerate cases if (lhsWords == 0) { @@ -1824,7 +1824,7 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); } -void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, +void APInt::fromString(unsigned numbits, const char *str, unsigned slen, uint8_t radix) { // Check our assumptions here assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && @@ -1843,7 +1843,7 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, pVal = getClearedMemory(getNumWords()); // Figure out if we can shift instead of multiply - uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); + unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); // Set up an APInt for the digit to add outside the loop so we don't // constantly construct/destruct it. @@ -1853,7 +1853,7 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, // Enter digit traversal loop for (unsigned i = 0; i < slen; i++) { // Get a digit - uint32_t digit = 0; + unsigned digit = 0; char cdigit = str[i]; if (radix == 16) { if (!isxdigit(cdigit)) @@ -1967,7 +1967,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, APInt tmp2(Tmp.getBitWidth(), 0); divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, &APdigit); - uint32_t Digit = (uint32_t)APdigit.getZExtValue(); + unsigned Digit = (unsigned)APdigit.getZExtValue(); assert(Digit < Radix && "divide failed"); Str.push_back(Digits[Digit]); Tmp = tmp2; diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index f038cd0..8b20453 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -1284,7 +1284,7 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask, KnownZero2, KnownOne2, Depth+1)) return true; - uint32_t Leaders = KnownZero2.countLeadingOnes(); + unsigned Leaders = KnownZero2.countLeadingOnes(); if (SimplifyDemandedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, Depth+1)) return true; |