aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorVikram S. Adve <vadve@cs.uiuc.edu>2001-10-01 00:12:53 +0000
committerVikram S. Adve <vadve@cs.uiuc.edu>2001-10-01 00:12:53 +0000
commit4cecdd206ec0f2f9f24bb4149b31a383f90d7802 (patch)
treef7c3d570e57994c9dd42c18591ecead598d4179f
parent71939033dee310ad85d3ef10691b6588e4cd4fe5 (diff)
downloadexternal_llvm-4cecdd206ec0f2f9f24bb4149b31a383f90d7802.zip
external_llvm-4cecdd206ec0f2f9f24bb4149b31a383f90d7802.tar.gz
external_llvm-4cecdd206ec0f2f9f24bb4149b31a383f90d7802.tar.bz2
Several fixes:
(1) Avoid hard-coding some register numbers. (2) Fix some incorrect branch opcodes. (3) Don't try to move int register to float register! (4) If an operand being forwarded is a constant and it doesn't fit into the immed field of the copy machine instruction, then generate a load-constant instead of a copy. (5) Use (unsigned long) 0 for copying a pointer via "add 0, ptr -> ptr2". git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@683 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/SparcV9/SparcV9InstrSelection.cpp2523
1 files changed, 1301 insertions, 1222 deletions
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
index ca46798..e7cdbc0 100644
--- a/lib/Target/SparcV9/SparcV9InstrSelection.cpp
+++ b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
@@ -4,6 +4,7 @@
// SparcInstrSelection.cpp
//
// Purpose:
+// BURS instruction selection for SPARC V9 architecture.
//
// History:
// 7/02/01 - Vikram Adve - Created
@@ -27,8 +28,8 @@
// to be used later
struct BranchPattern {
- bool flipCondition; // should the sense of the test be reversed
- BasicBlock* targetBB; // which basic block to branch to
+ bool flipCondition; // should the sense of the test be reversed
+ BasicBlock* targetBB; // which basic block to branch to
MachineInstr* extraBranch; // if neither branch is fall-through, then this
// BA must be inserted after the cond'l one
};
@@ -36,68 +37,12 @@ struct BranchPattern {
//************************* Forward Declarations ***************************/
-static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
- bool& isFPBranch);
-
-static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
- const BinaryOperator* setCCInst);
-
-static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
- const BinaryOperator* setCCInst);
-
-static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
-
-static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode,
- bool& mustClearReg,
- int& valueToMove);
-
-static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
- const Type* opType);
-
-static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
- const Type* opType);
-
-static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
- bool checkCasts);
-
-static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseLoadInstruction (const Type* resultType);
-
-static MachineOpCode ChooseStoreInstruction (const Type* valueType);
-
-static void SetOperandsForMemInstr(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- const TargetMachine& target);
-
-static void SetMemOperands_Internal (MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- Value* ptrVal,
- Value* arrayOffsetVal,
- const vector<ConstPoolVal*>& idxVec,
- const TargetMachine& target);
-
-static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr,
- TargetMachine& target);
-
-static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg,
- MachineInstr*& getMinstr2);
-
-static void ForwardOperand (InstructionNode* treeNode,
- InstrTreeNode* parent,
- int operandNum);
+static void SetMemOperands_Internal (MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target);
//************************ Internal Functions ******************************/
@@ -105,31 +50,37 @@ static void ForwardOperand (InstructionNode* treeNode,
// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
-// Signed or unsigned integer
-// Boolean
-// Pointer
+// Signed or unsigned integer
+// Boolean
+// Pointer
//
// isValidConstant is set to true if a valid constant was found.
//
static int64_t
GetConstantValueAsSignedInt(const Value *V,
- bool &isValidConstant)
+ bool &isValidConstant)
{
- if (!V->isConstant()) { isValidConstant = false; return 0; }
+ if (!V->isConstant())
+ {
+ isValidConstant = false;
+ return 0;
+ }
+
isValidConstant = true;
if (V->getType() == Type::BoolTy)
- return ((ConstPoolBool*)V)->getValue();
- if (V->getType()->isIntegral()) {
- if (V->getType()->isSigned())
- return ((ConstPoolSInt*)V)->getValue();
-
- assert(V->getType()->isUnsigned());
- uint64_t Val = ((ConstPoolUInt*)V)->getValue();
-
- if (Val < INT64_MAX) // then safe to cast to signed
- return (int64_t)Val;
- }
+ return (int64_t) ((ConstPoolBool*)V)->getValue();
+
+ if (V->getType()->isIntegral())
+ {
+ if (V->getType()->isSigned())
+ return ((ConstPoolSInt*)V)->getValue();
+
+ assert(V->getType()->isUnsigned());
+ uint64_t Val = ((ConstPoolUInt*)V)->getValue();
+ if (Val < INT64_MAX) // then safe to cast to signed
+ return (int64_t)Val;
+ }
isValidConstant = false;
return 0;
@@ -150,10 +101,7 @@ ThisIsAChainRule(int eruleno)
switch(eruleno)
{
case 111: // stmt: reg
- case 112: // stmt: boolconst
case 113: // stmt: bool
- case 121:
- case 122:
case 123:
case 124:
case 125:
@@ -165,11 +113,9 @@ ThisIsAChainRule(int eruleno)
case 131:
case 132:
case 133:
- case 153:
case 155:
case 221:
case 222:
- case 232:
case 241:
case 242:
case 243:
@@ -209,25 +155,8 @@ ChooseBprInstruction(const InstructionNode* instrNode)
static inline MachineOpCode
-ChooseBccInstruction(const InstructionNode* instrNode,
- bool& isFPBranch)
-{
- InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
- BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
- const Type* setCCType = setCCInstr->getOperand(0)->getType();
-
- isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
-
- if (isFPBranch)
- return ChooseBFpccInstruction(instrNode, setCCInstr);
- else
- return ChooseBpccInstruction(instrNode, setCCInstr);
-}
-
-
-static inline MachineOpCode
ChooseBpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
+ const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = INVALID_OPCODE;
@@ -236,32 +165,32 @@ ChooseBpccInstruction(const InstructionNode* instrNode,
if (isSigned)
{
switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLE; break;
- case Instruction::SetGE: opCode = BGE; break;
- case Instruction::SetLT: opCode = BL; break;
- case Instruction::SetGT: opCode = BG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLE; break;
+ case Instruction::SetGE: opCode = BGE; break;
+ case Instruction::SetLT: opCode = BL; break;
+ case Instruction::SetGT: opCode = BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
}
else
{
switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLEU; break;
- case Instruction::SetGE: opCode = BCC; break;
- case Instruction::SetLT: opCode = BCS; break;
- case Instruction::SetGT: opCode = BGU; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLEU; break;
+ case Instruction::SetGE: opCode = BCC; break;
+ case Instruction::SetLT: opCode = BCS; break;
+ case Instruction::SetGT: opCode = BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
}
return opCode;
@@ -269,7 +198,7 @@ ChooseBpccInstruction(const InstructionNode* instrNode,
static inline MachineOpCode
ChooseBFpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
+ const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = INVALID_OPCODE;
@@ -291,6 +220,23 @@ ChooseBFpccInstruction(const InstructionNode* instrNode,
static inline MachineOpCode
+ChooseBccInstruction(const InstructionNode* instrNode,
+ bool& isFPBranch)
+{
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+ const Type* setCCType = setCCInstr->getOperand(0)->getType();
+
+ isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
+
+ if (isFPBranch)
+ return ChooseBFpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static inline MachineOpCode
ChooseMovFpccInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
@@ -322,8 +268,8 @@ ChooseMovFpccInstruction(const InstructionNode* instrNode)
//
static MachineOpCode
ChooseMovpccAfterSub(const InstructionNode* instrNode,
- bool& mustClearReg,
- int& valueToMove)
+ bool& mustClearReg,
+ int& valueToMove)
{
MachineOpCode opCode = INVALID_OPCODE;
mustClearReg = true;
@@ -346,7 +292,7 @@ ChooseMovpccAfterSub(const InstructionNode* instrNode,
static inline MachineOpCode
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
- const Type* opType)
+ const Type* opType)
{
MachineOpCode opCode = INVALID_OPCODE;
@@ -354,28 +300,28 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode,
{
case ToFloatTy:
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
- opCode = FITOS;
+ opCode = FITOS;
else if (opType == Type::LongTy)
- opCode = FXTOS;
+ opCode = FXTOS;
else if (opType == Type::DoubleTy)
- opCode = FDTOS;
+ opCode = FDTOS;
else if (opType == Type::FloatTy)
- ;
+ ;
else
- assert(0 && "Cannot convert this type to FLOAT on SPARC");
+ assert(0 && "Cannot convert this type to FLOAT on SPARC");
break;
case ToDoubleTy:
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
- opCode = FITOD;
+ opCode = FITOD;
else if (opType == Type::LongTy)
- opCode = FXTOD;
+ opCode = FXTOD;
else if (opType == Type::FloatTy)
- opCode = FSTOD;
+ opCode = FSTOD;
else if (opType == Type::DoubleTy)
- ;
+ ;
else
- assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+ assert(0 && "Cannot convert this type to DOUBLE on SPARC");
break;
default:
@@ -387,7 +333,7 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode,
static inline MachineOpCode
ChooseConvertToIntInstr(const InstructionNode* instrNode,
- const Type* opType)
+ const Type* opType)
{
MachineOpCode opCode = INVALID_OPCODE;;
@@ -396,24 +342,24 @@ ChooseConvertToIntInstr(const InstructionNode* instrNode,
if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
{
switch (opType->getPrimitiveID())
- {
+ {
case Type::FloatTyID: opCode = FSTOI; break;
case Type::DoubleTyID: opCode = FDTOI; break;
- default:
- assert(0 && "Non-numeric non-bool type cannot be converted to Int");
- break;
- }
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+ break;
+ }
}
else if (instrType == ToLongTy)
{
switch (opType->getPrimitiveID())
- {
+ {
case Type::FloatTyID: opCode = FSTOX; break;
case Type::DoubleTyID: opCode = FDTOX; break;
- default:
- assert(0 && "Non-numeric non-bool type cannot be converted to Long");
- break;
- }
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+ break;
+ }
}
else
assert(0 && "Should not get here, Mo!");
@@ -423,44 +369,47 @@ ChooseConvertToIntInstr(const InstructionNode* instrNode,
static inline MachineOpCode
-ChooseAddInstruction(const InstructionNode* instrNode)
+ChooseAddInstructionByType(const Type* resultType)
{
MachineOpCode opCode = INVALID_OPCODE;
- const Type* resultType = instrNode->getInstruction()->getType();
-
if (resultType->isIntegral() ||
resultType->isPointerType() ||
resultType->isMethodType() ||
- resultType->isLabelType())
+ resultType->isLabelType() ||
+ resultType == Type::BoolTy)
{
opCode = ADD;
}
else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FADDS; break;
- case Type::DoubleTyID: opCode = FADDD; break;
- default: assert(0 && "Invalid type for ADD instruction"); break;
- }
- }
+ switch(resultType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FADDS; break;
+ case Type::DoubleTyID: opCode = FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
return opCode;
}
+static inline MachineOpCode
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+ return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
+}
+
+
static inline MachineInstr*
CreateMovFloatInstruction(const InstructionNode* instrNode,
- const Type* resultType)
+ const Type* resultType)
{
MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
- ? FMOVS : FMOVD);
+ ? FMOVS : FMOVD);
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
+ instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
+ instrNode->getValue());
return minstr;
}
@@ -478,11 +427,13 @@ CreateAddConstInstruction(const InstructionNode* instrNode)
//
const Type* resultType = instrNode->getInstruction()->getType();
- if (resultType == Type::FloatTy || resultType == Type::DoubleTy) {
- double dval = ((ConstPoolFP*) constOp)->getValue();
- if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode, resultType);
- }
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
return minstr;
}
@@ -501,15 +452,12 @@ ChooseSubInstruction(const InstructionNode* instrNode)
opCode = SUB;
}
else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FSUBS; break;
- case Type::DoubleTyID: opCode = FSUBD; break;
- default: assert(0 && "Invalid type for SUB instruction"); break;
- }
- }
+ switch(resultType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSUBS; break;
+ case Type::DoubleTyID: opCode = FSUBD; break;
+ default: assert(0 && "Invalid type for SUB instruction"); break;
+ }
return opCode;
}
@@ -534,7 +482,7 @@ CreateSubConstInstruction(const InstructionNode* instrNode)
{
double dval = ((ConstPoolFP*) constOp)->getValue();
if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode, resultType);
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
}
return minstr;
@@ -570,14 +518,14 @@ BothFloatToDouble(const InstructionNode* instrNode)
// Check if both arguments are floats cast to double
return (leftArg->getValue()->getType() == Type::DoubleTy &&
- leftArgArg->getValue()->getType() == Type::FloatTy &&
- rightArgArg->getValue()->getType() == Type::FloatTy);
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy);
}
static inline MachineOpCode
ChooseMulInstruction(const InstructionNode* instrNode,
- bool checkCasts)
+ bool checkCasts)
{
MachineOpCode opCode = INVALID_OPCODE;
@@ -594,24 +542,23 @@ ChooseMulInstruction(const InstructionNode* instrNode,
opCode = MULX;
}
else
- {
- switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FMULS; break;
- case Type::DoubleTyID: opCode = FMULD; break;
- default: assert(0 && "Invalid type for MUL instruction"); break;
- }
- }
+ switch(resultType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FMULS; break;
+ case Type::DoubleTyID: opCode = FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
return opCode;
}
static inline MachineInstr*
-CreateIntNegInstruction(Value* vreg)
+CreateIntNegInstruction(TargetMachine& target,
+ Value* vreg)
{
MachineInstr* minstr = new MachineInstr(SUB);
- minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
return minstr;
@@ -619,8 +566,9 @@ CreateIntNegInstruction(Value* vreg)
static inline MachineInstr*
-CreateMulConstInstruction(const InstructionNode* instrNode,
- MachineInstr*& getMinstr2)
+CreateMulConstInstruction(TargetMachine &target,
+ const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
{
MachineInstr* minstr = NULL;
getMinstr2 = NULL;
@@ -641,111 +589,111 @@ CreateMulConstInstruction(const InstructionNode* instrNode,
bool isValidConst;
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
if (isValidConst)
- {
- bool needNeg = false;
- if (C < 0)
- {
- needNeg = true;
- C = -C;
- }
-
- if (C == 0 || C == 1)
- {
- minstr = new MachineInstr(ADD);
-
- if (C == 0)
- minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
- else
- minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- }
- else if (IsPowerOf2(C, pow))
- {
- minstr = new MachineInstr((resultType == Type::LongTy)
- ? SLLX : SLL);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- pow);
- }
-
- if (minstr && needNeg)
- { // insert <reg = SUB 0, reg> after the instr to flip the sign
- getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
- }
- }
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 0 || C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+
+ if (C == 0)
+ minstr->SetMachineOperand(0,
+ target.getRegInfo().getZeroRegNum());
+ else
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ minstr = new MachineInstr((resultType == Type::LongTy)
+ ? SLLX : SLL);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(target,
+ instrNode->getValue());
+ }
+ }
}
else
{
if (resultType == Type::FloatTy ||
- resultType == Type::DoubleTy)
- {
- bool isValidConst;
- double dval = ((ConstPoolFP*) constOp)->getValue();
-
- if (isValidConst)
- {
- if (dval == 0)
- {
- minstr = new MachineInstr((resultType == Type::FloatTy)
- ? FITOS : FITOD);
- minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
- }
- else if (fabs(dval) == 1)
- {
- bool needNeg = (dval < 0);
-
- MachineOpCode opCode = needNeg
- ? (resultType == Type::FloatTy? FNEGS : FNEGD)
- : (resultType == Type::FloatTy? FMOVS : FMOVD);
-
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0,
- MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- }
- }
- }
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst)
+ {
+ if (dval == 0)
+ {
+ minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FITOS : FITOD);
+ minstr->SetMachineOperand(0,
+ target.getRegInfo().getZeroRegNum());
+ }
+ else if (fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0,
+ MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
}
if (minstr != NULL)
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
+ instrNode->getValue());
return minstr;
}
static inline MachineOpCode
-ChooseDivInstruction(const InstructionNode* instrNode)
+ChooseDivInstruction(TargetMachine &target,
+ const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
- {
- opCode = resultType->isSigned()? SDIVX : UDIVX;
- }
+ opCode = resultType->isSigned()? SDIVX : UDIVX;
else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FDIVS; break;
- case Type::DoubleTyID: opCode = FDIVD; break;
- default: assert(0 && "Invalid type for DIV instruction"); break;
- }
- }
+ switch(resultType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FDIVS; break;
+ case Type::DoubleTyID: opCode = FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
+ }
return opCode;
}
static inline MachineInstr*
-CreateDivConstInstruction(const InstructionNode* instrNode,
- MachineInstr*& getMinstr2)
+CreateDivConstInstruction(TargetMachine &target,
+ const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
{
MachineInstr* minstr = NULL;
getMinstr2 = NULL;
@@ -765,71 +713,74 @@ CreateDivConstInstruction(const InstructionNode* instrNode,
bool isValidConst;
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
if (isValidConst)
- {
- bool needNeg = false;
- if (C < 0)
- {
- needNeg = true;
- C = -C;
- }
-
- if (C == 1)
- {
- minstr = new MachineInstr(ADD);
- minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- }
- else if (IsPowerOf2(C, pow))
- {
- MachineOpCode opCode= ((resultType->isSigned())
- ? (resultType==Type::LongTy)? SRAX : SRA
- : (resultType==Type::LongTy)? SRLX : SRL);
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- pow);
- }
-
- if (minstr && needNeg)
- { // insert <reg = SUB 0, reg> after the instr to flip the sign
- getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
- }
- }
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ MachineOpCode opCode= ((resultType->isSigned())
+ ? (resultType==Type::LongTy)? SRAX : SRA
+ : (resultType==Type::LongTy)? SRLX : SRL);
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(target,
+ instrNode->getValue());
+ }
+ }
}
else
{
if (resultType == Type::FloatTy ||
- resultType == Type::DoubleTy)
- {
- bool isValidConst;
- double dval = ((ConstPoolFP*) constOp)->getValue();
-
- if (isValidConst && fabs(dval) == 1)
- {
- bool needNeg = (dval < 0);
-
- MachineOpCode opCode = needNeg
- ? (resultType == Type::FloatTy? FNEGS : FNEGD)
- : (resultType == Type::FloatTy? FMOVS : FMOVD);
-
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- }
- }
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst && fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
}
if (minstr != NULL)
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
+ instrNode->getValue());
return minstr;
}
-static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) {
+static inline MachineOpCode
+ChooseLoadInstruction(const Type *DestTy)
+{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID: return LDUB;
@@ -850,7 +801,9 @@ static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) {
}
-static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) {
+static inline MachineOpCode
+ChooseStoreInstruction(const Type *DestTy)
+{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
@@ -889,8 +842,8 @@ static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) {
static void
SetOperandsForMemInstr(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- const TargetMachine& target)
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& target)
{
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
@@ -908,8 +861,8 @@ SetOperandsForMemInstr(MachineInstr* minstr,
// and in the right child for Store instructions.
//
InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
- ? vmInstrNode->rightChild()
- : vmInstrNode->leftChild());
+ ? vmInstrNode->rightChild()
+ : vmInstrNode->leftChild());
if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
ptrChild->getOpLabel() == GetElemPtrIdx)
@@ -927,7 +880,7 @@ SetOperandsForMemInstr(MachineInstr* minstr,
idxVec = newIdxVec;
assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
- && "GetElemPtr cannot be folded into array refs in selection");
+ && "GetElemPtr cannot be folded into array refs in selection");
}
else
{
@@ -938,19 +891,19 @@ SetOperandsForMemInstr(MachineInstr* minstr,
ptrVal = memInst->getPtrOperand();
const Type* opType =
- ((const PointerType*) ptrVal->getType())->getValueType();
+ ((const PointerType*) ptrVal->getType())->getValueType();
if (opType->isArrayType())
- {
- assert((memInst->getNumOperands()
- == (unsigned) 1 + memInst->getFirstOffsetIdx())
- && "Array refs must be lowered before Instruction Selection");
-
- arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
- }
+ {
+ assert((memInst->getNumOperands()
+ == (unsigned) 1 + memInst->getFirstOffsetIdx())
+ && "Array refs must be lowered before Instruction Selection");
+
+ arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+ }
}
SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
- *idxVec, target);
+ *idxVec, target);
if (newIdxVec != NULL)
delete newIdxVec;
@@ -959,11 +912,11 @@ SetOperandsForMemInstr(MachineInstr* minstr,
static void
SetMemOperands_Internal(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- Value* ptrVal,
- Value* arrayOffsetVal,
- const vector<ConstPoolVal*>& idxVec,
- const TargetMachine& target)
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target)
{
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
@@ -983,41 +936,41 @@ SetMemOperands_Internal(MachineInstr* minstr,
const PointerType* ptrType = (PointerType*) ptrVal->getType();
if (ptrType->getValueType()->isStructType())
- {
- // the offset is always constant for structs
- isConstantOffset = true;
-
- // Compute the offset value using the index vector
- offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
- }
+ {
+ // the offset is always constant for structs
+ isConstantOffset = true;
+
+ // Compute the offset value using the index vector
+ offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
+ }
else
- {
- // It must be an array ref. Check if the offset is a constant,
- // and that the indexing has been lowered to a single offset.
- //
- assert(ptrType->getValueType()->isArrayType());
- assert(arrayOffsetVal != NULL
- && "Expect to be given Value* for array offsets");
-
- if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
- {
- isConstantOffset = true; // always constant for structs
- assert(arrayOffsetVal->getType()->isIntegral());
- offset = (CPV->getType()->isSigned()
- ? ((ConstPoolSInt*)CPV)->getValue()
- : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
- }
- else
- {
- valueForRegOffset = arrayOffsetVal;
- }
- }
+ {
+ // It must be an array ref. Check if the offset is a constant,
+ // and that the indexing has been lowered to a single offset.
+ //
+ assert(ptrType->getValueType()->isArrayType());
+ assert(arrayOffsetVal != NULL
+ && "Expect to be given Value* for array offsets");
+
+ if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
+ {
+ isConstantOffset = true; // always constant for structs
+ assert(arrayOffsetVal->getType()->isIntegral());
+ offset = (CPV->getType()->isSigned()
+ ? ((ConstPoolSInt*)CPV)->getValue()
+ : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
+ }
+ else
+ {
+ valueForRegOffset = arrayOffsetVal;
+ }
+ }
if (isConstantOffset)
- {
- // create a virtual register for the constant
- valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
- }
+ {
+ // create a virtual register for the constant
+ valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
+ }
}
else
{
@@ -1031,7 +984,7 @@ SetMemOperands_Internal(MachineInstr* minstr,
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
// Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
- // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+ // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
//
unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
if (offsetOpType == MachineOperand::MO_VirtualRegister)
@@ -1046,96 +999,12 @@ SetMemOperands_Internal(MachineInstr* minstr,
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
else
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- vmInstrNode->getValue());
-}
-
-
-// Special handling for constant operands:
-// -- if the constant is 0, use the hardwired 0 register, if any;
-// -- if the constant is of float or double type but has an integer value,
-// use int-to-float conversion instruction instead of generating a load;
-// -- if the constant fits in the IMMEDIATE field, use that field;
-// -- else insert instructions to put the constant into a register, either
-// directly or by loading explicitly from the constant pool.
-//
-static unsigned
-FixConstantOperands(const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr,
- TargetMachine& target)
-{
- static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
-
- unsigned numNew = 0;
- Instruction* vmInstr = vmInstrNode->getInstruction();
-
- for (unsigned i=0; i < numInstr; i++)
- {
- MachineInstr* minstr = mvec[i];
- const MachineInstrDescriptor& instrDesc =
- target.getInstrInfo().getDescriptor(minstr->getOpCode());
-
- for (unsigned op=0; op < minstr->getNumOperands(); op++)
- {
- const MachineOperand& mop = minstr->getOperand(op);
-
- // skip the result position (for efficiency below) and any other
- // positions already marked as not a virtual register
- if (instrDesc.resultPos == (int) op ||
- mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
- mop.getVRegValue() == NULL)
- {
- break;
- }
-
- Value* opValue = mop.getVRegValue();
-
- if (opValue->isConstant())
- {
- unsigned int machineRegNum;
- int64_t immedValue;
- MachineOperand::MachineOperandType opType =
- ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
- /*canUseImmed*/ (op == 1),
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_MachineRegister)
- minstr->SetMachineOperand(op, machineRegNum);
- else if (opType == MachineOperand::MO_VirtualRegister)
- {
- // value is constant and must be loaded into a register
- TmpInstruction* tmpReg;
- MachineInstr* minstr2;
- loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue,
- tmpReg, minstr2);
- minstr->SetMachineOperand(op, opType, tmpReg);
- if (minstr2 != NULL)
- loadConstVec[numNew++] = minstr2;
- }
- else
- minstr->SetMachineOperand(op, opType, immedValue);
- }
- }
- }
-
- if (numNew > 0)
- {
- // Insert the new instructions *before* the old ones by moving
- // the old ones over `numNew' positions (last-to-first, of course!).
- // We do check *after* returning that we did not exceed the vector mvec.
- for (int i=numInstr-1; i >= 0; i--)
- mvec[i+numNew] = mvec[i];
-
- for (unsigned i=0; i < numNew; i++)
- mvec[i] = loadConstVec[i];
- }
-
- return (numInstr + numNew);
+ vmInstrNode->getValue());
}
static inline MachineInstr*
-MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
+CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
{
MachineInstr* minstr;
if (isSigned)
@@ -1155,22 +1024,25 @@ MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
}
+// Create an instruction sequence to load a constant into a register.
+// This always creates either one or two instructions.
+// If two instructions are created, the second one is returned in getMinstr2
+// The implicit virtual register used to hold the constant is returned in
+// tmpReg.
+//
static MachineInstr*
-MakeLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg,
- MachineInstr*& getMinstr2)
+CreateLoadConstInstr(const TargetMachine &target,
+ Instruction* vmInstr,
+ Value* val,
+ Instruction* dest,
+ MachineInstr*& getMinstr2)
{
assert(val->isConstant());
- MachineInstr* minstr;
+ MachineInstr* minstr1 = NULL;
getMinstr2 = NULL;
- // Create a TmpInstruction to mark the hidden register used for the constant
- tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
- vmInstr->getMachineInstrVec().addTempValue(tmpReg);
-
// Use a "set" instruction for known constants that can go in an integer reg.
// Use a "set" instruction followed by a int-to-float conversion for known
// constants that must go in a floating point reg but have an integer value.
@@ -1179,84 +1051,199 @@ MakeLoadConstInstr(Instruction* vmInstr,
//
const Type* valType = val->getType();
- if (valType->isIntegral() ||
- valType->isPointerType() ||
- valType == Type::BoolTy)
+ if (valType->isIntegral() || valType == Type::BoolTy)
{
bool isValidConstant;
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
assert(isValidConstant && "Unrecognized constant");
-
- minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg);
+ minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
}
else
{
+
+#undef MOVE_INT_TO_FP_REG_AVAILABLE
+#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
+ //
+ // This code was written to generate the following sequence:
+ // SET[SU]W <int-const> <int-reg>
+ // FITO[SD] <int-reg> <fp-reg>
+ // (it really should have moved the int-reg to an fp-reg and then FITOS).
+ // But for now the only way to move a value from an int-reg to an fp-reg
+ // is via memory. Leave this code here but unused.
+ //
assert(valType == Type::FloatTy || valType == Type::DoubleTy);
double dval = ((ConstPoolFP*) val)->getValue();
if (dval == (int64_t) dval)
- {
- // The constant actually has an integer value, so use a
- // [set; int-to-float] sequence instead of a load instruction.
- //
- TmpInstruction* tmpReg2 = NULL;
- if (dval != 0.0)
- { // First, create an integer constant of the same value as dval
- ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
- (int64_t) dval);
- // Create another TmpInstruction for the hidden integer register
- TmpInstruction* tmpReg2 =
- new TmpInstruction(Instruction::UserOp1, ival, NULL);
- vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
-
- // Create the `SET' instruction
- minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2);
- }
-
- // In which variable do we put the second instruction?
- MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr;
-
- // Create the int-to-float instruction
- instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
-
- if (dval == 0.0)
- instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
- else
- instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- tmpReg2);
-
- instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- tmpReg);
- }
+ {
+ // The constant actually has an integer value, so use a
+ // [set; int-to-float] sequence instead of a load instruction.
+ //
+ TmpInstruction* tmpReg2 = NULL;
+ if (dval != 0.0)
+ { // First, create an integer constant of the same value as dval
+ ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
+ (int64_t) dval);
+ // Create another TmpInstruction for the hidden integer register
+ tmpReg2 = new TmpInstruction(Instruction::UserOp1, ival, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
+
+ // Create the `SET' instruction
+ minstr1 = CreateIntSetInstruction((int64_t)dval, true, tmpReg2);
+ tmpReg2->addMachineInstruction(minstr1);
+ }
+
+ // In which variable do we put the second instruction?
+ MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
+
+ // Create the int-to-float instruction
+ instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
+
+ if (dval == 0.0)
+ instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
+ else
+ instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ tmpReg2);
+
+ instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ dest);
+ }
else
- {
- // Make a Load instruction, and make `val' both the ptr value *and*
- // the result value, and set the offset field to 0. Final code
- // generation will have to generate the base+offset for the constant.
- //
- int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
- minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val);
- minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- zeroOffset);
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- tmpReg);
- }
+#endif MOVE_INT_TO_FP_REG_AVAILABLE
+
+ {
+ // Make an instruction sequence to load the constant, viz:
+ // SETSW <addr-of-constant>, tmpReg2
+ // LOAD /*addr*/ tmpReg2, /*offset*/ 0, dest
+ // set the offset field to 0.
+ //
+ int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
+
+ // Create another TmpInstruction for the hidden integer register
+ TmpInstruction* tmpReg2 =
+ new TmpInstruction(Instruction::UserOp1, val, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
+
+ minstr1 = new MachineInstr(SETUW);
+ minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
+ minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ tmpReg2);
+ tmpReg2->addMachineInstruction(minstr1);
+
+ getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
+ getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ tmpReg2);
+ getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
+ zeroOffset);
+ getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
+ dest);
+ }
}
- tmpReg->addMachineInstruction(minstr);
+ assert(minstr1);
+ return minstr1;
+}
+
+// Special handling for constant operands:
+// -- if the constant is 0, use the hardwired 0 register, if any;
+// -- if the constant is of float or double type but has an integer value,
+// use int-to-float conversion instruction instead of generating a load;
+// -- if the constant fits in the IMMEDIATE field, use that field;
+// -- else insert instructions to put the constant into a register, either
+// directly or by loading explicitly from the constant pool.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& target)
+{
+ static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+ unsigned numNew = 0;
+ Instruction* vmInstr = vmInstrNode->getInstruction();
+
+ for (unsigned i=0; i < numInstr; i++)
+ {
+ MachineInstr* minstr = mvec[i];
+ const MachineInstrDescriptor& instrDesc =
+ target.getInstrInfo().getDescriptor(minstr->getOpCode());
+
+ for (unsigned op=0; op < minstr->getNumOperands(); op++)
+ {
+ const MachineOperand& mop = minstr->getOperand(op);
+
+ // skip the result position (for efficiency below) and any other
+ // positions already marked as not a virtual register
+ if (instrDesc.resultPos == (int) op ||
+ mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
+ mop.getVRegValue() == NULL)
+ {
+ continue;
+ }
+
+ Value* opValue = mop.getVRegValue();
+
+ if (opValue->isConstant())
+ {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
+ /*canUseImmed*/ (op == 1),
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_MachineRegister)
+ minstr->SetMachineOperand(op, machineRegNum);
+ else if (opType == MachineOperand::MO_VirtualRegister)
+ {
+ // value is constant and must be loaded into a register.
+ // First, create a tmp virtual register (TmpInstruction)
+ // to hold the constant.
+ // This will replace the constant operand in `minstr'.
+ TmpInstruction* tmpReg =
+ new TmpInstruction(Instruction::UserOp1, opValue, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg);
+ minstr->SetMachineOperand(op, opType, tmpReg);
+
+ MachineInstr *minstr1, *minstr2;
+ minstr1 = CreateLoadConstInstr(target, vmInstr,
+ opValue, tmpReg, minstr2);
+ tmpReg->addMachineInstruction(minstr1);
+
+ loadConstVec[numNew++] = minstr1;
+ if (minstr2 != NULL)
+ loadConstVec[numNew++] = minstr2;
+ }
+ else
+ minstr->SetMachineOperand(op, opType, immedValue);
+ }
+ }
+ }
- assert(minstr);
- return minstr;
+ if (numNew > 0)
+ {
+ // Insert the new instructions *before* the old ones by moving
+ // the old ones over `numNew' positions (last-to-first, of course!).
+ // We do check *after* returning that we did not exceed the vector mvec.
+ for (int i=numInstr-1; i >= 0; i--)
+ mvec[i+numNew] = mvec[i];
+
+ for (unsigned i=0; i < numNew; i++)
+ mvec[i] = loadConstVec[i];
+ }
+
+ return (numInstr + numNew);
}
+
//
// Substitute operand `operandNum' of the instruction in node `treeNode'
// in place the use(s) of that instruction in node `parent'.
//
static void
ForwardOperand(InstructionNode* treeNode,
- InstrTreeNode* parent,
- int operandNum)
+ InstrTreeNode* parent,
+ int operandNum)
{
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
@@ -1277,19 +1264,73 @@ ForwardOperand(InstructionNode* treeNode,
{
MachineInstr* minstr = mvec[i];
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
- {
- const MachineOperand& mop = minstr->getOperand(i);
- if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
- mop.getVRegValue() == unusedOp)
- {
- minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
- fwdOp);
- }
- }
+ {
+ const MachineOperand& mop = minstr->getOperand(i);
+ if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
+ mop.getVRegValue() == unusedOp)
+ {
+ minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
+ fwdOp);
+ }
+ }
}
}
+MachineInstr*
+CreateCopyInstructionsByType(const TargetMachine& target,
+ Value* src,
+ Instruction* dest,
+ MachineInstr*& getMinstr2)
+{
+ getMinstr2 = NULL; // initialize second return value
+
+ MachineInstr* minstr1 = NULL;
+
+ const Type* resultType = dest->getType();
+
+ MachineOpCode opCode = ChooseAddInstructionByType(resultType);
+ if (opCode == INVALID_OPCODE)
+ {
+ assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
+ return NULL;
+ }
+
+ // if `src' is a constant that doesn't fit in the immed field, generate
+ // a load instruction instead of an add
+ if (src->isConstant())
+ {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_VirtualRegister)
+ { // value is constant and cannot fit in immed field for the ADD
+ minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
+ }
+ }
+
+ if (minstr1 == NULL)
+ { // Create the appropriate add instruction.
+ // Make `src' the second operand, in case it is a constant
+ // Use (unsigned long) 0 for a NULL pointer value.
+ //
+ const Type* nullValueType =
+ (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
+ : resultType;
+ minstr1 = new MachineInstr(opCode);
+ minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ ConstPoolVal::getNullConstant(nullValueType));
+ minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
+ minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
+ }
+
+ return minstr1;
+}
+
+
// This function is currently unused and incomplete but will be
// used if we have a linear layout of basic blocks in LLVM code.
// It decides which branch should fall-through, and whether an
@@ -1301,11 +1342,11 @@ ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
BranchInst* brInstr = (BranchInst*) vmInstr;
brPattern.flipCondition = false;
- brPattern.targetBB = brInstr->getSuccessor(0);
+ brPattern.targetBB = brInstr->getSuccessor(0);
brPattern.extraBranch = NULL;
assert(brInstr->getNumSuccessors() > 1 &&
- "Unnecessary analysis for unconditional branch");
+ "Unnecessary analysis for unconditional branch");
assert(0 && "Fold branches in peephole optimization");
}
@@ -1324,10 +1365,10 @@ ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
unsigned
GetInstructionsByRule(InstructionNode* subtreeRoot,
- int ruleForNode,
- short* nts,
- TargetMachine &target,
- MachineInstr** mvec)
+ int ruleForNode,
+ short* nts,
+ TargetMachine &target,
+ MachineInstr** mvec)
{
int numInstr = 1; // initialize for common case
bool checkCast = false; // initialize here to use fall-through
@@ -1340,678 +1381,715 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
- switch(ruleForNode) {
- case 1: // stmt: Ret
- case 2: // stmt: RetValue(reg)
- // NOTE: Prepass of register allocation is responsible
- // for moving return value to appropriate register.
- // Mark the return-address register as a hidden virtual reg.
- {
- Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getInstruction(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
-
- mvec[0] = new MachineInstr(RETURN);
- mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
-
- returnReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 3: // stmt: Store(reg,reg)
- case 4: // stmt: Store(reg,ptrreg)
- mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 5: // stmt: BrUncond
- mvec[0] = new MachineInstr(BA);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
-
- case 206: // stmt: BrCond(setCCconst)
- // setCCconst => boolean was computed with `%b = setCC type reg1 constant'
- // If the constant is ZERO, we can use the branch-on-integer-register
- // instructions and avoid the SUBcc instruction entirely.
- // Otherwise this is just the same as case 5, so just fall through.
+ //
+ // Let's check for chain rules outside the switch so that we don't have
+ // to duplicate the list of chain rule production numbers here again
+ //
+ if (ThisIsAChainRule(ruleForNode))
{
- InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
- assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
- ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
- bool isValidConst;
-
- if ((constVal->getType()->isIntegral()
- || constVal->getType()->isPointerType())
- && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
- && isValidConst)
- {
- // That constant is a zero after all...
- // Use the left child of the setCC instruction as the first argument!
- mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- break;
- }
- // ELSE FALL THROUGH
+ // Chain rules have a single nonterminal on the RHS.
+ // Get the rule that matches the RHS non-terminal and use that instead.
+ //
+ assert(nts[0] && ! nts[1]
+ && "A chain rule should have only one RHS non-terminal!");
+ nextRule = burm_rule(subtreeRoot->state, nts[0]);
+ nts = burm_nts[nextRule];
+ numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
}
-
- case 6: // stmt: BrCond(bool)
- // bool => boolean was computed with some boolean operator (setCC,Not,...)
- // Need to check whether the type was a FP, signed int or unsigned int,
- // and check the branching condition in order to choose the branch to use.
- //
+ else
{
- bool isFPBranch;
- mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
- }
-
- case 8: // stmt: BrCond(boolreg)
- case 208: // stmt: BrCond(boolconst)
- // boolreg => boolean is stored in an existing register.
- // boolconst => boolean is a constant; can be loaded into a register.
- // Just use the branch-on-integer-register instruction!
- //
- mvec[0] = new MachineInstr(BRNZ);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
-
- case 9: // stmt: Switch(reg)
- assert(0 && "*** SWITCH instruction is not implemented yet.");
- numInstr = 0;
- break;
-
- case 10: // reg: VRegList(reg, reg)
- assert(0 && "VRegList should never be the topmost non-chain rule");
- break;
-
- case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
- mvec[0] = new MachineInstr(XNOR);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- break;
-
- case 322: // reg: ToBoolTy(bool):
- case 22: // reg: ToBoolTy(reg):
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 23: // reg: ToUByteTy(reg)
- case 25: // reg: ToUShortTy(reg)
- case 27: // reg: ToUIntTy(reg)
- case 29: // reg: ToULongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() ||
- opType->isPointerType() ||
- opType == Type::BoolTy && "Ignoring cast: illegal for other types");
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 24: // reg: ToSByteTy(reg)
- case 26: // reg: ToShortTy(reg)
- case 28: // reg: ToIntTy(reg)
- case 30: // reg: ToLongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- if (opType->isIntegral() || opType == Type::BoolTy)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- break;
-
- case 31: // reg: ToFloatTy(reg):
- case 32: // reg: ToDoubleTy(reg):
-
- // If this instruction has a parent (a user) in the tree
- // and the user is translated as an FsMULd instruction,
- // then the cast is unnecessary. So check that first.
- // In the future, we'll want to do the same for the FdMULq instruction,
- // so do the check here instead of only for ToFloatTy(reg).
- //
- if (subtreeRoot->parent() != NULL &&
- ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- opType = subtreeRoot->leftChild()->getValue()->getType();
- MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType);
- if (opCode == INVALID_OPCODE) // no conversion needed
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- mvec[0] = new MachineInstr(opCode);
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- }
- break;
-
- case 19: // reg: ToArrayTy(reg):
- case 20: // reg: ToPointerTy(reg):
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 233: // reg: Add(reg, Constant)
- mvec[0] = CreateAddConstInstruction(subtreeRoot);
- if (mvec[0] != NULL)
- break;
- // ELSE FALL THROUGH
-
- case 33: // reg: Add(reg, reg)
- mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 234: // reg: Sub(reg, Constant)
- mvec[0] = CreateSubConstInstruction(subtreeRoot);
- if (mvec[0] != NULL)
- break;
- // ELSE FALL THROUGH
-
- case 34: // reg: Sub(reg, reg)
- mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 135: // reg: Mul(todouble, todouble)
- checkCast = true;
- // FALL THROUGH
-
- case 35: // reg: Mul(reg, reg)
- mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 335: // reg: Mul(todouble, todoubleConst)
- checkCast = true;
- // FALL THROUGH
-
- case 235: // reg: Mul(reg, Constant)
- mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]);
- if (mvec[0] == NULL)
- {
- mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- else
- if (mvec[1] != NULL)
- ++numInstr;
- break;
-
- case 236: // reg: Div(reg, Constant)
- mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]);
- if (mvec[0] != NULL)
- {
- if (mvec[1] != NULL)
- ++numInstr;
- }
- else
- // ELSE FALL THROUGH
-
- case 36: // reg: Div(reg, reg)
- mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 37: // reg: Rem(reg, reg)
- case 237: // reg: Rem(reg, Constant)
- assert(0 && "REM instruction unimplemented for the SPARC.");
- break;
-
- case 38: // reg: And(reg, reg)
- case 238: // reg: And(reg, Constant)
- mvec[0] = new MachineInstr(AND);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 138: // reg: And(reg, not)
- mvec[0] = new MachineInstr(ANDN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 39: // reg: Or(reg, reg)
- case 239: // reg: Or(reg, Constant)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 139: // reg: Or(reg, not)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 40: // reg: Xor(reg, reg)
- case 240: // reg: Xor(reg, Constant)
- mvec[0] = new MachineInstr(XOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 140: // reg: Xor(reg, not)
- mvec[0] = new MachineInstr(XNOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 41: // boolconst: SetCC(reg, Constant)
- // Check if this is an integer comparison, and
- // there is a parent, and the parent decided to use
- // a branch-on-integer-register instead of branch-on-condition-code.
- // If so, the SUBcc instruction is not required.
- // (However, we must still check for constants to be loaded from
- // the constant pool so that such a load can be associated with
- // this instruction.)
- //
- // Otherwise this is just the same as case 42, so just fall through.
- //
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
- subtreeRoot->parent() != NULL)
- {
- InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
- assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
- const vector<MachineInstr*>&
- minstrVec = parentNode->getInstruction()->getMachineInstrVec();
- MachineOpCode parentOpCode;
- if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
- (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
- parentOpCode <= BRGEZ)
- {
- numInstr = 0; // don't forward the operand!
- break;
- }
- }
- // ELSE FALL THROUGH
-
- case 42: // bool: SetCC(reg, reg):
- {
- // If result of the SetCC is only used for a branch, we can
- // discard the result. otherwise, it must go into an integer register.
- // Note that the user may or may not be in the same tree, so we have
- // to follow SSA def-use edges here, not BURG tree edges.
- //
- Instruction* result = subtreeRoot->getInstruction();
- Value* firstUse = result->use_empty() ? 0 : *result->use_begin();
- bool discardResult =
- (result->use_size() == 1
- && firstUse->isInstruction()
- && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
-
- bool mustClearReg;
- int valueToMove;
- MachineOpCode movOpCode;
-
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
- subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
- {
- // Integer condition: destination should be %g0 or integer register.
- // If result must be saved but condition is not SetEQ then we need
- // a separate instruction to compute the bool result, so discard
- // result of SUBcc instruction anyway.
- //
- mvec[0] = new MachineInstr(SUBcc);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
-
- // mark the 4th operand as being a CC register, and a "result"
- mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue(), /*def*/ true);
-
- if (!discardResult)
- { // recompute bool if needed, using the integer condition codes
- if (result->getOpcode() == Instruction::SetNE)
- discardResult = true;
- else
- movOpCode =
- ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
- }
- }
- else
- {
- // FP condition: dest of FCMP should be some FCCn register
- mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->rightChild()->getValue());
-
- if (!discardResult)
- {// recompute bool using the FP condition codes
- mustClearReg = true;
- valueToMove = 1;
- movOpCode = ChooseMovFpccInstruction(subtreeRoot);
- }
- }
-
- if (!discardResult)
- {
- if (mustClearReg)
- {// Unconditionally set register to 0
- int n = numInstr++;
- mvec[n] = new MachineInstr(SETHI);
- mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
-
- // Now conditionally move `valueToMove' (0 or 1) into the register
- int n = numInstr++;
- mvec[n] = new MachineInstr(movOpCode);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- valueToMove);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
- break;
- }
-
- case 43: // boolreg: VReg
- case 44: // boolreg: Constant
- numInstr = 0;
- break;
-
- case 51: // reg: Load(reg)
- case 52: // reg: Load(ptrreg)
- case 53: // reg: LoadIdx(reg,reg)
- case 54: // reg: LoadIdx(ptrreg,reg)
- mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 55: // reg: GetElemPtr(reg)
- case 56: // reg: GetElemPtrIdx(reg,reg)
- if (subtreeRoot->parent() != NULL)
+ switch(ruleForNode) {
+ case 1: // stmt: Ret
+ case 2: // stmt: RetValue(reg)
+ // NOTE: Prepass of register allocation is responsible
+ // for moving return value to appropriate register.
+ // Mark the return-address register as a hidden virtual reg.
+ // Mark the return value register as an implicit use.
+ {
+ ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
+ assert(returnInstr->getOpcode() == Instruction::Ret);
+
+ Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+ returnInstr, NULL);
+ returnInstr->getMachineInstrVec().addTempValue(returnReg);
+
+ if (returnInstr->getReturnValue() != NULL)
+ returnInstr->getMachineInstrVec().addImplicitUse(
+ returnInstr->getReturnValue());
+
+ mvec[0] = new MachineInstr(RETURN);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ returnReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s0);
+
+ returnReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 3: // stmt: Store(reg,reg)
+ case 4: // stmt: Store(reg,ptrreg)
+ mvec[0] = new MachineInstr(
+ ChooseStoreInstruction(
+ subtreeRoot->leftChild()->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 5: // stmt: BrUncond
+ mvec[0] = new MachineInstr(BA);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*)NULL);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+
+ case 206: // stmt: BrCond(setCCconst)
+ // setCCconst => boolean was computed with `%b = setCC type reg1 const'
+ // If the constant is ZERO, we can use the branch-on-integer-register
+ // instructions and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 5, so just fall through.
+ {
+ InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+ assert(constNode &&
+ constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+ bool isValidConst;
+
+ if ((constVal->getType()->isIntegral()
+ || constVal->getType()->isPointerType())
+ && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant is a zero after all...
+ // Use the left child of setCC as the first argument!
+ mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(BA);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ break;
+ }
+ // ELSE FALL THROUGH
+ }
+
+ case 6: // stmt: BrCond(bool)
+ // bool => boolean was computed with some boolean operator
+ // (SetCC, Not, ...). We need to check whether the type was a FP,
+ // signed int or unsigned int, and check the branching condition in
+ // order to choose the branch to use.
+ //
+ {
+ bool isFPBranch;
+ mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
+ isFPBranch));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(BA);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+ }
+
+ case 208: // stmt: BrCond(boolconst)
+ {
+ // boolconst => boolean is a constant; use BA to first or second label
+ ConstPoolVal* constVal =
+ subtreeRoot->leftChild()->getValue()->castConstantAsserting();
+ unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
+
+ mvec[0] = new MachineInstr(BA);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+ }
+
+ case 8: // stmt: BrCond(boolreg)
+ // boolreg => boolean is stored in an existing register.
+ // Just use the branch-on-integer-register instruction!
+ //
+ {
+ mvec[0] = new MachineInstr(BRNZ);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+
+ // false branch
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(BA);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+ }
+
+ case 9: // stmt: Switch(reg)
+ assert(0 && "*** SWITCH instruction is not implemented yet.");
+ numInstr = 0;
+ break;
+
+ case 10: // reg: VRegList(reg, reg)
+ assert(0 && "VRegList should never be the topmost non-chain rule");
+ break;
+
+ case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
+ mvec[0] = new MachineInstr(XNOR);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ break;
+
+ case 322: // reg: ToBoolTy(bool):
+ case 22: // reg: ToBoolTy(reg):
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 23: // reg: ToUByteTy(reg)
+ case 25: // reg: ToUShortTy(reg)
+ case 27: // reg: ToUIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() ||
+ opType->isPointerType() ||
+ opType == Type::BoolTy && "Cast is illegal for other types");
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 24: // reg: ToSByteTy(reg)
+ case 26: // reg: ToShortTy(reg)
+ case 28: // reg: ToIntTy(reg)
+ case 30: // reg: ToLongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ if (opType->isIntegral() || opType == Type::BoolTy)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
+ opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ break;
+
+ case 31: // reg: ToFloatTy(reg):
+ case 32: // reg: ToDoubleTy(reg):
+ case 232: // reg: ToDoubleTy(Constant):
+
+ // If this instruction has a parent (a user) in the tree
+ // and the user is translated as an FsMULd instruction,
+ // then the cast is unnecessary. So check that first.
+ // In the future, we'll want to do the same for the FdMULq instruction,
+ // so do the check here instead of only for ToFloatTy(reg).
+ //
+ if (subtreeRoot->parent() != NULL &&
+ ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
+ if (opCode == INVALID_OPCODE) // no conversion needed
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ mvec[0] = new MachineInstr(opCode);
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ }
+ break;
+
+ case 19: // reg: ToArrayTy(reg):
+ case 20: // reg: ToPointerTy(reg):
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 233: // reg: Add(reg, Constant)
+ mvec[0] = CreateAddConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 33: // reg: Add(reg, reg)
+ mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 234: // reg: Sub(reg, Constant)
+ mvec[0] = CreateSubConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 34: // reg: Sub(reg, reg)
+ mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 135: // reg: Mul(todouble, todouble)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 35: // reg: Mul(reg, reg)
+ mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 335: // reg: Mul(todouble, todoubleConst)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 235: // reg: Mul(reg, Constant)
+ mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
+ if (mvec[0] == NULL)
+ {
+ mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
+ checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ else
+ if (mvec[1] != NULL)
+ ++numInstr;
+ break;
+
+ case 236: // reg: Div(reg, Constant)
+ mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
+ if (mvec[0] != NULL)
+ {
+ if (mvec[1] != NULL)
+ ++numInstr;
+ }
+ else
+ // ELSE FALL THROUGH
+
+ case 36: // reg: Div(reg, reg)
+ mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 37: // reg: Rem(reg, reg)
+ case 237: // reg: Rem(reg, Constant)
+ assert(0 && "REM instruction unimplemented for the SPARC.");
+ break;
+
+ case 38: // reg: And(reg, reg)
+ case 238: // reg: And(reg, Constant)
+ mvec[0] = new MachineInstr(AND);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 138: // reg: And(reg, not)
+ mvec[0] = new MachineInstr(ANDN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 39: // reg: Or(reg, reg)
+ case 239: // reg: Or(reg, Constant)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 139: // reg: Or(reg, not)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 40: // reg: Xor(reg, reg)
+ case 240: // reg: Xor(reg, Constant)
+ mvec[0] = new MachineInstr(XOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 140: // reg: Xor(reg, not)
+ mvec[0] = new MachineInstr(XNOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 41: // boolconst: SetCC(reg, Constant)
+ // Check if this is an integer comparison, and
+ // there is a parent, and the parent decided to use
+ // a branch-on-integer-register instead of branch-on-condition-code.
+ // If so, the SUBcc instruction is not required.
+ // (However, we must still check for constants to be loaded from
+ // the constant pool so that such a load can be associated with
+ // this instruction.)
+ //
+ // Otherwise this is just the same as case 42, so just fall through.
+ //
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+ subtreeRoot->parent() != NULL)
+ {
+ InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
+ assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
+ const vector<MachineInstr*>&
+ minstrVec = parent->getInstruction()->getMachineInstrVec();
+ MachineOpCode parentOpCode;
+ if (parent->getInstruction()->getOpcode() == Instruction::Br &&
+ (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+ parentOpCode <= BRGEZ)
+ {
+ numInstr = 0; // don't forward the operand!
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+
+ case 42: // bool: SetCC(reg, reg):
{
- // Check if the parent was an array access.
- // If so, we still need to generate this instruction.
- MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
- const PointerType* ptrType =
- (const PointerType*) memInst->getPtrOperand()->getType();
- if (! ptrType->getValueType()->isArrayType())
- {// we don't need a separate instr
- numInstr = 0; // don't forward operand!
- break;
- }
+ // If result of the SetCC is only used for a single branch, we can
+ // discard the result. Otherwise, the boolean value must go into
+ // an integer register.
+ //
+ bool keepBoolVal = (subtreeRoot->parent() == NULL ||
+ ((InstructionNode*) subtreeRoot->parent())
+ ->getInstruction()->getOpcode() !=Instruction::Br);
+ bool subValIsBoolVal =
+ subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
+ bool keepSubVal = keepBoolVal && subValIsBoolVal;
+ bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
+
+ bool mustClearReg;
+ int valueToMove;
+ MachineOpCode movOpCode;
+
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
+ subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
+ {
+ // Integer condition: dest. should be %g0 or an integer register.
+ // If result must be saved but condition is not SetEQ then we need
+ // a separate instruction to compute the bool result, so discard
+ // result of SUBcc instruction anyway.
+ //
+ mvec[0] = new MachineInstr(SUBcc);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
+
+ // mark the 4th operand as being a CC register, and a "result"
+ mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue(),/*def*/true);
+
+ if (computeBoolVal)
+ { // recompute bool using the integer condition codes
+ movOpCode =
+ ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
+ }
+ }
+ else
+ {
+ // FP condition: dest of FCMP should be some FCCn register
+ mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
+ subtreeRoot->rightChild()->getValue());
+
+ if (computeBoolVal)
+ {// recompute bool using the FP condition codes
+ mustClearReg = true;
+ valueToMove = 1;
+ movOpCode = ChooseMovFpccInstruction(subtreeRoot);
+ }
+ }
+
+ if (computeBoolVal)
+ {
+ if (mustClearReg)
+ {// Unconditionally set register to 0
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(SETHI);
+ mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
+ s0);
+ mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+
+ // Now conditionally move `valueToMove' (0 or 1) into the register
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(movOpCode);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ valueToMove);
+ mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+ break;
+ }
+
+ case 43: // boolreg: VReg
+ case 44: // boolreg: Constant
+ numInstr = 0;
+ break;
+
+ case 51: // reg: Load(reg)
+ case 52: // reg: Load(ptrreg)
+ case 53: // reg: LoadIdx(reg,reg)
+ case 54: // reg: LoadIdx(ptrreg,reg)
+ mvec[0] = new MachineInstr(ChooseLoadInstruction(
+ subtreeRoot->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 55: // reg: GetElemPtr(reg)
+ case 56: // reg: GetElemPtrIdx(reg,reg)
+ if (subtreeRoot->parent() != NULL)
+ {
+ // Check if the parent was an array access.
+ // If so, we still need to generate this instruction.
+ MemAccessInst* memInst = (MemAccessInst*)
+ subtreeRoot->getInstruction();
+ const PointerType* ptrType =
+ (const PointerType*) memInst->getPtrOperand()->getType();
+ if (! ptrType->getValueType()->isArrayType())
+ {// we don't need a separate instr
+ numInstr = 0; // don't forward operand!
+ break;
+ }
+ }
+ // else in all other cases we need to a separate ADD instruction
+ mvec[0] = new MachineInstr(ADD);
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 57: // reg: Alloca: Implement as 2 instructions:
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType());
+ int tsize = (int)
+ target.findOptimalStorageSize(instrType->getValueType());
+ assert(tsize != 0 && "Just to check when this can happen");
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+
+ // Instruction 1: sub %sp, tsize -> %sp
+ // tsize is always constant, but it may have to be put into a
+ // register if it doesn't fit in the immediate field.
+ //
+ mvec[0] = new MachineInstr(SUB);
+ mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ valueForTSize);
+ mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+
+ // Instruction 2: add %sp, 0 -> result
+ numInstr++;
+ mvec[1] = new MachineInstr(ADD);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
+ mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instr);
+ break;
+ }
+
+ case 58: // reg: Alloca(reg): Implement as 3 instructions:
+ // mul num, typeSz -> tmp
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType() &&
+ instrType->getValueType()->isArrayType());
+ const Type* eltType =
+ ((ArrayType*) instrType->getValueType())->getElementType();
+ int tsize = (int) target.findOptimalStorageSize(eltType);
+
+ assert(tsize != 0 && "Just to check when this can happen");
+ // if (tsize == 0)
+ // {
+ // numInstr = 0;
+ // break;
+ // }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+
+ // Create a temporary value to hold `tmp'
+ Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->leftChild()->getValue(),
+ NULL /*could insert tsize here*/);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+ // Instruction 1: mul numElements, typeSize -> tmp
+ mvec[0] = new MachineInstr(MULX);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ valueForTSize);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ tmpInstr);
+
+ tmpInstr->addMachineInstruction(mvec[0]);
+
+ // Instruction 2: sub %sp, tmp -> %sp
+ numInstr++;
+ mvec[1] = new MachineInstr(SUB);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ tmpInstr);
+ mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+
+ // Instruction 3: add %sp, 0 -> result
+ numInstr++;
+ mvec[2] = new MachineInstr(ADD);
+ mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
+ mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
+ mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instr);
+ break;
+ }
+
+ case 61: // reg: Call
+ // Generate a call-indirect (i.e., JMPL) for now to expose
+ // the potential need for registers. If an absolute address
+ // is available, replace this with a CALL instruction.
+ // Mark both the indirection register and the return-address
+ // register as hidden virtual registers.
+ // Also, mark the operands of the Call as implicit operands
+ // of the machine instruction.
+ {
+ CallInst* callInstr = (CallInst*) subtreeRoot->getInstruction();
+ Method* callee = callInstr->getCalledMethod();
+ assert(callInstr->getOpcode() == Instruction::Call);
+
+ Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
+ callee, NULL);
+ Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
+ callInstr, NULL);
+
+ // Note temporary values and implicit uses in mvec
+ callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
+ callInstr->getMachineInstrVec().addTempValue(retAddrReg);
+ for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
+ if (callInstr->getOperand(i) != callee)
+ callInstr->getMachineInstrVec().addImplicitUse(
+ callInstr->getOperand(i));
+
+ // Generate the machine instruction and its operands
+ mvec[0] = new MachineInstr(JMPL);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ jmpAddrReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ (int64_t) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ retAddrReg);
+
+ // NOTE: jmpAddrReg will be loaded by a different instruction generated
+ // by the final code generator, so we just mark the CALL instruction
+ // as computing that value.
+ // The retAddrReg is actually computed by the CALL instruction.
+ //
+ jmpAddrReg->addMachineInstruction(mvec[0]);
+ retAddrReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 62: // reg: Shl(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral()
+ || opType == Type::BoolTy
+ || opType->isPointerType()&& "Shl unsupported for other types");
+ mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 63: // reg: Shr(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral()
+ || opType == Type::BoolTy
+ || opType->isPointerType() &&"Shr unsupported for other types");
+ mvec[0] = new MachineInstr((opType->isSigned()
+ ? ((opType == Type::LongTy)? SRAX : SRA)
+ : ((opType == Type::LongTy)? SRLX : SRL)));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 64: // reg: Phi(reg,reg)
+ { // This instruction has variable #operands, so resultPos is 0.
+ Instruction* phi = subtreeRoot->getInstruction();
+ mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
+ mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
+ phi->getOperand(i));
+ break;
+ }
+ case 71: // reg: VReg
+ case 72: // reg: Constant
+ numInstr = 0; // don't forward the value
+ break;
+
+ default:
+ assert(0 && "Unrecognized BURG rule");
+ numInstr = 0;
+ break;
}
- // else in all other cases we need to a separate ADD instruction
- mvec[0] = new MachineInstr(ADD);
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 57: // reg: Alloca: Implement as 2 instructions:
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType());
- int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
-
- // Instruction 1: sub %sp, tsize -> %sp
- // tsize is always constant, but it may have to be put into a
- // register if it doesn't fit in the immediate field.
- //
- mvec[0] = new MachineInstr(SUB);
- mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 2: add %sp, 0 -> result
- numInstr++;
- mvec[1] = new MachineInstr(ADD);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
- }
-
- case 58: // reg: Alloca(reg): Implement as 3 instructions:
- // mul num, typeSz -> tmp
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType() &&
- instrType->getValueType()->isArrayType());
- const Type* eltType =
- ((ArrayType*) instrType->getValueType())->getElementType();
- int tsize = (int) target.findOptimalStorageSize(eltType);
-
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
-
- // Create a temporary value to hold `tmp'
- Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->leftChild()->getValue(),
- NULL /*could insert tsize here*/);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
-
- // Instruction 1: mul numElements, typeSize -> tmp
- mvec[0] = new MachineInstr(MULX);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
-
- tmpInstr->addMachineInstruction(mvec[0]);
-
- // Instruction 2: sub %sp, tmp -> %sp
- numInstr++;
- mvec[1] = new MachineInstr(SUB);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
- mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 3: add %sp, 0 -> result
- numInstr++;
- mvec[2] = new MachineInstr(ADD);
- mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
}
-
- case 61: // reg: Call
- // Generate a call-indirect (i.e., JMPL) for now to expose
- // the potential need for registers. If an absolute address
- // is available, replace this with a CALL instruction.
- // Mark both the indirection register and the return-address
- { // register as hidden virtual registers.
-
- Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
- ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
- Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getValue(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
-
- mvec[0] = new MachineInstr(JMPL);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- (int64_t) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
-
- // NOTE: jmpAddrReg will be loaded by a different instruction generated
- // by the final code generator, so we just mark the CALL instruction
- // as computing that value.
- // The retAddrReg is actually computed by the CALL instruction.
- //
- jmpAddrReg->addMachineInstruction(mvec[0]);
- retAddrReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 62: // reg: Shl(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral()
- || opType == Type::BoolTy
- || opType->isPointerType() && "Shl unsupported for other types");
- mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 63: // reg: Shr(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral()
- || opType == Type::BoolTy
- || opType->isPointerType() && "Shr unsupported for other types");
- mvec[0] = new MachineInstr((opType->isSigned()
- ? ((opType == Type::LongTy)? SRAX : SRA)
- : ((opType == Type::LongTy)? SRLX : SRL)));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 64: // reg: Phi(reg,reg)
- { // This instruction has variable #operands, so resultPos is 0.
- Instruction* phi = subtreeRoot->getInstruction();
- mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
- mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
- phi->getOperand(i));
- break;
- }
- case 71: // reg: VReg
- case 72: // reg: Constant
- numInstr = 0; // don't forward the value
- break;
-
- case 111: // stmt: reg
- case 112: // stmt: boolconst
- case 113: // stmt: bool
- case 121:
- case 122:
- case 123:
- case 124:
- case 125:
- case 126:
- case 127:
- case 128:
- case 129:
- case 130:
- case 131:
- case 132:
- case 133:
- case 153:
- case 155:
- case 221:
- case 222:
- case 232:
- case 241:
- case 242:
- case 243:
- case 244:
- //
- // These are all chain rules, which have a single nonterminal on the RHS.
- // Get the rule that matches the RHS non-terminal and use that instead.
- //
- assert(ThisIsAChainRule(ruleForNode));
- assert(nts[0] && ! nts[1]
- && "A chain rule should have only one RHS non-terminal!");
- nextRule = burm_rule(subtreeRoot->state, nts[0]);
- nts = burm_nts[nextRule];
- numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
- break;
-
- default:
- assert(0 && "Unrecognized BURG rule");
- numInstr = 0;
- break;
- }
if (forwardOperandNum >= 0)
{ // We did not generate a machine instruction but need to use operand.
@@ -2019,17 +2097,18 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// If not, insert a copy instruction which should get coalesced away
// by register allocation.
if (subtreeRoot->parent() != NULL)
- ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
+ ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
else
- {
- int n = numInstr++;
- mvec[n] = new MachineInstr(ADD);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
- mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction());
- }
+ {
+ MachineInstr *minstr1 = NULL, *minstr2 = NULL;
+ minstr1 = CreateCopyInstructionsByType(target,
+ subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
+ subtreeRoot->getInstruction(), minstr2);
+ assert(minstr1);
+ mvec[numInstr++] = minstr1;
+ if (minstr2 != NULL)
+ mvec[numInstr++] = minstr2;
+ }
}
if (! ThisIsAChainRule(ruleForNode))